[go: up one dir, main page]

JPH07226713A - Optical communication system - Google Patents

Optical communication system

Info

Publication number
JPH07226713A
JPH07226713A JP6016306A JP1630694A JPH07226713A JP H07226713 A JPH07226713 A JP H07226713A JP 6016306 A JP6016306 A JP 6016306A JP 1630694 A JP1630694 A JP 1630694A JP H07226713 A JPH07226713 A JP H07226713A
Authority
JP
Japan
Prior art keywords
light
signal
optical
space
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6016306A
Other languages
Japanese (ja)
Inventor
Toshihiro Onodera
利浩 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6016306A priority Critical patent/JPH07226713A/en
Publication of JPH07226713A publication Critical patent/JPH07226713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE:To realize stable large capacity optical communication with high accuracy by realizing a modulation and demodulation characteristic with a high efficiency. CONSTITUTION:A modulator 10 modulates directly an incident light based on a spread spectrum modulation signal, and the modulated transmission light is sent from a sender side by an optical antenna 12 through space propagation, the transmission light propagate through space is received by a receiver optical antenna 13, and the light is synthesized with a local light, a photodetector 16 applies heterodyne detection to the synthesized light to generate an RF signal, and a conjugation filter 17 compresses and demodulates a spread spectrum modulation signal based on the RF signal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば宇宙空間に構
築されて空間伝播を利用して光通信を行う光通信システ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical communication system constructed in, for example, outer space and performing optical communication by utilizing space propagation.

【0002】[0002]

【従来の技術】一般に、光通信システムにおいては、通
信局間を光ファイバーケーブルでケーブル接続して、こ
の光ファイバケーブルを伝送路として、相互間で光通信
を行う方式が採用されている。このような光通信システ
ムにあっては、在来からのRF通信に比して通信容量を
飛躍的に増大することが可能となる。
2. Description of the Related Art Generally, in an optical communication system, a method is adopted in which communication stations are connected by an optical fiber cable, and the optical fiber cable is used as a transmission line to perform optical communication between them. In such an optical communication system, it is possible to dramatically increase the communication capacity as compared with conventional RF communication.

【0003】ところで、最近の宇宙開発の分野において
は、衛星間通信等の通信の多様化が図られており、通信
容量の増大が要請されている。そこで、宇宙開発の分野
にあっては、光通信システムを宇宙空間に構築して、通
信容量の増大を図る構想がある。
By the way, in the recent field of space development, communications such as inter-satellite communications are diversified, and an increase in communications capacity is required. Therefore, in the field of space development, there is a concept of constructing an optical communication system in outer space to increase the communication capacity.

【0004】しかしながら、光ファイバーケーブルを用
いた光通信システムでは、光ファイバーケーブルを通信
局間に敷設しなければならないために、宇宙空間に構築
することが困難であるという問題を有する。
However, the optical communication system using the optical fiber cable has a problem that it is difficult to construct it in outer space because the optical fiber cable must be laid between the communication stations.

【0005】そこで、宇宙空間に構築する光通信システ
ムとして、光ファイバーケーブルを敷設することなく,
空間伝播を利用して、送信光を相手局に送信して光通信
を行う方式が考えられ、研究されている。このような光
通信システムは、コヒーレント光通信方式と称され、光
ファイバーケーブルを用いた方式に比して飛躍的な通信
容量の増大を図ることが可能となるが、その変調した送
信光を復調する際の損失が比較的多く、実用上、変復調
損失の軽減を図ることが急務な課題の一つとなってい
る。
Therefore, as an optical communication system constructed in outer space, without laying an optical fiber cable,
A method of transmitting light to a partner station to perform optical communication by utilizing spatial propagation has been considered and studied. Such an optical communication system is called a coherent optical communication system, and it is possible to dramatically increase the communication capacity as compared with a system using an optical fiber cable, but demodulate the modulated transmission light. Since the loss is relatively large, it is an urgent task to reduce modulation / demodulation loss in practice.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、従
来の光通信システムでは、宇宙空間に構築するのが困難
であるという問題を有する。この発明は上記の事情に鑑
みてなされたもので、高効率な変復調特性を実現して、
高精度で安定した大容量の光通信を実現した光通信シス
テムを提供すること目的とする。
As described above, the conventional optical communication system has a problem that it is difficult to construct it in outer space. The present invention has been made in view of the above circumstances, and realizes highly efficient modulation / demodulation characteristics,
An object of the present invention is to provide an optical communication system that realizes highly accurate and stable large-capacity optical communication.

