JPH07229828A - Method and apparatus for measuring birefringence of optical disk substrate - Google Patents
Method and apparatus for measuring birefringence of optical disk substrateInfo
- Publication number
- JPH07229828A JPH07229828A JP31070894A JP31070894A JPH07229828A JP H07229828 A JPH07229828 A JP H07229828A JP 31070894 A JP31070894 A JP 31070894A JP 31070894 A JP31070894 A JP 31070894A JP H07229828 A JPH07229828 A JP H07229828A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- birefringence
- phase difference
- incident
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
- Manufacturing Optical Record Carriers (AREA)
Abstract
(57)【要約】
【目的】 本発明は正確で迅速で簡便に光ディスク基板
の面内および垂直複屈折を測定でき、かつインラインで
の適用もできる方法及び装置を提供することを目的とす
る。
【構成】 透明樹脂基板上に少なくとも記録層を設けて
なる光ディスクの基板に、記録層と反対側の面から平行
光ビームを基板に対し斜め方向から入射させ、その透過
光または反射光に生じた位相差を測定して基板の複屈折
を測定する方法であって、入射光ビームを含む入射面の
方向を少なくとも直交する2方向にとって複屈折を測定
することを特徴とする光ディスク基板の複屈折の測定
法。
(57) [Summary] [Object] An object of the present invention is to provide a method and an apparatus capable of measuring the in-plane and vertical birefringence of an optical disk substrate accurately, quickly and easily, and also applicable in-line. [Structure] A parallel light beam is obliquely incident on a substrate of an optical disc having a transparent resin substrate on which at least a recording layer is provided from a surface opposite to the recording layer, and a transmitted light or a reflected light is generated. A method for measuring the birefringence of a substrate by measuring a phase difference, characterized in that the birefringence of the optical disk substrate is measured with respect to at least two directions of an incident surface including an incident light beam at right angles. Measurement method.
Description
【0001】[0001]
【産業上の利用分野】本発明は光ディスク基板の複屈折
の測定法、とくにインラインでの面内及び垂直方向の複
屈折測定法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring birefringence of an optical disk substrate, and more particularly to an in-line and vertical birefringence measuring method.
【0002】[0002]
【従来の技術】記録可能な光ディスクとして穴あけ型記
録媒体が登場して以来、10年以上の年月が経過した。
この間、記録消去が可能な光磁気記録媒体、1ビームオ
ーバーライトが可能な相変化記録媒体なども実用化され
ている。2. Description of the Related Art More than 10 years have passed since the introduction of a hole-type recording medium as a recordable optical disk.
During this period, a magneto-optical recording medium capable of recording and erasing, a phase change recording medium capable of one-beam overwriting, etc. have been put into practical use.
【0003】極く初期を除き、記録再生用光源として
は、半導体レーザーが用いられており、使用レーザー波
長は、初期は830nm前後、最近では780nm前後
が主流である。集束光ビームのスポット径は、波長が短
ければ小さくすることができるため、短波長化が望まれ
ているが、現在、信頼性のある実用的な半導体レーザー
の波長は780nmまでである。このような光記録媒体
は、コスト、量産性の観点から透明な樹脂基板上に記録
層、保護層等を形成してなる。A semiconductor laser is used as a recording / reproducing light source except in the very beginning, and the laser wavelength used is around 830 nm at the initial stage and recently around 780 nm. Since the spot diameter of the focused light beam can be made small if the wavelength is short, it is desired to shorten the wavelength. At present, however, the wavelength of a reliable and practical semiconductor laser is up to 780 nm. Such an optical recording medium has a recording layer, a protective layer and the like formed on a transparent resin substrate from the viewpoint of cost and mass productivity.
【0004】基板としては、現在主として、ポリカーボ
ネート樹脂等が用いられている。樹脂基板、特にポリカ
ーボネート樹脂基板では、基板の光学的異方性、すなわ
ち複屈折が問題となる。とくに光磁気記録媒体では、
0.5度程度の小さなKerr回転角を検出するため、
複屈折の影響が大きい。At present, a polycarbonate resin or the like is mainly used as a substrate. In a resin substrate, particularly a polycarbonate resin substrate, the optical anisotropy of the substrate, that is, birefringence becomes a problem. Especially in magneto-optical recording media,
To detect a small Kerr rotation angle of about 0.5 degrees,
The effect of birefringence is large.
【0005】しかしながら、、樹脂の分子量等の最適
化、成形技術の改良により、面内複屈折は20×10-6
未満に抑えられ、実用上問題ないレベルとなっている。
一方、垂直複屈折は特にポリカーボネート樹脂基板で大
きく、500×10-6にも達するが、作動光学ヘッドの
開発により、やはり実用上問題ないレベルまでその影響
は低減されている。しかしながら、光ディスクは一層の
高密度化が求められており、680nm前後の半導体レ
ーザーが実用化され、近い将来に安価で高出力なものが
提供される見通しが出てきた。However, the in-plane birefringence is 20 × 10 −6 by optimizing the molecular weight of the resin and improving the molding technique.
It is suppressed to less than less than the practical level.
On the other hand, the vertical birefringence is particularly large in the polycarbonate resin substrate and reaches 500 × 10 −6 , but with the development of the actuating optical head, its influence has been reduced to a level where there is no practical problem. However, optical discs are required to have higher densities, and semiconductor lasers having a wavelength of about 680 nm have been put into practical use, and it is expected that inexpensive and high-output optical discs will be provided in the near future.
【0006】また、800〜1000m前後の高出力半
導体レーザーと非線形素子を組み合わせて500nm程
度の波長を得る技術も進歩し、レーザーと非線形光学素
子を組み合わせたヘッドも小型化されつつある。さらに
は、波長500nm程度の半導体レーザーも実験室レベ
ルでは開発に成功したという報告が相次でいる。このよ
うに、短波長化半導体レーザーを用いた高密度光ディス
クは、まず波長680nm前後を始めとして、近い将来
に量産化される状況が整ってきている。この際、780
nm程度ではいったんは解決されたと思われた樹脂基板
の光学的異方性の問題が再び深刻な問題になることが懸
念される。Further, the technology for obtaining a wavelength of about 500 nm by combining a high-power semiconductor laser of about 800 to 1000 m and a non-linear element has advanced, and the head combining the laser and the non-linear optical element is becoming smaller. Furthermore, there have been reports that semiconductor lasers with a wavelength of about 500 nm have been successfully developed at the laboratory level. In this way, high-density optical discs using short-wavelength semiconductor lasers are being put into mass production in the near future, starting with wavelengths around 680 nm. At this time, 780
At about nm, there is concern that the problem of optical anisotropy of the resin substrate, which was once considered to be solved, will become a serious problem again.