【0007】[0007]

【課題を解決するための手段】この発明は、入射光を拡
散スペクトラム変調信号に基づいて変調して送信光を生
成する変調手段と、この変調手段で生成した送信光を空
間に放射して空間を伝播させて送信する光送信手段と、
この光送信手段で空間に放射されて空間を伝播した送信
光を受信する光受信手段と、この光受信手段で受信した
送信光をローカル光と合波してヘテロダイン検波し、R
F信号を生成する検波手段と、この検波手段で生成した
RF信号に基づいて前記拡散スペクトラム変調信号を圧
縮して復調する共役フィルタとを備えて光通信システム
を構成したものである。
SUMMARY OF THE INVENTION According to the present invention, modulating means for modulating incident light on the basis of a spread spectrum modulation signal to generate transmitted light, and transmitting light generated by this modulating means is radiated into space to generate a space. An optical transmission means for propagating and transmitting
Optical receiving means for receiving the transmitted light radiated into the space by the optical transmitting means and propagating in the space, and the transmitted light received by the optical receiving means are combined with the local light for heterodyne detection, and R
An optical communication system is configured to include a detection unit that generates an F signal and a conjugate filter that compresses and demodulates the spread spectrum modulation signal based on the RF signal generated by the detection unit.

【0008】[0008]

【作用】上記構成によれば、入射光は、拡散スペクトラ
ム変調信号に基づいて直接的に変調して、この変調した
送信光を空間伝播を利用して送信し、空間を伝播した送
信光を受信して、この送信光をヘテロダイン検波してR
F信号を生成し、このRF信号に基づいて拡散スペクト
ラム変調信号を圧縮して復調される。これにより、変復
調特性の損失の少ない高効率な光通信が可能となる。
According to the above construction, the incident light is directly modulated on the basis of the spread spectrum modulation signal, the modulated transmission light is transmitted by using the spatial propagation, and the transmission light propagated in the space is received. Then, the transmitted light is heterodyne detected and R
An F signal is generated, and the spread spectrum modulation signal is compressed and demodulated based on this RF signal. This enables highly efficient optical communication with little loss of modulation / demodulation characteristics.

【0009】[0009]

【実施例】以下、この発明の実施例について、図面を参
照して詳細に説明する。図1は、この発明の一実施例に
係る光通信システムを示すもので、第1の宇宙航行体側
には、変調器10が配設される。変調器10には、発振
器11が接続され、その出力端には、光アンテナ12が
接続される。そして、変調器10は、入射光が入力され
ると、該入射光を発振器11からの拡散スペクトル変調
信号に基づいて変調して送信光λ1 を生成し、該送信光
λ1 を光アンテナ12に出力する。光アンテナ12は、
通信相手の第2の宇宙航行体側に設置される光アンテナ
13に指向され、入力した送信光λ1 を平行光に変換し
て、この平行光を宇宙空間に放射して、空間を伝播させ
て第2の宇宙航行体側の光アンテナ13に送信する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows an optical communication system according to an embodiment of the present invention, in which a modulator 10 is arranged on the side of a first spacecraft. An oscillator 11 is connected to the modulator 10, and an optical antenna 12 is connected to the output end thereof. When the incident light is input, the modulator 10 modulates the incident light based on the spread spectrum modulation signal from the oscillator 11 to generate the transmission light λ1 and outputs the transmission light λ1 to the optical antenna 12. To do. The optical antenna 12 is
The transmitted light λ 1 that is input and is directed to the optical antenna 13 installed on the second spacecraft side of the communication partner is converted into parallel light, and this parallel light is radiated to outer space and propagated through the space. 2 to the optical antenna 13 on the side of the spacecraft.

【0010】第2の宇宙航行体側の光アンテナ13に
は、ビームスプリッタ14の一方の入力端が接続され、
このビームスプリッタ14の他方の入力端には、ローカ
ル光発振器15の出力端が接続される。ビームスプリッ
タ14は、その出力端に光検波器16が接続され、入力
した送信光λ1 とローカル光発振器15からのローカル
光λ2 を合波して中間周波信号fIFを生成して光検波器
16に出力する。
One input end of a beam splitter 14 is connected to the optical antenna 13 on the side of the second spacecraft,
The output end of the local optical oscillator 15 is connected to the other input end of the beam splitter 14. An optical detector 16 is connected to the output end of the beam splitter 14, and the input transmission light λ1 and the local light λ2 from the local optical oscillator 15 are combined to generate an intermediate frequency signal fIF, and the optical detector 16 is supplied. Output.