【0007】すなわち、樹脂基板の光学異方性(複屈
折)にかかわる問題点としては、以下の2点があげられ
る(I.Prikryl,Applied Optics,31(1992),p1853、戸田
他、光メモリシンポジウム予稿集(1986)、p1
9、吉沢他、光メモリシンポジウム予稿集(198
6)、p33)。 1)基板を光ビームが通過する際に生じる位相差。光磁
気媒体のように光の偏向とその方位の回転を利用して情
報の記録再生を行う媒体では、特定方向の直線偏向の回
転とともに、楕円化が生じ、これがキャリアレベルの低
下、作動ヘッドにおけるコモンモードノイズの増加をも
たらす。That is, there are the following two problems as to the optical anisotropy (birefringence) of the resin substrate (I. Prikryl, Applied Optics, 31 (1992), p1853, Toda et al., Optical Memory Symposium). Proceedings (1986), p1
9, Yoshizawa et al., Optical Memory Symposium Proceedings (198
6), p33). 1) A phase difference that occurs when a light beam passes through a substrate. In a medium such as a magneto-optical medium which records and reproduces information by utilizing the deflection of light and the rotation of its direction, ellipticization occurs along with the rotation of linear deflection in a specific direction. This causes an increase in common mode noise.
【0008】位相差は、光線の入射方向によって決まる
基板の複屈折を△n、基板厚をd、波長をλとすると、The phase difference is determined by the incident direction of light rays, where Δn is the birefringence of the substrate, d is the substrate thickness, and λ is the wavelength.
【0009】[0009]
【数1】△n・d/λ で決まるから、記録再生に用いる波長が短くなれば、実
質的に位相差は増加する。従って、短波長化、特に70
0nm未満で使用する光磁気媒体では基板の複屈折によ
る位相差の問題が深刻になる。Since it is determined by Δn · d / λ, the phase difference substantially increases as the wavelength used for recording / reproducing becomes shorter. Therefore, shortening the wavelength, especially 70
In the magneto-optical medium used at less than 0 nm, the problem of retardation due to the birefringence of the substrate becomes serious.
【0010】2)複屈折による非点収差の問題。集束光
ビームで基板に対して垂直ではなく斜めに光線が基板に
入射する際、屈折が生じるが、光学的異方性を有する基
板では、入射光線の方位によって屈折率が異なる(吉
沢、光学、15(1986)、p414)。このため、
本来、基板の記録層側の面で直径1μm程度の面内に集
束すべきビームに非点収差が生じる。2) The problem of astigmatism due to birefringence. Refraction occurs when a focused light beam impinges on a substrate obliquely rather than perpendicularly to the substrate. However, in a substrate having optical anisotropy, the refractive index differs depending on the direction of the incident ray (Yoshizawa, Optics, 15 (1986), p414). For this reason,
Originally, astigmatism occurs in the beam to be focused on the surface of the recording layer side of the substrate having a diameter of about 1 μm.
【0011】非点収差が生じた場合、焦点面をどこで合
わせるかという光学ヘッドの機差により、記録再生特性
にばらつきが生じる。また、ビームがトラック横断方向
に長軸をもつ楕円ビームとなった場合、隣接トラックか
らのクロストークが問題となる。短波長光源を用いた高
密度光ディスクでは、トラックピッチも狭くなるから、
クロストークの問題はより一層厳しくなる。When astigmatism occurs, the recording and reproducing characteristics vary due to the difference in the optical heads where the focal plane is adjusted. Further, when the beam is an elliptical beam having a long axis in the track crossing direction, crosstalk from adjacent tracks becomes a problem. In a high-density optical disc using a short-wavelength light source, the track pitch also becomes narrower,
The problem of crosstalk becomes even more severe.
【0012】この問題を解決するには、根本的に垂直方
向の複屈折を低減するしかないが、通常使われるポリカ
ーボネート基板では、500×10-6程度であり、小さ
くとも300×10-6程度の複屈折が存在するため、直
線偏向ビームを用いる限り、非点収差を無くすことはほ
とんど不可能である。以上述べたような問題点に鑑み、
基板の複屈折を製造工程において制御することが重要と
なるが、その為には、まず正確かつ迅速に基板の複屈折
を測定し製造条件に反映させることが必要となる。The only solution to this problem is to reduce the birefringence in the vertical direction. However, with a commonly used polycarbonate substrate, it is about 500 × 10 −6 , and at least about 300 × 10 −6. Due to the existence of the birefringence of, it is almost impossible to eliminate astigmatism as long as a linearly polarized beam is used. In view of the problems described above,
It is important to control the birefringence of the substrate in the manufacturing process. For that purpose, it is necessary to measure the birefringence of the substrate accurately and promptly and reflect it in the manufacturing conditions.
【0013】従来、光ディスクの透明樹脂基板の面内及
び垂直方向の複屈折測定法については、斜め入射光によ
る位相差測定法が用いられている。図2及び3は従来の
斜め入射測定法における、ディスクに対する入射光ビー
ムの位置関係を模式的に示したものであり、Aは測定用
平行ビーム光の発光部、Bは受光部である。Conventionally, as the in-plane and vertical birefringence measuring method of a transparent resin substrate of an optical disk, a phase difference measuring method using obliquely incident light has been used. 2 and 3 schematically show the positional relationship of the incident light beam with respect to the disk in the conventional oblique incidence measurement method, in which A is a light emitting portion for measuring parallel beam light and B is a light receiving portion.
【0014】図2は透過法、図3は反射法での測定であ
る。基板内の1点Oにおける屈折率楕円体の各軸の大き
さ、すなわち複屈折を決定するためには、通常の透過法
では、入射光ビームの入射角θと入射面の方位角φを何
点か変化させて、基板通過により透過光に生じた位相差
を測定するが、少なくともθを2点変化させることが必
要であった(吉沢、光学、15(1986)、p414
−421、戸田他、光メモリシンポジウム予稿集、p1
9)。FIG. 2 shows the measurement by the transmission method, and FIG. 3 shows the measurement by the reflection method. In order to determine the size of each axis of the index ellipsoid at one point O in the substrate, that is, the birefringence, in the usual transmission method, the incident angle θ of the incident light beam and the azimuth angle φ of the incident surface are calculated. The phase difference caused by passing through the substrate was measured by changing the points, but it was necessary to change at least two points (Yoshizawa, Kogaku, 15 (1986), p414.
-421, Toda et al., Optical Memory Symposium Proceedings, p1
9).
【0015】透過法では、測定光ビームを基板に垂直に
入射させて位相差を測定することにより、面内複屈折を
直接求めることができる。基板に垂直な方向の複屈折
は、基板真横から光ビームを入射させることはできない
から、斜め入射光ビームを用いて垂直複屈折と面内複屈
折の両方の影響をうけた位相差を測定し、面内複屈折の
寄与を上記垂直入射によって求めた面内複屈折値を用い
て補正することで求める。In the transmission method, the in-plane birefringence can be directly obtained by injecting the measurement light beam perpendicularly to the substrate and measuring the phase difference. For the birefringence in the direction perpendicular to the substrate, the light beam cannot be incident from the side of the substrate.Therefore, an obliquely incident light beam is used to measure the phase difference affected by both the vertical birefringence and the in-plane birefringence. , The contribution of the in-plane birefringence is obtained by correcting the contribution of the in-plane birefringence value obtained by the vertical incidence.
【0016】しかしながら、この場合、基板を傾けて入
射角を変える必要がありインライン測定に適用するには
煩雑である。一方、樹脂の複屈折は樹脂に加わる応力に
より変化することが知られているが、基板に加わる応力
は基板成形後の光ディスク製造プロセスによっても変化
する。However, in this case, it is necessary to tilt the substrate to change the incident angle, which is complicated to apply to in-line measurement. On the other hand, it is known that the birefringence of the resin changes depending on the stress applied to the resin, but the stress applied to the substrate also changes depending on the optical disc manufacturing process after the substrate is molded.
【0017】例えば、記録層や記録層の保護に用いられ
る誘電体層、基板の保護に用いられるハードコート層等
の内部応力により変化し得る。従って、複屈折はこれら
の成膜工程等においても2次的ではあるが変化し得るの
で、光ディスク製造の最終工程で再度、測定することが
望ましい。一般に光ディスクの記録層は反射性であるか
ら、基板の記録層とは反対側の面から測定光ビームを入
射させ、反射法により測定する必要がある。For example, it may be changed by the internal stress of the recording layer, the dielectric layer used for protecting the recording layer, the hard coat layer used for protecting the substrate, and the like. Therefore, since the birefringence may change in these film forming steps and the like, although it is secondary, it is desirable to measure it again in the final step of optical disc manufacturing. Generally, since the recording layer of an optical disk is reflective, it is necessary to make a measurement light beam incident from the surface of the substrate opposite to the recording layer and perform measurement by the reflection method.
【0018】その1方法として、エリプソメーターを用
いて、反射光の位相差を測定する方法が提案されている
(A.Skumanich, Proceedings of Magneto-Optical Reco
rding International Symposium '92, pp237-240)。一
般に反射法の測定においては、基板面への垂直入射・反
射光の測定は、発光部と受光部を同一線上に置くことが
できないため不可能である。As one of the methods, a method of measuring the phase difference of reflected light using an ellipsometer has been proposed (A. Skumanich, Proceedings of Magneto-Optical Reco.
rding International Symposium '92, pp237-240). Generally, in the measurement by the reflection method, it is impossible to measure the normal incidence / reflected light on the substrate surface because the light emitting portion and the light receiving portion cannot be placed on the same line.
【0019】従って面内複屈折を直接測定することは不
可能で、数点の角度から斜め入射させカーブフィッティ
ングにより、面内及び垂直複屈折を求めている。この方
法は原理的には何ら問題ないが、入射角度を変えるに
は、発光部と受光部の角度を両方とも設定し直す必要が
あるため、一般に装置が複雑になり、また測定時間も長
くなるため製造プロセスでのインライン測定には適さな
い。Therefore, it is impossible to directly measure the in-plane birefringence, and the in-plane and vertical birefringences are obtained by curve fitting with several angles of oblique incidence. This method does not cause any problems in principle, but in order to change the incident angle, it is necessary to reset both the angles of the light emitting part and the light receiving part, so the device is generally complicated and the measurement time becomes long. Therefore, it is not suitable for in-line measurement in the manufacturing process.
【0020】さらにこの方法では、主軸の方向と入射ビ
ームを含む入射面の方向とを一致させなければ、正しい
複屈折値は得られない。さらに、上記透過法・反射法い
ずれにおいても、基板に垂直な方向から傾いた光学的主
軸を有する場合には、入射角度、入射面のいずれも変化
させ複数点で測定しなければ正確な測定値は得られな
い。Further, in this method, the correct birefringence value cannot be obtained unless the direction of the principal axis and the direction of the incident surface containing the incident beam are matched. Further, in both the transmission method and the reflection method, when the optical main axis is tilted from the direction perpendicular to the substrate, both the incident angle and the incident surface are changed and accurate measurement values must be obtained at multiple points. Can't get
【0021】また、煩雑で到底インラインでの測定に、
さらには抜き取り検査にさえ、適用できるものではな
い。In addition, for complicated in-line measurement,
Furthermore, it is not applicable even to the sampling inspection.
【0022】[0022]
【発明が解決しようとする課題】上述のとおり、正確で
迅速で簡便に光ディスク基板の面内および垂直複屈折を
測定でき、かつインラインでも適用できるような方法が
望まれる。As described above, there is a demand for a method capable of measuring the in-plane and vertical birefringence of an optical disk substrate accurately, quickly and simply and applicable in-line.
【0023】[0023]
【課題を解決するための手段】本発明は、透明樹脂基板
上に少なくとも記録層を設けてなる光ディスクの基板
に、記録層と反対側の面から平行光ビームを基板に対し
斜め方向から入射させ、その透過光または反射光に生じ
た位相差を測定して基板の複屈折を測定する方法であっ
て、入射光ビームを含む入射面の方向を少なくとも直交
する2方向にとって複屈折を測定することを特徴とする
光ディスク基板の複屈折の測定法である。According to the present invention, a parallel light beam is obliquely incident on a substrate of an optical disc having at least a recording layer provided on a transparent resin substrate from a surface opposite to the recording layer. A method for measuring the birefringence of a substrate by measuring the phase difference generated in the transmitted light or the reflected light, wherein the birefringence is measured by at least two orthogonal directions of the incident surface including the incident light beam. Is a method for measuring birefringence of an optical disk substrate.