【0011】光検波器16は、例えばダイオードで形成
され、その出力端には、弾性表面皮フィルタ等の圧縮フ
ィルタで形成される共役フィルタ17が接続される。光
検波器16は、入力した中間周波信号fIF|(1/λ1
)−(1/λ2 )|をヘテロダイン検波してRF信号
を生成し、その出力端に接続される共役フィルタ17に
出力する。共役フィルタ17は、その出力端にしきい値
判定回路18が接続され、入力したRF信号に基づいて
拡散スペクトル変調信号を圧縮して復調し、しきい値判
定回路18に出力する。しきい値判定回路18は、入力
した信号を所定のしきい値に基づいて判定して復調信号
を生成する。
The photodetector 16 is formed of, for example, a diode, and the output end thereof is connected with a conjugate filter 17 formed of a compression filter such as an elastic surface filter. The optical detector 16 receives the input intermediate frequency signal fIF | (1 / λ1
)-(1 / .lambda.2) | is heterodyne-detected to generate an RF signal, which is output to the conjugate filter 17 connected to its output end. A threshold value judgment circuit 18 is connected to the output end of the conjugate filter 17, and the spread spectrum modulation signal is compressed and demodulated based on the input RF signal and output to the threshold value judgment circuit 18. The threshold value determination circuit 18 determines the input signal based on a predetermined threshold value and generates a demodulated signal.

【0012】このように、上記光通信システムは、入射
光を変調器10で拡散スペクトラム変調信号に基づいて
直接的に変調して、この変調した送信光を光アンテナ1
2で送信側から空間伝播を利用して送信し、この空間を
伝播した送信光を受信側の光アンテナ13で受信して、
ローカル光と合波した後、光検波器16でヘテロダイン
検波してRF信号を生成し、このRF信号に基づいて共
役フィルタ17で拡散スペクトラム変調信号を圧縮して
復調するように構成した。
As described above, in the optical communication system, the modulator 10 directly modulates the incident light based on the spread spectrum modulation signal, and the modulated transmission light is modulated by the optical antenna 1.
At 2, the light is transmitted from the transmitting side using space propagation, and the transmitted light propagating in this space is received by the optical antenna 13 on the receiving side,
After being multiplexed with the local light, the photodetector 16 performs heterodyne detection to generate an RF signal, and the conjugate filter 17 compresses and demodulates the spread spectrum modulation signal based on the RF signal.

【0013】これによれば、損失が殆どない高効率な変
復調特性が実現されて、送信光を宇宙空間に放射して宇
宙空間を伝播させて送信する大通信容量のコヒーレント
光通信の構築が実現される。
According to this, a highly efficient modulation / demodulation characteristic with almost no loss is realized, and the construction of a large communication capacity coherent optical communication for radiating the transmitted light to outer space and propagating in outer space for transmission is realized. To be done.

【0014】なお、上記実施例では、宇宙航行体に搭載
して宇宙空間において光通信に供するように構成した場
合で説明したが、これに限ることなく、送信光の空間伝
播が可能な空間においも適用可能である。
In the above embodiment, the case where the device is mounted on a spacecraft and provided for optical communication in outer space has been described. However, the present invention is not limited to this, and it can be transmitted in a space where the transmitted light can propagate in space. Is also applicable.

【0015】また、上記実施例では、共役フィルタ17
で復調した信号をしきい値判定回路18で所定のしきい
値で判定して復調信号を生成するように構成した場合で
説明したが、これに限ることなく、共役フィルタ17で
復調した信号を復調信号として抽出するように構成して
も良い。よって、この発明は、上記実施例に限ることな
く、その他、この発明の要旨を逸脱しない範囲で種々の
変形を実施し得ることは勿論のことである。
In the above embodiment, the conjugate filter 17 is used.
In the above description, the threshold value determination circuit 18 determines the signal demodulated in step 1 by a predetermined threshold value to generate a demodulated signal. However, the present invention is not limited to this. You may comprise so that it may extract as a demodulation signal. Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.

【0016】[0016]

【発明の効果】以上詳述したように、この発明によれ
ば、高効率な変復調特性を実現して、高精度で安定した
大容量の光通信を実現した光通信システムを提供するこ
とができる。
As described in detail above, according to the present invention, it is possible to provide an optical communication system which realizes highly efficient modulation / demodulation characteristics and realizes highly accurate and stable large capacity optical communication. .