【0024】本発明のより簡単な実施方法として、基板
の面内複屈折の主軸方向が分かっており、その方向がほ
ぼ安定しておれば、上記直交する2方向を、基板の面内
における光学軸の方向とすることで面内及び垂直複屈折
に関する必要かつ十分な情報を得ることができる。As a simpler method of implementing the present invention, if the principal axis direction of the in-plane birefringence of the substrate is known and the direction is substantially stable, the above two orthogonal directions can be used as an optical axis in the plane of the substrate. By setting the direction of the axis, necessary and sufficient information regarding in-plane and vertical birefringence can be obtained.
【0025】さらに、本発明の方法により、基板面内各
位置における面内及び垂直複屈折の分布を自動で測定す
るための手段として、上記直交する2方向に移動可能な
直線移動機構と、直線移動機構上に設置され、該直線軸
上の各点を中心として回転可能でその上に水平にディス
クを設置する回転ステージと、被測定ディスク面に斜め
に光ビームを入射させて位相差を測定する発光部及び受
光部から構成された光ディスク用複屈折測定装置を提案
するものである。Furthermore, according to the method of the present invention, as means for automatically measuring the in-plane and vertical birefringence distribution at each position in the substrate plane, a linear moving mechanism that is movable in the two orthogonal directions described above, A rotary stage that is installed on a moving mechanism and can rotate around each point on the linear axis and horizontally installs a disk on it, and a phase difference is measured by injecting a light beam obliquely onto the disk surface to be measured. A birefringence measuring apparatus for an optical disc is proposed, which is composed of a light emitting section and a light receiving section.
【0026】以下、本発明をさらに詳細に説明する。本
発明においては、入射角θは適度に傾けた斜め入射1点
で十分であり、例えば30から70度程度とするのが望
ましい。30度未満では垂直複屈折の寄与が少なく、7
0度より大では面内複屈折による寄与が小さいため、両
方の位相差を同時に求めようとすると誤差が大きくなる
ので好ましくない。The present invention will be described in more detail below. In the present invention, it is sufficient for the incident angle θ to be one point of oblique incidence that is appropriately inclined, and it is desirable to set it to about 30 to 70 degrees, for example. Below 30 degrees, the contribution of vertical birefringence is small,
If it is larger than 0 degree, the contribution of the in-plane birefringence is small, and it is not preferable because an error becomes large if both phase differences are obtained at the same time.
【0027】本発明では、入射角を固定したまま、基板
のみを水平面内で移動させることで、入射面の方位角φ
を変化させる。ディスクの位置を相対的にずらすだけ
で、発光部、受光部及びディスクの傾きを変化させる必
要がないため、測定治具、手順の簡便化が可能であり、
従って安価にもなる。また、測定時間も短縮できる。In the present invention, the azimuth angle φ of the incident surface is changed by moving only the substrate in the horizontal plane while keeping the incident angle fixed.
Change. Since it is not necessary to change the inclination of the light emitting part, the light receiving part, and the disk only by relatively shifting the position of the disk, it is possible to simplify the measurement jig and the procedure.
Therefore, it is also cheap. Also, the measurement time can be shortened.
【0028】本発明では、上記のように入射面の方位角
φを少なくとも4点変化させて、位相差を測定し、理論
的に求めた位相差のφ依存性カーブとフィッティングを
行うことにより、面内及び垂直複屈折を求める。さらに
は、光学的な主軸の方向を求めることも可能である。図
4に主軸の方位を(x’,y’,z’)軸方向にとり、
基板表面に垂直な方向をz軸,基板面内をx,y軸にと
った場合の位置関係を示す。In the present invention, as described above, the azimuth angle φ of the incident surface is changed by at least four points, the phase difference is measured, and fitting is performed with the theoretically obtained phase dependence φ dependence curve. Determine in-plane and vertical birefringence. Furthermore, it is also possible to find the direction of the optical principal axis. In FIG. 4, the azimuth of the main axis is taken in the (x ', y', z ') axis direction,
The positional relationship when the direction perpendicular to the substrate surface is the z axis and the in-plane of the substrate is the x and y axes is shown.
【0029】座標軸(x,y,z)に対する、主軸の方
位(x’,y’,z’)のオイラー角を(α、β、γ)
とし、(x’,y’,z’)各軸に対応する屈折率をそ
れぞれ(nx,ny,nz)とする。ここで、αは主軸
z’軸とz軸のなす角度、βはz軸とz’軸がなす面P
1(斜線部)とy軸がなす角、γは面P1とy’oz’
面のなす角である。The Euler angles of the azimuths (x ', y', z ') of the principal axes with respect to the coordinate axes (x, y, z) are (α, β, γ).
And the refractive index corresponding to each axis of (x ', y', z ') is (nx, ny, nz). Here, α is an angle formed by the main axis z ′ axis and the z axis, and β is a plane P formed by the z axis and the z ′ axis.
The angle between 1 (the shaded area) and the y-axis, γ is the plane P1 and y'oz '
It is the angle between the faces.
【0030】(α、β、γ)、(nx、ny、nz)及び
入射角度θ、基板内で許される2つの伝搬方向に対する
屈折率n’、n”及び屈折角θ’、θ”入射面の方位角
φ、基板の厚みdのときの透過法による位相差Rは次式
で与えられるような関係式で表される。(Α, β, γ), (nx, ny, nz) and the incident angle θ, the refractive indices n ′ and n ″ and the refraction angles θ ′ and θ ″ for the two propagation directions allowed in the substrate. The azimuth angle φ and the phase difference R by the transmission method when the substrate thickness d is expressed by the relational expression given by the following expression.
【0031】[0031]
【数2】R=d・(n’cosθ’−n”cosθ”) ただし、sinθ=n’sinθ’=n”sinθ” 位相差の複数のφ及びθ依存性の理論値と複数の測定の
測定点における実測値を用いてカーブフィッティングを
行い、屈折率楕円体を決定する6個のパラメーター
(α、β、γ)、(nx、ny、nz)を求めることにな
る。## EQU00002 ## R = d.multidot. (N'cos.theta .'- n "cos.theta.") Where sin.theta. = N'sin.theta. '= N "sin.theta." The theoretical values of the plural .phi. And .theta. Curve fitting is performed using the measured values at the measurement points, and the six parameters (α, β, γ) and (nx, ny, nz) that determine the index ellipsoid are obtained.
【0032】しかしながら、実用上広く用いられている
射出成形による樹脂基板では、その対称性から、基板面
内の主軸はほぼ半径、円周方向にあり、これがnx、ny
に対応する。さらに、基板面にほぼ垂直方向に主軸があ
りこれがnzに対応する。従って、上記屈折率楕円体を
定義するための6つのパラメーターのうち、γは0と見
なしてよい。However, in the injection-molded resin substrate which is widely used in practice, due to its symmetry, the main axis in the substrate plane is approximately in the radius and circumferential directions, which are nx and ny.
Corresponding to. Further, there is a principal axis in a direction substantially vertical to the substrate surface, which corresponds to nz. Therefore, γ may be regarded as 0 out of the 6 parameters for defining the index ellipsoid.
【0033】また、複屈折δL=nx−nz、δV=ny−
nzはnzそのものに比較して数桁小さい値となるので、
位相差は実際上δL、δVで決まる。nzを各屈折率のお
おむね平均値にあるとしても問題ない。例えば、光ディ
スク基板としてよく使われるポリカーボネート樹脂で
は、nzを1.58とおいてδLとδVを求めればよい。
すなわち、実際上未知のパラメータは4個である。Birefringence δL = nx-nz, δV = ny-
Since nz is several orders of magnitude smaller than nz itself,
The phase difference is actually determined by ΔL and ΔV. There is no problem even if nz is approximately the average value of the respective refractive indices. For example, for a polycarbonate resin often used as an optical disk substrate, δL and δV may be obtained with nz set to 1.58.
That is, there are actually four unknown parameters.
【0034】斜め入射時の位相差の方位角φ依存性が、
4個のパラメーター(δL、δV、α、β)によってどの
ように変化するかを、解析したのが図5から図8であ
る。図5は位相差の垂直複屈折依存性、図6は位相差の
複屈折(δL、δV)依存性、図7は位相差の主軸方位
(α、β)依存性、図8は位相差の主軸方位(α、β)
依存性を示す図である。The azimuth angle φ dependence of the phase difference at oblique incidence is
5 to 8 show how the four parameters (δL, δV, α, β) change. 5 shows the vertical birefringence dependence of the phase difference, FIG. 6 shows the birefringence (δL, δV) dependence of the phase difference, FIG. 7 shows the principal axis azimuth (α, β) dependence of the phase difference, and FIG. 8 shows the phase difference. Main axis direction (α, β)
It is a figure which shows a dependency.
【0035】入射角は各分図aが30度、分図bが60
度であり、nz=1.58とし、面内複屈折δLについて
は、0〜20×10-6、垂直複屈折δVについては0〜
600×10-6、αは0〜10度、βは0〜360度の
範囲について示したが、位相差のφ依存性には、面内主
軸方向に関して対称性が見られる。従ってφについて少
なくとも直交する4点において位相差を測定すれば、φ
依存性カーブの特徴を抽出でき、θを変化させなくて
も、精度のよいカーブフィッティングを行えることが分
かる。The incident angle is 30 degrees for each map a and 60 for the map b.
Nz = 1.58, in-plane birefringence δL is 0 to 20 × 10 −6 , and vertical birefringence δV is 0.
Although 600 × 10 −6 , α is in the range of 0 to 10 degrees, and β is in the range of 0 to 360 degrees, the φ dependence of the phase difference has symmetry with respect to the in-plane principal axis direction. Therefore, if the phase difference is measured at at least four points that are orthogonal to φ, then φ
It can be seen that the characteristic of the dependency curve can be extracted and accurate curve fitting can be performed without changing θ.
【0036】本発明において、位相差の測定そのもの
は、通常の方法、すなわち入射光として直線偏向または
円偏向ビームを用い、基板通過にともなって生じた位相
差による楕円偏向化を検出する。In the present invention, the measurement of the phase difference itself is carried out by an ordinary method, that is, the linearly polarized light or the circularly polarized beam is used as the incident light, and the elliptical polarization due to the phase difference caused by the passage of the substrate is detected.
【0037】楕円の主軸間の位相差は回転検光子法、位
相差板を用いる方法等公知の手法を適用すればよい(”
結晶光学”、応用物理学会光学懇談会編)。反射法にお
いては光路長が2倍になること、記録層面での反射によ
り約180度の位相差が加わることを除き、全く同様に
測定できる。本発明においては入射角θは固定でありな
がら透過法/反射法の如何によらず、屈折率楕円体をそ
の主軸方向も含めて簡単に決定できるという利点があ
る。For the phase difference between the principal axes of the ellipse, a known method such as a rotation analyzer method or a method using a retardation plate may be applied ("
Crystal optics ", edited by the Japan Society of Applied Physics, Optical Round-table Conference.) In the reflection method, the measurement can be performed in exactly the same manner except that the optical path length is doubled and that a phase difference of about 180 degrees is added due to reflection on the recording layer surface. In the present invention, the incident angle θ is fixed, but there is an advantage that the index ellipsoid can be easily determined including the principal axis direction thereof regardless of the transmission method / reflection method.
【0038】さらに、主軸の方向(α、β)がほぼ確定
している場合には、本法はより簡素化できる。すなわ
ち、通常の射出成形による光ディスク基板では、樹脂の
流れの対称性からnx、ny軸はそれぞれ半径方向、円周
方向を向いており、そのずれは高々5度である。また、
nz軸は基板に垂直で高々1〜2度のずれしか生じな
い。Further, when the directions (α, β) of the main axes are almost fixed, this method can be simplified. That is, in an optical disk substrate manufactured by normal injection molding, the nx and ny axes are oriented in the radial direction and the circumferential direction, respectively, due to the symmetry of the resin flow, and the deviation is 5 degrees at most. Also,
The nz axis is perpendicular to the substrate, and only a 1-2 degree shift occurs.
【0039】この場合、正確な主軸からのずれの影響は
極めて小さく無視できる。そして、入射方位を半径方向
(φ=0または180度の一方だけ)と円周方向(φ=
90または270度の一方だけ)の2方向、2点だけと
して位相差を測定すればよい。位相差RとδL、δVの関
係は下式(1)で表される。尚、以下ではδL=nx−n
y、δV=n0−nz、n0=(nx+ny)/2と定義し
た。δVをこのように定義するか、δV=ny−nz又はδ
V=nx−nzとするかは任意性があるが、通常nx≒ny
であるから大差ない。In this case, the influence of an accurate deviation from the main axis is extremely small and can be ignored. Then, the incident azimuth is in the radial direction (φ = 0 or only 180 degrees) and in the circumferential direction (φ =
It suffices to measure the phase difference in only two points in two directions (one of 90 or 270 degrees). The relationship between the phase difference R and δL and δV is expressed by the following equation (1). In the following, δL = n x −n
y, and δV = n 0 -n z, n 0 = the (n x + n y) / 2 is defined. or the .DELTA.V is thus defined, δV = n y -n z or δ
Whether V = n x −n z is arbitrary, but normally n x ≈n y
It doesn't make a big difference.