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例に係る光通信システムを示
した図。
FIG. 1 is a diagram showing an optical communication system according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10…変調器。 11…発振器。 12,13…光アンテナ。 14…ビームスプリッタ。 15…ローカル光発振器。 16…光検波器。 17…共役フィルタ。 18…しきい値判定回路。 10 ... Modulator. 11 ... Oscillator. 12, 13 ... Optical antenna. 14 ... Beam splitter. 15 ... Local optical oscillator. 16 ... Photodetector. 17 ... Conjugate filter. 18 ... Threshold value judging circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/152 10/142 10/04 10/06 H04J 13/00 H04J 13/00 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H04B 10/152 10/142 10/04 10/06 H04J 13/00 H04J 13/00 A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 入射光を拡散スペクトラム変調信号に基
づいて変調して送信光を生成する変調手段と、 この変調手段で生成した送信光を空間に放射して空間を
伝播させて送信する光送信手段と、 この光送信手段で空間に放射されて空間を伝播した送信
光を受信する光受信手段と、 この光受信手段で受信した送信光をローカル光と合波し
てヘテロダイン検波し、RF信号を生成する検波手段
と、 この検波手段で生成したRF信号に基づいて前記拡散ス
ペクトラム変調信号を圧縮して復調する共役フィルタと
を具備した光通信システム。
1. A modulation means for modulating incident light on the basis of a spread spectrum modulation signal to generate a transmission light, and an optical transmission for radiating the transmission light generated by the modulation means into a space and propagating the space for transmission. Means, an optical receiving means for receiving the transmitted light radiated into the space by the optical transmitting means and propagated in the space, and a heterodyne detection by combining the transmitted light received by the optical receiving means with the local light to obtain an RF signal. An optical communication system comprising: a detection unit that generates the signal and a conjugate filter that compresses and demodulates the spread spectrum modulation signal based on the RF signal generated by the detection unit.
【請求項2】 前記共役フィルタで復調した復調信号を
しきい値判定して復調信号を抽出するしきい値判定手段
を具備したことを特徴とする請求項1記載の光通信シス
テム。
2. The optical communication system according to claim 1, further comprising threshold value determining means for determining a threshold value of the demodulated signal demodulated by the conjugate filter and extracting the demodulated signal.
JP6016306A 1994-02-10 1994-02-10 Optical communication system Pending JPH07226713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6016306A JPH07226713A (en) 1994-02-10 1994-02-10 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6016306A JPH07226713A (en) 1994-02-10 1994-02-10 Optical communication system

Publications (1)

Publication Number Publication Date
JPH07226713A true JPH07226713A (en) 1995-08-22

Family

ID=11912859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6016306A Pending JPH07226713A (en) 1994-02-10 1994-02-10 Optical communication system

Country Status (1)

Country Link
JP (1) JPH07226713A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019642A (en) * 2016-08-15 2016-10-12 桂林创研科技有限公司 Electro-optical modulation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106019642A (en) * 2016-08-15 2016-10-12 桂林创研科技有限公司 Electro-optical modulation device

Similar Documents

Publication Publication Date Title
JP2791060B2 (en) Especially radio wave-light wave transmission system for space communication
Kaszubowska et al. Remote downconversion with wavelength reuse for the radio/fiber uplink connection
EP0717516A1 (en) Bidirectional optical transmission system
EP0222384B1 (en) Full duplex optical communication system
US6826371B1 (en) Variable rate DPSK system architecture
WO1999007087A3 (en) Communication using spread spectrum methods over optical fibers
JP3467507B2 (en) High-frequency signal transmission method and high-frequency signal transmission device using optical carrier
CN100568783C (en) Bidirectional transmission device and signal transmission method of millimeter wave optical fiber transmission system based on insertion pilot method
JPH098737A (en) Reception system
JP3913547B2 (en) Optical modulator and optical signal and radio signal converter using the same
JPH07226713A (en) Optical communication system
JP3218325B2 (en) Millimeter-wave wireless / optical fiber transmission system and equipment
Young et al. Generation and transmission of FM and/spl pi//4 DQPSK signals at microwave frequencies using harmonic generation and optoelectronic mixing in Mach-Zehnder modulators
JP2000196523A (en) Optical communication system
Schmuck et al. High capacity hybrid fibre-radio field experiments at 60 GHz
JP3093338B2 (en) Fiber optic link
Watanabe et al. Polarisation-insensitive 1.2 Gb/s optical DPSK heterodyne transmission experiment using polarisation diversity
JPH1117619A (en) Optical transmitter
JPH06152565A (en) Coherent light transmitting device
JPH05167535A (en) Optical communication method
JPS63257341A (en) Method and equipment for optical homodyne detection optical communication
JPH0522228A (en) Optical transmission system for feeding antenna
JPH0384525A (en) Optical heterodyne signal selective reception system
Gieschen et al. Novel integrated acousto-optical LiNbO3 device for application in single-laser self-heterodyne systems
Marra et al. A WDM fiber-radio system with improved optical spectral efficiency incorporating remote LO delivery and novel FBG optical filtering