【0040】[0040]
【数3】 Rr=d×{√(ny 2−sin2θ)+nx/nz×√(nz 2−sin2θ)}・・(1) d:基板厚さEquation 3] R r = d × {√ ( n y 2 -sin 2 θ) + n x / n z × √ (n z 2 -sin 2 θ)} ·· (1) d: thickness of the substrate
【0041】[0041]
【数4】 Rφ=d×{√(nx 2−sin2θ)+ny/nz×√(nz 2−sin2θ)}・・(2) d:基板厚さEquation 4] Rφ = d × {√ (n x 2 -sin 2 θ) + n y / n z × √ (n z 2 -sin 2 θ)} ·· (2) d: thickness of the substrate
【0042】さらに、δL/nx、δV/nx<<1である
ことから、上式(1)及び(2)を、δL/nx及びδV
/nxについて展開するとFurthermore, since δL / nx and δV / nx << 1, the above equations (1) and (2) are changed to δL / nx and δV.
Expanding about / nx
【0043】[0043]
【数5】 Rr=d×{-(n0 2-sin2θ)δL/2-sin2θ・δV}/{n0√(n0 2-sin2θ)} ・・・(3)## EQU5 ## R r = d × {-(n 0 2 -sin 2 θ) δL / 2-sin 2 θ · δV} / {n 0 √ (n 0 2 -sin 2 θ)} (3 )
【0044】[0044]
【数6】 Rφ=d×{+(n0 2-sin2θ)δL/2−sin2θ・δV}/{n0√(n0 2−sin2θ)} ・・・(4)## EQU6 ## Rφ = d × {+ (n 0 2 -sin 2 θ) δL / 2−sin 2 θ · δV} / {n 0 √ (n 0 2 −sin 2 θ)} (4)
【0045】したがって、式(3)、式(4)の辺々を
加減することによりTherefore, by adding and subtracting each of the expressions (3) and (4),
【0046】[0046]
【数7】 δV={(Rr+Rφ)n0√(n0 2−sin2θ)}/(2dsin2θ) ・・・(5)## EQU7 ## δV = {(R r + Rφ) n 0 √ (n 0 2 −sin 2 θ)} / (2d sin 2 θ) (5)
【0047】[0047]
【数8】 δL={(Rφ-Rr)n0√(n0 2−sin2θ)}/{d×(2n0 2−sin2θ)} ・・・(6)## EQU8 ## δL = {(Rφ-R r ) n 0 √ (n 0 2 −sin 2 θ)} / {d × (2n 0 2 −sin 2 θ)} (6)
【0048】を得る。すなわち、特定の入射角θにおい
てRrとRφの2つの値を測定することで式(5)、式
(6)より簡単にδLとδVが求まる。本発明の方法によ
れば、測定は2点で済み、かつ、簡単な計算で面内及び
垂直複屈折の両方の値が求まる。測定時間を大幅に短縮
できるため、工程中のインライン測定が可能になる。To obtain That is, by measuring two values of Rr and Rφ at a specific incident angle θ, δL and δV can be easily obtained from the equations (5) and (6). According to the method of the present invention, the measurement is performed at two points, and the values of both in-plane and vertical birefringence can be obtained by simple calculation. Since the measurement time can be greatly reduced, in-line measurement during the process becomes possible.
【0049】本法を用いれば、δL、δVのディスク面内
分布を容易に求めることができる。すなわち、従来法で
は、入射角度を各点において変化させて位相差の入射角
依存性を求める必要があったが、本法では、入射角は固
定で、ディスクを水平面内で移動させればよいだけであ
る。By using this method, the in-plane distributions of δL and δV can be easily obtained. That is, in the conventional method, it was necessary to change the incident angle at each point to obtain the incident angle dependence of the phase difference, but in the present method, the incident angle is fixed and the disk may be moved in the horizontal plane. Only.
【0050】図1に反射法による本発明の面内分布測定
装置の概念図を示す。図1ではディスク1をのせたステ
ージ2が直交する2方向に移動な直線移動機構3、4上
に回転可能に設けられ、該直線移動機構3、4上の各点
を中心として回転可能な機構5を有している。FIG. 1 shows a conceptual diagram of the in-plane distribution measuring device of the present invention by the reflection method. In FIG. 1, a stage 2 on which a disc 1 is placed is rotatably provided on linear movement mechanisms 3 and 4 which are movable in two directions orthogonal to each other, and a mechanism which is rotatable around each point on the linear movement mechanisms 3 and 4. Have five.
【0051】位相差そのものの測定は、通常のエリプソ
メーターを用いれば良い。発光部A、受光部Bの角度は
可変である必要はない。通常の射出成形ディスクでは、
円周方向の屈折率分布は小さいので半径方向分布だけ測
定すれば、工程管理としては十分である。この2方向の
移動は図1のような機構がなくても、広い水平ステージ
の上で手動でディスクをずらせるだけでもかまわない。A normal ellipsometer may be used to measure the phase difference itself. The angles of the light emitting portion A and the light receiving portion B do not have to be variable. With a normal injection molded disc,
Since the refractive index distribution in the circumferential direction is small, measuring only the radial direction distribution is sufficient for process control. The movement in these two directions may be achieved by simply sliding the disc on a wide horizontal stage without the mechanism shown in FIG.
【0052】[0052]
【実施例】以下、本発明を実施例を用いてさらに詳細に
説明する。 実施例1 市販の5.25インチサイズの光磁気ディスクをカート
リッジから取り出し、半径方向と円周方向の2方向(φ
=0、180度と90、270度)の4点で入射角60
度にて反射法にて位相差測定を行った。EXAMPLES The present invention will be described in more detail below with reference to examples. Example 1 A commercially available 5.25-inch size magneto-optical disk was taken out from the cartridge, and was put in two directions (φ and radial direction).
= 0, 180 degrees and 90, 270 degrees)
The phase difference was measured by the reflection method.
【0053】基板の材質はポリカーボネートである。半
径方向分布のみの測定を行った。前述の式(5)、式
(6)に基づき、面内複屈折δL及び垂直複屈折δVを求
めた。この場合、θ=60度、nx=1.58、d=
1.2mmとおいて、The material of the substrate is polycarbonate. Only the radial distribution was measured. The in-plane birefringence δL and the vertical birefringence δV were obtained based on the above equations (5) and (6). In this case, θ = 60 degrees, nx = 1.58, d =
1.2mm,
【0054】[0054]
【数9】δV=1.160×103×(Rr+Rφ) δL=4.101×102×(Rφ−Rr) となり、係数をかけるだけでδL、δVが求まり、カーブ
フィッティングは不要である。位相差の測定は市販のエ
リプソメータ(ガートナー社製、波長633nm)を用
いた。## EQU9 ## δV = 1.160 × 10 3 × (Rr + Rφ) δL = 4.101 × 10 2 × (Rφ-Rr), and δL and δV can be obtained only by multiplying the coefficient, and curve fitting is unnecessary. A commercially available ellipsometer (Gartner, wavelength 633 nm) was used to measure the phase difference.
【0055】1回の測定は20秒程度で、特定の半径に
おける測定時間は1分以内である。複屈折の計算結果を
表1に示す。半径方向の2点、90、180度で位相差
の測定値に優位差はなく、また、円周方向の2点、9
0、270度でやはり位相差に差はない。したがって、
主軸は半径、円周、及び基板に垂直方向を向いていると
して良い。すなわち(α、β、γ)=(0、0、0)で
ある。One measurement is about 20 seconds, and the measurement time at a specific radius is within 1 minute. Table 1 shows the calculation results of birefringence. There is no significant difference in the measured values of the phase difference between two points in the radial direction, 90 and 180 degrees, and two points in the circumferential direction, 9 and 90 degrees.
There is no difference in phase difference at 0 and 270 degrees. Therefore,
The main axis may be oriented in a radius, a circumference, and a direction perpendicular to the substrate. That is, (α, β, γ) = (0, 0, 0).
【0056】この場合φ=0、90度の2点のみの測定
でよく、さらに簡単にできる。 実施例2及び3 成形後の透明基板(ポリカーボネート)を透過法により
測定した。入射角θ=30度で固定、方位角φを0、9
0、180、270度の4点とした。In this case, it is sufficient to measure only two points of φ = 0 and 90 degrees, which can be further simplified. Examples 2 and 3 The transparent substrate (polycarbonate) after molding was measured by a transmission method. Incident angle θ = fixed at 30 degrees, azimuth angle φ 0, 9
There were four points of 0, 180, and 270 degrees.
【0057】位相差測定値を表2に示す。実施例2では
半径方向の2点、円周方向の2点でそれぞれ位相差の測
定値に差はなく、主軸は傾いていない。一方、実施例3
ではこの対称性が失われ、主軸が傾いているのが分か
る。主軸方位、複屈折値を求めた結果をやはり表2に示
す。Table 2 shows the measured values of the phase difference. In Example 2, there is no difference in the measured values of the phase difference between the two points in the radial direction and the two points in the circumferential direction, and the main axis is not tilted. On the other hand, Example 3
Then, we can see that this symmetry is lost and the principal axis is tilted. Table 2 also shows the results of obtaining the principal axis direction and the birefringence value.
【0058】[0058]
【表1】 [Table 1]
【0059】[0059]
【表2】 [Table 2]
【0060】[0060]
【発明の効果】本発明によれば、正確で迅速で簡便に光
ディスク基板の面内および垂直複屈折を測定でき、かつ
インラインでの適用もできる。According to the present invention, the in-plane and vertical birefringence of an optical disk substrate can be measured accurately, quickly and simply, and it can be applied in-line.
【図1】 反射法による本発明の面内分布測定装置の概
念図FIG. 1 is a conceptual diagram of an in-plane distribution measuring device of the present invention by a reflection method.
【図2】 従来の斜め入射測定法における、ディスクに
対する入射光ビームの位置関係を模式的に示した図FIG. 2 is a diagram schematically showing a positional relationship of an incident light beam with respect to a disk in a conventional oblique incidence measurement method.
【図3】 従来の斜め入射測定法における、ディスクに
対する入射光ビームの位置関係を模式的に示した図FIG. 3 is a diagram schematically showing a positional relationship of an incident light beam with respect to a disk in a conventional oblique incidence measurement method.
【図4】 主軸の方位を(x’,y’,z’)軸方向に
とり、基板表面に垂直な方向をz軸,基板面内をx,y
軸にとった場合の位置関係を示す図FIG. 4 shows the orientation of the main axis in the (x ′, y ′, z ′) axis direction, the direction perpendicular to the substrate surface is the z axis, and the in-plane of the substrate is x, y.
Diagram showing the positional relationship when the axis is taken
【図5】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の垂直複屈折依存性の
図FIG. 5 shows that the azimuth φ dependence of the phase difference at oblique incidence is 4
Diagram of the vertical birefringence dependence of the phase difference, showing how it changes with each parameter (δL, δV, α, β)
【図6】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の複屈折(δL、δV)
依存性の図FIG. 6 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Birefringence of phase difference (δL, δV), which shows how it changes with each parameter (δL, δV, α, β)
Dependency diagram
【図7】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の主軸方位(α、β)
依存性の図FIG. 7 shows that the azimuth φ dependence of the phase difference at oblique incidence is 4
Principal axis azimuth (α, β) of the phase difference, showing how it changes depending on the number of parameters (δL, δV, α, β)
Dependency diagram
【図8】 斜め入射時の位相差の方位角φ依存性が、4
個のパラメーター(δL、δV、α、β)によってどのよ
うに変化するかを示した、位相差の主軸方位(α、β)
依存性の図FIG. 8 shows that the azimuth angle φ dependence of the phase difference at oblique incidence is 4
Principal axis azimuth (α, β) of the phase difference, showing how it changes depending on the number of parameters (δL, δV, α, β)
Dependency diagram
1 ディスク 2 ステージ 3 直線移動機構 4 直線移動機構 5 回転機構 A 測定用平行ビーム光の発光部 B 受光部 1 Disc 2 Stage 3 Linear Moving Mechanism 4 Linear Moving Mechanism 5 Rotating Mechanism A Parallel Beam Light Emitting Section for Measurement B Light Receiving Section
Claims (3)
けてなる光ディスクの基板に、記録層と反対側の面から
平行光ビームを基板に対し斜め方向から入射させ、その
透過光または反射光に生じた位相差を測定して基板の複
屈折を測定する方法であって、入射光ビームを含む入射
面の方向を少なくとも直交する2方向にとって複屈折を
測定することを特徴とする光ディスク基板の複屈折の測
定法。1. A parallel light beam is obliquely incident on a substrate of an optical disc having a transparent resin substrate on which at least a recording layer is provided from a surface opposite to the recording layer, and the transmitted light or reflected light is obtained. A method of measuring the phase difference produced to measure the birefringence of a substrate, wherein the birefringence of the optical disk substrate is measured with respect to at least two directions of an incident surface including an incident light beam which are orthogonal to each other. Refraction measurement method.
方向と一致することを特徴とする請求項1に記載の測定
法。2. The measuring method according to claim 1, wherein the two orthogonal directions coincide with the direction of the in-plane principal axis of the substrate.
構と、直線移動機構上に設置され、該直線軸上の各点を
中心として回転可能でその上に水平にディスクを設置す
る回転ステージと、被測定ディスク面に斜めに光ビーム
を入射させて位相差を測定する発光部及び受光部から構
成されたことを特徴とする光ディスク基板の複屈折測定
装置。3. A linear moving mechanism that is movable in two orthogonal directions, and a rotary stage that is installed on the linear moving mechanism, is rotatable around each point on the linear axis, and horizontally installs a disk on it. And a birefringence measuring device for an optical disk substrate, which comprises a light emitting part and a light receiving part for obliquely injecting a light beam onto the surface of the disk to be measured to measure the phase difference.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6310708A JP3011036B2 (en) | 1993-12-20 | 1994-12-14 | Measurement method of birefringence of optical disk substrate |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-319754 | 1993-12-20 | ||
JP31975493 | 1993-12-20 | ||
JP6310708A JP3011036B2 (en) | 1993-12-20 | 1994-12-14 | Measurement method of birefringence of optical disk substrate |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27162299A Division JP3760185B2 (en) | 1993-12-20 | 1999-09-27 | Measuring method of birefringence of optical disk substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07229828A true JPH07229828A (en) | 1995-08-29 |
JP3011036B2 JP3011036B2 (en) | 2000-02-21 |
Family
ID=26566426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6310708A Expired - Fee Related JP3011036B2 (en) | 1993-12-20 | 1994-12-14 | Measurement method of birefringence of optical disk substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3011036B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0856840A1 (en) * | 1997-01-29 | 1998-08-05 | Victor Company Of Japan, Ltd. | Birefringence measuring apparatus for optical disc substrate |
US6665059B2 (en) | 2000-02-14 | 2003-12-16 | Fuji Electric Co., Ltd. | Method of measuring an inner stress state of disk substrate |
US7272091B2 (en) | 2002-11-12 | 2007-09-18 | Nec Corporation | Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus |
WO2012059784A1 (en) | 2010-11-03 | 2012-05-10 | Reametrix Inc | Method and device for fluorescent measurement of samples |
US9709500B2 (en) | 2012-05-02 | 2017-07-18 | Charles River Laboratories, Inc. | Optical method for detecting viable microorganisms in a cell sample |
US10324036B2 (en) | 2012-05-02 | 2019-06-18 | Charles River Laboratories, Inc. | Porous planar cell capture system |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6475133B2 (en) | 1997-06-30 | 2002-11-05 | Soda Aromatic Co., Ltd. | Methods for making 2-(ω-alkoxycarbonylalkanoyl)-4-butanolide, ester of omega-hydroxy-(ω-3)-ketoaliphatic acid, and derivatives thereof |
-
1994
- 1994-12-14 JP JP6310708A patent/JP3011036B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0856840A1 (en) * | 1997-01-29 | 1998-08-05 | Victor Company Of Japan, Ltd. | Birefringence measuring apparatus for optical disc substrate |
US5956146A (en) * | 1997-01-29 | 1999-09-21 | Victor Company Of Japan, Ltd. | Birefringence measuring apparatus for optical disc substrate |
US6665059B2 (en) | 2000-02-14 | 2003-12-16 | Fuji Electric Co., Ltd. | Method of measuring an inner stress state of disk substrate |
US7272091B2 (en) | 2002-11-12 | 2007-09-18 | Nec Corporation | Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus |
US7542401B2 (en) | 2002-11-12 | 2009-06-02 | Nec Corporation | Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus |
WO2012059784A1 (en) | 2010-11-03 | 2012-05-10 | Reametrix Inc | Method and device for fluorescent measurement of samples |
US9523640B2 (en) | 2010-11-03 | 2016-12-20 | Reametrix, Inc. | Method of fluorescent measurement of samples, and devices therefrom |
US9709500B2 (en) | 2012-05-02 | 2017-07-18 | Charles River Laboratories, Inc. | Optical method for detecting viable microorganisms in a cell sample |
US10324036B2 (en) | 2012-05-02 | 2019-06-18 | Charles River Laboratories, Inc. | Porous planar cell capture system |
US10976258B2 (en) | 2012-05-02 | 2021-04-13 | Charles River Laboratories, Inc. | Porous planar cell capture system and method of use |
Also Published As
Publication number | Publication date |
---|---|
JP3011036B2 (en) | 2000-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4801798A (en) | Method and apparatus for measuring optical retardation in transparent materials | |
US4792227A (en) | Apparatus for measuring the refractive index of a substrate for an optical recording medium and method of measuring the same | |
JP3011036B2 (en) | Measurement method of birefringence of optical disk substrate | |
US7599276B2 (en) | Optical head device and optical information recording/reproduction apparatus | |
US4672593A (en) | Optical head with improved extinction ratio for magneto-optical memory | |
US5432760A (en) | Method of measuring phase difference of opto-magnetic record medium and apparatus for carrying out said method | |
US7542401B2 (en) | Birefringence characteristic measuring method, optical recording medium and optical information recording/reproducing apparatus | |
JP3760185B2 (en) | Measuring method of birefringence of optical disk substrate | |
JP2003247934A (en) | Birefringence measurement method and birefringence measurement device | |
US5028774A (en) | Method and apparatus for detecting and measuring the refractive index of an optical disc substrate | |
US6198704B1 (en) | Magneto-optical recording medium | |
US4788678A (en) | Optical information recording media substrate | |
USRE37719E1 (en) | Optical data recording system and method of production of recording medium | |
JPH0557660B2 (en) | ||
JPS61149846A (en) | Method and device for measuring birefringence of plate type member | |
JP2519213B2 (en) | Method for manufacturing magneto-optical disc plate | |
US4876133A (en) | Optical data recording system and method of production of recording medium | |
JP2650839B2 (en) | Optical information recording medium | |
JP3116986B2 (en) | Optical information recording medium and recording / reproducing method thereof | |
US6208595B1 (en) | Magneto-optical recording medium | |
US20070025193A1 (en) | Recording medium and signal processing unit for recording medium drive | |
JP2604381B2 (en) | Magneto-optical recording device | |
JPH06295470A (en) | optical disk | |
JPH0765432A (en) | Method for evaluating magneto-optical disk | |
JPH06176417A (en) | Magneto-optical recording medium for adjustment and adjustment method for magneto-optical recording device of magnetic field modulation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091210 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101210 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111210 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121210 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131210 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |