JPH07226565A - Semiconductor device and its manufacture - Google Patents
Semiconductor device and its manufactureInfo
- Publication number
- JPH07226565A JPH07226565A JP1823494A JP1823494A JPH07226565A JP H07226565 A JPH07226565 A JP H07226565A JP 1823494 A JP1823494 A JP 1823494A JP 1823494 A JP1823494 A JP 1823494A JP H07226565 A JPH07226565 A JP H07226565A
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- semiconductor
- ridge waveguide
- conductivity type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 357
- 238000004519 manufacturing process Methods 0.000 title claims description 38
- 230000003071 parasitic effect Effects 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims description 45
- 230000002265 prevention Effects 0.000 claims description 19
- 230000015572 biosynthetic process Effects 0.000 claims description 18
- 238000005530 etching Methods 0.000 claims description 17
- 150000002500 ions Chemical class 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 7
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 5
- 238000009751 slip forming Methods 0.000 claims description 5
- 125000005842 heteroatom Chemical group 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 12
- 238000002513 implantation Methods 0.000 description 5
- 238000009429 electrical wiring Methods 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 238000010030 laminating Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 240000002329 Inga feuillei Species 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コヒーレント光通信に
おける光周波数分割多重方式の光源や受信用局発光源に
用いられる波長可変レーザとしての半導体装置およびそ
の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device as a wavelength tunable laser used as a light source of an optical frequency division multiplexing system or a local light source for reception in coherent optical communication, and a manufacturing method thereof.
【0002】[0002]
【従来の技術】従来の波長可変半導体装置(レーザ装
置)は、波長可変幅の増大を主眼において研究開発が行
なわれてきた。図25は、1993年3月にIEEE PHOTO
NICS TECHNOLOGY LETTERS, Vol.5,NO.3 第273 頁乃至第
275 頁に掲載された波長可変レーザの従来例である。本
構造は二重導波路(Tunable Twin-Guide:TTG)構造
といわれ、現在のところ原理上最大の連続波長可変幅が
得られる構造である。かかる従来例の構造と動作原理を
簡単に説明する。2. Description of the Related Art A conventional wavelength tunable semiconductor device (laser device) has been researched and developed mainly for increasing the wavelength tunable width. Figure 25 shows IEEE PHOTO in March 1993.
NICS TECHNOLOGY LETTERS, Vol.5, NO.3 Page 273 to 273
This is a conventional example of a tunable laser shown on page 275. This structure is called a double waveguide (Tunable Twin-Guide: TTG) structure, and it is a structure that currently provides the maximum continuous wavelength tunable width in principle. The structure and operating principle of such a conventional example will be briefly described.
【0003】p型InP基板1上にp型InPバッファ
層2、アンドープのチューニング層8、n型InPスペ
ーサ層7、アンドープの活性層6、および回折格子層
5、p型InPバッファ層4の下部を順次形成し、活性
層幅が1〜2μmになるように両脇部をエッチング除去
してリッジ導波路R1を形成する。そしてリッジ導波路
R1の両脇をn型InP層3(埋め込み層)で埋め込ん
だ後、これらの上面側にp型InPバッファ層4の上部
およびp型InGaAsPコンタクト層13を順次形成
する。そして、p型InGaAsPコンタクト層13お
よびp型InPバッファ層4の一部を除去してn型In
P層3の上面の一部を露出させ、露出したn型InP層
3の上面の一部および活性層6の上方に相当するp型I
nGaAsPコンタクト層13の上面を除く領域に絶縁
膜9をパターン形成する。次に露出したn型InP層3
の上面の一部を含む領域にn側電極11をパターン形成
するとともに、活性層6の上方に相当するp型InGa
AsPコンタクト層13の上面にp側電極10をパター
ン形成し、さらに裏面にp側電極12を形成する。On the p-type InP substrate 1, the p-type InP buffer layer 2, the undoped tuning layer 8, the n-type InP spacer layer 7, the undoped active layer 6, the diffraction grating layer 5, and the lower part of the p-type InP buffer layer 4. Are sequentially formed, and both side portions are removed by etching so that the width of the active layer becomes 1 to 2 μm to form the ridge waveguide R1. Then, both sides of the ridge waveguide R1 are filled with the n-type InP layer 3 (buried layer), and then the upper portion of the p-type InP buffer layer 4 and the p-type InGaAsP contact layer 13 are sequentially formed on the upper surface side of these. Then, the p-type InGaAsP contact layer 13 and the p-type InP buffer layer 4 are partially removed to remove the n-type In.
A part of the upper surface of the P layer 3 is exposed, and a part of the exposed upper surface of the n-type InP layer 3 and the p-type I corresponding to above the active layer 6 are exposed.
The insulating film 9 is patterned in a region other than the upper surface of the nGaAsP contact layer 13. Next exposed n-type InP layer 3
Of the p-type InGa corresponding to the upper part of the active layer 6 while patterning the n-side electrode 11 in a region including a part of the upper surface of
The p-side electrode 10 is patterned on the upper surface of the AsP contact layer 13, and the p-side electrode 12 is further formed on the back surface.
【0004】図25中の20はレーザ光を発生させる電
流経路である。またチューニング層8に流れ込む電流は
22で示される。つまり活性層6とチューニング層8が
n型InPスペーサ層7を挟んで、電気的に独立に制御
できる。また発生するレーザ光の電界分布は、回折格子
層5、活性層6、n型InPスペーサ層7、チューニン
グ層8にまたがって分布している。よって活性層6に流
す電流を一定にしてレーザ光の利得を一定にしたままチ
ューニング層に流す電流を変化させ、プラズマ効果によ
りチューニング層の屈折率を変化させて、光が感じる等
価屈折率を変化させ、レーザ光の発振波長を変化させて
いる。レーザ光の発振波長λと、等価屈折率neff とは
次式の関係にある。Reference numeral 20 in FIG. 25 is a current path for generating a laser beam. The current flowing into the tuning layer 8 is indicated by 22. That is, the active layer 6 and the tuning layer 8 can be electrically controlled independently with the n-type InP spacer layer 7 interposed therebetween. The electric field distribution of the generated laser light is distributed over the diffraction grating layer 5, the active layer 6, the n-type InP spacer layer 7, and the tuning layer 8. Therefore, the current flowing through the tuning layer is changed while keeping the gain of the laser light constant while keeping the current flowing through the active layer 6 constant, and the refractive index of the tuning layer is changed by the plasma effect to change the equivalent refractive index felt by the light. Then, the oscillation wavelength of the laser light is changed. The oscillation wavelength λ of the laser light and the equivalent refractive index n eff have the following relationship.
【0005】λ=2neff Λ ここで、Λは回折格子の周期である。Λ = 2n eff Λ, where Λ is the period of the diffraction grating.
【0006】チューニング層に電流を注入することによ
る等価屈折率の変化をΔneff とすると、得られる波長
変化量Δλは、 Δλ=2Δneff Λ である。具体的には、チューニング層8に50mAの電
流を注入することにより、Δλ=4.7nmと、他の構
造の波長可変半導体レーザ装置に比べると大きな波長可
変幅が得られている。このように活性層6とチューニン
グ層8が二重導波路となる構造では、波長可変幅の増大
に有効である。When the change in the equivalent refractive index due to the injection of a current into the tuning layer is Δn eff , the obtained wavelength change amount Δλ is Δλ = 2Δn eff Λ. Specifically, by injecting a current of 50 mA into the tuning layer 8, Δλ = 4.7 nm, which is a large wavelength tunable width as compared with wavelength tunable semiconductor laser devices having other structures. In this way, the structure in which the active layer 6 and the tuning layer 8 are double waveguides is effective for increasing the wavelength tunable width.
【0007】[0007]
【発明が解決しようとする課題】従来例のようなTTG
構造では、n型InPスペーサ層7を外部に電気的に取
り出さなければならないため、リッジ導波路R1の両側
をn型InP層3で埋め込む必要がある。そのため、図
25中に示すように、p型InPバッファ層4から活性
層6を流れずに、n型InP層3に流れる漏れ(リー
ク)電流21が増大し、レーザ特性が悪化し、実用上、
光出力が十分得られないなどの問題が生じる。[Problems to be Solved by the Invention]
In the structure, since the n-type InP spacer layer 7 has to be electrically taken out to the outside, it is necessary to fill both sides of the ridge waveguide R1 with the n-type InP layer 3. Therefore, as shown in FIG. 25, the leakage current 21 flowing through the n-type InP layer 3 without flowing through the active layer 6 from the p-type InP buffer layer 4 is increased, and the laser characteristics are deteriorated. ,
Problems such as insufficient light output occur.
【0008】本実施例は、上記課題に鑑み、漏れ電流を
低減し、発光効率の高い半導体装置およびその製造方法
を提供することを目的とする。In view of the above problems, the present embodiment has an object to provide a semiconductor device with reduced leakage current and high luminous efficiency, and a manufacturing method thereof.
【0009】[0009]
【課題を解決するための手段】本発明請求項1に係る課
題解決手段は、活性層を有するリッジ導波路と、前記活
性層の上側に形成される第1の導電型の第1の半導体層
と、前記活性層の下側に形成される第2の導電型の第2
の半導体層と、前記リッジ導波路の側方に隣接されて前
記第2の半導体層に接続する第2の導電型の第3の半導
体層と、前記第1の半導体層の上側に形成される第1の
電極と、前記第3の半導体層の上側に形成される第2の
電極とを備え、前記第1の半導体層と前記第3の半導体
層との間で漏れ電流を防止する漏れ電流防止手段が設け
られるものである。According to a first aspect of the present invention, there is provided a ridge waveguide having an active layer, and a first conductive type first semiconductor layer formed above the active layer. And a second conductive type second layer formed under the active layer.
Semiconductor layer, a third semiconductor layer of a second conductivity type that is adjacent to the side of the ridge waveguide and is connected to the second semiconductor layer, and is formed on the upper side of the first semiconductor layer. Leakage current including a first electrode and a second electrode formed on the upper side of the third semiconductor layer, and preventing a leakage current between the first semiconductor layer and the third semiconductor layer. A preventive means is provided.
【0010】本発明請求項2に係る課題解決手段は、前
記第1の半導体層と前記第3の半導体層との間の一部に
サイリスタ構造の電流狭窄部が設けられるものである。According to a second aspect of the present invention, a current constriction portion having a thyristor structure is provided in a part between the first semiconductor layer and the third semiconductor layer.
【0011】本発明請求項3に係る課題解決手段は、前
記第1の半導体層と前記第3の半導体層との間の一部
に、寄生容量を防止するための寄生容量防止溝が形成さ
れるものである。According to a third aspect of the present invention, a parasitic capacitance prevention groove for preventing parasitic capacitance is formed in a part between the first semiconductor layer and the third semiconductor layer. It is something.
【0012】本発明請求項4に係る課題解決手段は、前
記電流狭窄部の側方に寄生容量を防止するための寄生容
量防止溝が形成されるものである。According to a fourth aspect of the present invention, a parasitic capacitance preventing groove for preventing parasitic capacitance is formed on the side of the current constriction portion.
【0013】本発明請求項5に係る課題解決手段は、前
記基板は第1の導電型に設定され、前記基板と前記リッ
ジ導波路内の前記第2の半導体層との間にチューニング
層が設けられ、前記基板の下面に第3の電極が形成され
て二重導波路構造が形成されるものである。According to a fifth aspect of the present invention, the substrate is set to have a first conductivity type, and a tuning layer is provided between the substrate and the second semiconductor layer in the ridge waveguide. And a third electrode is formed on the lower surface of the substrate to form a double waveguide structure.
【0014】本発明請求項6に係る課題解決手段は、前
記第2の半導体層と前記第3の半導体層は同一材料を用
いて連続形成されるものである。According to a sixth aspect of the present invention, the second semiconductor layer and the third semiconductor layer are continuously formed by using the same material.
【0015】本発明請求項7に係る課題解決手段は、前
端部および後端部のうち少なくとも一方において前記第
2の半導体層と前記第3の半導体層とが連続され、少な
くとも前記前端部および前記後端部に挟まれる中間部に
おいて前記第2の半導体層と第3の半導体層との間に前
記電流狭窄部が形成されるものである。According to a seventh aspect of the present invention, the second semiconductor layer and the third semiconductor layer are continuous with each other in at least one of the front end portion and the rear end portion, and at least the front end portion and the rear end portion are formed. The current constriction portion is formed between the second semiconductor layer and the third semiconductor layer in an intermediate portion sandwiched by the rear end portions.
【0016】本発明請求項8に係る課題解決手段は、前
端部および後端部のうち少なくとも一方において前記第
2の半導体層と前記第3の半導体層とが連続され、少な
くとも前記前端部および前記後端部に挟まれる中間部に
おいて前記第2の半導体層と第3の半導体層との間に前
記寄生容量防止溝が形成されるものである。According to an eighth aspect of the present invention, the second semiconductor layer and the third semiconductor layer are continuous with each other in at least one of a front end portion and a rear end portion, and at least the front end portion and the rear end portion are formed. The parasitic capacitance prevention groove is formed between the second semiconductor layer and the third semiconductor layer in an intermediate portion sandwiched by the rear end portions.
【0017】本発明請求項9に係る課題解決手段は、二
重導波路構造において、前記寄生容量防止溝は前記チュ
ーニング層および第3の半導体層の底面より深く形成さ
れるものである。According to a ninth aspect of the present invention, in the double waveguide structure, the parasitic capacitance preventing groove is formed deeper than the bottom surfaces of the tuning layer and the third semiconductor layer.
【0018】本発明請求項10に係る課題解決手段は、
二重導波路構造において、前記寄生容量防止溝は前記基
板に達する深さに形成されるものである。The means for solving the problem according to claim 10 of the present invention is
In the double waveguide structure, the parasitic capacitance prevention groove is formed to a depth reaching the substrate.
【0019】本発明の請求項11に係る課題解決手段
は、波長可変レーザとしての半導体装置であって、前端
部、後端部および中間部を備え、前記中間部は、基板の
上面の一部に形成され中間層域に活性層を有するリッジ
導波路と、該リッジ導波路内で前記活性層の上側に形成
される第1の導電型の第1の半導体層と、前記リッジ導
波路内で前記活性層の下側に形成される第2の導電型の
第2の半導体層と、前記リッジ導波路の側方に隣接され
て前記第2の半導体層に接続する第2の導電型の第3の
半導体層と、前記第1の半導体層の上側に形成される第
1の電極と、前記第3の半導体層の上側に形成される第
2の電極とを備え、前記第1の半導体層と前記第3の半
導体層との間の一部にサイリスタ構造の電流狭窄部が設
けられ、前記電流狭窄部の側方に寄生容量を防止するた
めの寄生容量防止溝が形成され、前記前端部および前記
後端部のうち少なくとも一方において前記第2の半導体
層と前記第3の半導体層とが連続され、少なくとも前記
前端部および前記後端部に挟まれる中間部において前記
第2の半導体層と第3の半導体層との間に前記電流狭窄
部が形成される。According to an eleventh aspect of the present invention, there is provided a semiconductor device as a wavelength tunable laser, comprising a front end portion, a rear end portion and an intermediate portion, the intermediate portion being a part of an upper surface of a substrate. A ridge waveguide having an active layer in an intermediate layer region, a first conductivity type first semiconductor layer formed above the active layer in the ridge waveguide, and a ridge waveguide in the ridge waveguide. A second semiconductor layer of a second conductivity type formed below the active layer, and a second semiconductor layer of a second conductivity type that is adjacent to the side of the ridge waveguide and is connected to the second semiconductor layer. Third semiconductor layer, a first electrode formed on the upper side of the first semiconductor layer, and a second electrode formed on the upper side of the third semiconductor layer, the first semiconductor layer And a current constriction portion having a thyristor structure is provided in a part between the third semiconductor layer and the third semiconductor layer. A parasitic capacitance preventing groove for preventing parasitic capacitance is formed on the side of the portion, and the second semiconductor layer and the third semiconductor layer are connected to each other in at least one of the front end portion and the rear end portion. The current constriction portion is formed between the second semiconductor layer and the third semiconductor layer at least in an intermediate portion sandwiched by the front end portion and the rear end portion.
【0020】本発明請求項12に係る課題解決手段は、
前記漏れ電流防止手段は、前記第3の半導体層の上面に
形成される高抵抗層で構成され、該高抵抗層の前記リッ
ジ導波路に接する端部は前記活性層の端部に可及的に近
接するものである。The problem solving means according to claim 12 of the present invention is
The leakage current prevention means is composed of a high resistance layer formed on the upper surface of the third semiconductor layer, and an end portion of the high resistance layer in contact with the ridge waveguide is as close as possible to an end portion of the active layer. Is close to.
【0021】本発明請求項13に係る課題解決手段は、
前記第3の半導体層の下面に、前記基板と前記第3の半
導体層との間で漏れ電流を防止するための高抵抗層が設
けられるものである。The means for solving the problem according to claim 13 of the present invention is
A high resistance layer for preventing leakage current is provided between the substrate and the third semiconductor layer on the lower surface of the third semiconductor layer.
【0022】本発明請求項14に係る課題解決手段は、
第1の導電型の基板上に、チューニング層、第2の導電
型の第2の半導体層、活性層および第1の導電型の第1
の半導体層等の複数の層を順次積層しかつ上方に露出す
る第2の導電型の第3の半導体層を前記第2の半導体層
に接続するよう形成する積層工程と、これらを選択的に
エッチング除去してリッジ導波路を形成するリッジ形成
工程と、前記リッジ導波路の脇方に電流狭窄部を埋め込
み形成する埋め込み形成工程と、前記電流狭窄部の外側
部を選択的にエッチング除去して寄生容量防止溝を形成
する溝形成工程と、前記第1の半導体層の上面に第1の
電極を、前記第3の半導体層の上面に第2の電極を、前
記基板の下面に第3の電極を夫々形成する電極形成工程
とを備えるものである。The problem solving means according to claim 14 of the present invention is
A tuning layer, a second semiconductor layer having a second conductivity type, an active layer, and a first conductivity type first layer are provided on a first conductivity type substrate.
A step of sequentially stacking a plurality of layers such as the semiconductor layer and connecting the third semiconductor layer of the second conductivity type exposed above to the second semiconductor layer, and selectively forming these layers. A ridge forming step of etching and removing to form a ridge waveguide, a burying forming step of burying and forming a current narrowing portion on the side of the ridge waveguide, and an outer portion of the current narrowing portion is selectively removed by etching. A groove forming step of forming a parasitic capacitance preventing groove, a first electrode on the upper surface of the first semiconductor layer, a second electrode on the upper surface of the third semiconductor layer, and a third electrode on the lower surface of the substrate. And an electrode forming step of forming electrodes respectively.
【0023】本発明請求項15に係る課題解決手段は、
前記積層工程は、前記第2の半導体層の形成時に前記第
3の半導体層を同一材料を用いて同時に連続形成する連
続形成工程と、前記第1の半導体層の形成後に前記活性
層および前記第1の半導体層の脇部をエッチング除去し
て前記第3の半導体層を露出させる露出工程とを備える
ものである。The problem solving means according to claim 15 of the present invention is
The stacking step includes a continuous formation step in which the third semiconductor layer is continuously formed at the same time using the same material when the second semiconductor layer is formed, and the active layer and the first semiconductor layer are formed after the formation of the first semiconductor layer. And an exposing step of exposing the third semiconductor layer by etching away a side portion of the first semiconductor layer.
【0024】本発明請求項16に係る課題解決手段は、
第1の導電型の基板上に、チューニング層、第2の導電
型の第2の半導体層および活性層等の複数の層を順次積
層する第1の積層工程と、これらを選択的にエッチング
除去してリッジ導波路を形成するリッジ形成工程と、前
記リッジ導波路の脇方に第2の導電型の第3の半導体層
を前記第2の半導体層に接続するよう埋め込み形成する
埋め込み形成工程と、前記第3の半導体層の上面に高抵
抗層を形成する高抵抗層形成工程と、前記リッジ導波路
および前記高抵抗層の上面に第1の導電型の第1の半導
体層を形成する第2の積層工程と、前記第1の半導体層
の上側に第1の電極を、前記第3の半導体層の上面に第
2の電極を、前記基板の下面に第3の電極を夫々形成す
る電極形成工程とを備えるものである。The problem solving means according to claim 16 of the present invention is
A first stacking step of sequentially stacking a plurality of layers such as a tuning layer, a second semiconductor layer of a second conductivity type, and an active layer on a substrate of a first conductivity type, and selectively removing these layers by etching. And a ridge forming step of forming a ridge waveguide, and a burying forming step of burying and forming a third semiconductor layer of the second conductivity type on the side of the ridge waveguide so as to connect to the second semiconductor layer. A high resistance layer forming step of forming a high resistance layer on the upper surface of the third semiconductor layer, and forming a first conductivity type first semiconductor layer on the upper surfaces of the ridge waveguide and the high resistance layer. And a second electrode on the upper surface of the first semiconductor layer, a second electrode on the upper surface of the third semiconductor layer, and a third electrode on the lower surface of the substrate. And a forming step.
【0025】本発明請求項17に係る課題解決手段は、
前記高抵抗層形成工程において前記第3の半導体層の上
面に不純物をドープして半絶縁性結晶構造の前記高抵抗
層を形成するものである。The problem solving means according to claim 17 of the present invention is
In the high resistance layer forming step, the high resistance layer having a semi-insulating crystal structure is formed by doping impurities on the upper surface of the third semiconductor layer.
【0026】本発明請求項18に係る課題解決手段は、
前記高抵抗層形成工程において前記第3の半導体層の形
成後にその上面に所定のイオンを注入して前記高抵抗層
を形成するものである。The problem solving means according to claim 18 of the present invention is
In the high resistance layer forming step, after forming the third semiconductor layer, predetermined ions are implanted into the upper surface of the third semiconductor layer to form the high resistance layer.
【0027】本発明請求項19に係る課題解決手段は、
前記所定のイオンとしてプロトンを用いるものである。The problem solving means according to claim 19 of the present invention is
A proton is used as the predetermined ion.
【0028】本発明請求項20に係る課題解決手段は、
前記所定のイオンとしてホウ素を用いるものである。The problem solving means according to claim 20 of the present invention is
Boron is used as the predetermined ion.
【0029】[0029]
【作用】本発明の請求項1に係る半導体装置では、第1
の電極および第2の電極の間に電圧を与え、第1の半導
体層、活性層、第2の半導体層および第3の半導体層に
電流を流して活性層を駆動する。この際、漏れ電流防止
手段によって第1の半導体層と第3の半導体層との間に
漏れ電流が発生するのを防止でき、電流を活性層に効率
よく流すことができる。In the semiconductor device according to claim 1 of the present invention, the first
A voltage is applied between the first electrode and the second electrode, and a current is passed through the first semiconductor layer, the active layer, the second semiconductor layer, and the third semiconductor layer to drive the active layer. At this time, it is possible to prevent a leakage current from being generated between the first semiconductor layer and the third semiconductor layer by the leakage current prevention means, and it is possible to efficiently pass the current to the active layer.
【0030】本発明の請求項2に係る半導体装置では、
第1の電極および第2の電極の間に電圧を与えて活性層
を駆動する際、電流狭窄部にて第1の半導体層と第3の
半導体層との間の一部に漏れ電流が発生するのを防止で
き、電流を活性層に効率よく流すことができる。In the semiconductor device according to claim 2 of the present invention,
When a voltage is applied between the first electrode and the second electrode to drive the active layer, a leakage current occurs in a part between the first semiconductor layer and the third semiconductor layer in the current constriction portion. It is possible to prevent this from occurring, and it is possible to efficiently pass a current through the active layer.
【0031】本発明の請求項3および請求項4に係る半
導体装置では、第1の電極および第2の電極の間に電圧
を与えて活性層を駆動する際、寄生容量防止溝にて第1
の半導体層と第3の半導体層との間の一部に発生する寄
生容量を防止でき、この部分での漏れ電流を防止するこ
とで、電流を活性層に効率よく流すことができる。In the semiconductor device according to claims 3 and 4 of the present invention, when a voltage is applied between the first electrode and the second electrode to drive the active layer, the first parasitic capacitance preventing groove is used.
The parasitic capacitance generated in a part between the semiconductor layer and the third semiconductor layer can be prevented, and the leakage current in this part can be prevented, so that the current can be efficiently supplied to the active layer.
【0032】本発明の請求項5に係る半導体装置では、
二重導波路構造を形成しているので、チューニング層へ
電流を注入することにより大きな波長可変幅が得られ
る。かかる二重導波路構造では、特に第1の電極および
第2の電極の両方をデバイスの上側に引き出す必要があ
り、この場合に漏れ電流を防止して電流を活性層に効率
よく流すことができる。In the semiconductor device according to claim 5 of the present invention,
Since the double waveguide structure is formed, a large wavelength tunable width can be obtained by injecting a current into the tuning layer. In such a double waveguide structure, in particular, both the first electrode and the second electrode need to be drawn to the upper side of the device, and in this case, leakage current can be prevented and current can be efficiently passed through the active layer. .
【0033】本発明の請求項6に係る半導体装置では、
第2の半導体層と第3の半導体層を同時に形成すること
で、従来例に比べて積層工程に要する時間を短縮でき
る。In the semiconductor device according to claim 6 of the present invention,
By simultaneously forming the second semiconductor layer and the third semiconductor layer, the time required for the stacking process can be shortened as compared with the conventional example.
【0034】本発明の請求項7および請求項11に係る
半導体装置では、中間部において電流狭窄部にて第2の
半導体層を第3の半導体層から孤立させて漏れ電流を防
止する場合でも、第2の半導体層と第2の電極とを、前
端部および後端部のうち少なくとも一方の第3の半導体
層を介して電気的に接続でき、第2の半導体層への電気
的配線を第2の電極を通じてデバイスの上面側に引き出
すことができる。In the semiconductor device according to the seventh and the eleventh aspects of the present invention, even when the second semiconductor layer is isolated from the third semiconductor layer at the current constriction portion in the intermediate portion to prevent leakage current, The second semiconductor layer and the second electrode can be electrically connected via the third semiconductor layer of at least one of the front end portion and the rear end portion, and the electrical wiring to the second semiconductor layer can be electrically connected to the second semiconductor layer. It can be pulled out to the upper surface side of the device through the two electrodes.
【0035】本発明の請求項8に係る半導体装置では、
中間部において寄生容量防止溝にて第2の半導体層を第
3の半導体層から孤立させて漏れ電流を防止する場合で
も、第2の半導体層と第2の電極とを前端部および後端
部のうち少なくとも一方の第3の半導体層を介して電気
的に接続でき、第2の半導体層への電気的配線を第2の
電極を通じてデバイスの上面側に引き出すことができ
る。In the semiconductor device according to claim 8 of the present invention,
Even when the second semiconductor layer is isolated from the third semiconductor layer by the parasitic capacitance preventing groove in the intermediate portion to prevent a leakage current, the second semiconductor layer and the second electrode are separated from each other by the front end portion and the rear end portion. It is possible to electrically connect via at least one of the third semiconductor layers, and the electrical wiring to the second semiconductor layer can be drawn to the upper surface side of the device through the second electrode.
【0036】本発明の請求項9および請求項10に係る
半導体装置では、寄生容量防止溝を形成する領域につい
てチューニング層を第3の半導体層から完全に孤立させ
ることができ、二重導波路構造とされたうちのいずれの
導波路についても漏れ電流を低減できる。特に請求項1
0では、基板と第3の半導体層との接合面積を寄生容量
防止溝にて大幅に縮小できるため、基板と第3の半導体
層との間の漏れ電流を大幅に低減できる。In the semiconductor device according to the ninth and tenth aspects of the present invention, the tuning layer can be completely isolated from the third semiconductor layer in the region where the parasitic capacitance preventing groove is formed, and the double waveguide structure can be obtained. The leakage current can be reduced for any of the waveguides. Especially claim 1
At 0, the junction area between the substrate and the third semiconductor layer can be significantly reduced by the parasitic capacitance preventing groove, so that the leakage current between the substrate and the third semiconductor layer can be significantly reduced.
【0037】本発明の請求項12に係る半導体装置で
は、第1の電極および第2の電極の間に電圧を与えて活
性層を駆動する際、高抵抗層にて第1の半導体層と第3
の半導体層との間の一部に漏れ電流が発生するのを防止
でき、電流を活性層に効率よく流すことができる。この
場合、高抵抗層の端部を活性層の端部に可及的に近接さ
せることで、第1の半導体層と第3の半導体層との接触
面積を低減でき、漏れ電流を大幅に低減できる。特に、
高抵抗層の端部を活性層の端部に重ねて密着させれば、
第1の半導体層と第3の半導体層との接触を確実に防止
できる。In the semiconductor device according to claim 12 of the present invention, when a voltage is applied between the first electrode and the second electrode to drive the active layer, the high resistance layer causes the first semiconductor layer and the Three
It is possible to prevent a leakage current from being generated in a portion between the semiconductor layer and the semiconductor layer, and to efficiently pass a current to the active layer. In this case, by making the end of the high resistance layer as close as possible to the end of the active layer, the contact area between the first semiconductor layer and the third semiconductor layer can be reduced, and the leakage current can be significantly reduced. it can. In particular,
If the end of the high resistance layer is overlaid and closely adhered to the end of the active layer,
It is possible to reliably prevent contact between the first semiconductor layer and the third semiconductor layer.
【0038】本発明の請求項13に係る半導体装置で
は、二重導波路構造において、基板と第3の半導体層と
の間の漏れ電流を第3の半導体層の下面の高抵抗層にて
大幅に低減できる。In the semiconductor device according to claim 13 of the present invention, in the double waveguide structure, the leakage current between the substrate and the third semiconductor layer is significantly increased in the high resistance layer on the lower surface of the third semiconductor layer. Can be reduced to
【0039】本発明の請求項14に係る半導体装置の製
造方法では、二重導波路構造において第1の電極および
第2の電極の両方をデバイスの上側に引き出す必要があ
る場合に、第1の半導体層と第3の半導体層との間に電
流狭窄部および寄生容量防止溝を配置することができ、
第1の半導体層と第3の半導体層との間に発生する漏れ
電流を防止できる。In the method for manufacturing a semiconductor device according to claim 14 of the present invention, when it is necessary to draw both the first electrode and the second electrode above the device in the double waveguide structure, the first A current constriction portion and a parasitic capacitance prevention groove can be arranged between the semiconductor layer and the third semiconductor layer,
Leakage current that occurs between the first semiconductor layer and the third semiconductor layer can be prevented.
【0040】本発明の請求項15に係る半導体装置の製
造方法では、第2の半導体層と第3の半導体層を同時に
形成することで、従来例に比べて積層工程に要する時間
を短縮できる。In the method of manufacturing a semiconductor device according to the fifteenth aspect of the present invention, by forming the second semiconductor layer and the third semiconductor layer at the same time, the time required for the stacking process can be shortened as compared with the conventional example.
【0041】本発明の請求項16に係る半導体装置の製
造方法では、第3の半導体層をリッジ導波路の側方に埋
め込み形成する場合、第3の半導体層の上面に高抵抗層
を形成した後、リッジ導波路および高抵抗層の上面に第
1の半導体層を形成するので、第3の半導体層を第1の
半導体層から孤立させることができ、この間の漏れ電流
の発生を防止できる。In the method for manufacturing a semiconductor device according to the sixteenth aspect of the present invention, when the third semiconductor layer is formed by embedding laterally in the ridge waveguide, the high resistance layer is formed on the upper surface of the third semiconductor layer. After that, since the first semiconductor layer is formed on the upper surfaces of the ridge waveguide and the high resistance layer, the third semiconductor layer can be isolated from the first semiconductor layer, and the generation of leakage current during this can be prevented.
【0042】本発明の請求項17に係る半導体装置の製
造方法では、高抵抗層の形成を、第3の半導体層の上面
に不純物をドープして行うので、第3の半導体層および
高抵抗層を連続形成によって積層でき、積層作業が容易
になる。In the method for manufacturing a semiconductor device according to the seventeenth aspect of the present invention, since the high resistance layer is formed by doping the upper surface of the third semiconductor layer with impurities, the third semiconductor layer and the high resistance layer are formed. Can be stacked by continuous formation, which facilitates the stacking work.
【0043】本発明の請求項18に係る半導体装置の製
造方法では、第3の半導体層の形成後、その上面に所定
のイオンを注入して高抵抗層を形成するので、第3の半
導体層および高抵抗層を連続形成によって積層でき、積
層作業が容易になる。また、第3の半導体層の形成工程
後に高抵抗層の厚さを自由に設定できるので、高抵抗層
の端部を活性層の端部に重ねたり、高抵抗層の端部を活
性層の端部に可及的に近接させる場合、第3の半導体層
の形成厚みに誤差が生じても、後にイオン注入深さを調
整することで、高抵抗層の形成位置を所望の通り設定で
きる。In the method of manufacturing a semiconductor device according to the eighteenth aspect of the present invention, since the high resistance layer is formed by implanting predetermined ions into the upper surface of the third semiconductor layer after the formation of the third semiconductor layer, the third semiconductor layer is formed. Further, the high resistance layer can be laminated by continuous formation, which facilitates the laminating work. Moreover, since the thickness of the high resistance layer can be freely set after the step of forming the third semiconductor layer, the end of the high resistance layer is overlapped with the end of the active layer, or the end of the high resistance layer is formed with the active layer. When the edge portion is made as close as possible, even if an error occurs in the formation thickness of the third semiconductor layer, the formation position of the high resistance layer can be set as desired by adjusting the ion implantation depth later.
【0044】本発明の請求項19に係る半導体装置の製
造方法では、注入するイオンとしてプロトンを用いるこ
とで、他のイオンを用いる場合に比べて深い位置まで注
入を行うことができ、高抵抗層の形成位置を深く設定で
き、高抵抗層の端部を活性層の端部に重ねたり、高抵抗
層の端部を活性層の端部に可及的に近接させたりする作
業を確実に行うことができる。In the method for manufacturing a semiconductor device according to the nineteenth aspect of the present invention, by using protons as the ions to be implanted, it is possible to perform implantation to a deeper position than when other ions are used, and the high resistance layer is formed. The formation position of can be set deeply, and the work of overlapping the end of the high resistance layer with the end of the active layer or bringing the end of the high resistance layer as close as possible to the end of the active layer is performed reliably. be able to.
【0045】本発明の請求項20に係る半導体装置の製
造方法では、注入するイオンとしてホウ素を用いること
で、熱的に安定な高抵抗層を得ることができ、熱処理が
施されても性能が劣化しない半導体装置を得ることがで
きる。In the method for manufacturing a semiconductor device according to the twentieth aspect of the present invention, by using boron as the ions to be implanted, a thermally stable high resistance layer can be obtained, and the performance is improved even if heat treatment is applied. A semiconductor device that does not deteriorate can be obtained.
【0046】[0046]
[第1の実施例]図1は本発明の第1の実施例の半導体
装置としての半導体レーザ装置のダイシングカット前の
状態を示す一部断面斜視図、図2は完成状態を示す斜視
図、図3は半導体装置の正面図である。該半導体装置
は、コヒーレント光通信において異なった周波数の光を
多重化し伝送容量の増大を図る光周波数分割多重方式の
光源、あるいは受信用局発光源に用いられる二重導波路
構造(TTG構造)のものであって、レーザ発振波長を
任意に可変できる波長可変型のものである。該半導体装
置は、図3の如く、約50μmの奥行きで形成される前
端面近傍(前端部)P1および後端面近傍(後端面)P
2の積層構造と、前記前後端部P1,P2に挟まれ約8
00μmの奥行きで形成される中間部P3の積層構造と
が異なっている。[First Embodiment] FIG. 1 is a partially sectional perspective view showing a state before a dicing cut of a semiconductor laser device as a semiconductor device of a first embodiment of the present invention, and FIG. 2 is a perspective view showing a completed state, FIG. 3 is a front view of the semiconductor device. The semiconductor device has a double waveguide structure (TTG structure) used as a light source of an optical frequency division multiplexing system for increasing the transmission capacity by multiplexing lights of different frequencies in coherent optical communication or a local light source for reception. The wavelength tunable laser oscillation wavelength can be arbitrarily changed. As shown in FIG. 3, the semiconductor device has a front end face vicinity (front end portion) P1 and a rear end face vicinity (rear end face) P formed with a depth of about 50 μm.
2 laminated structure and about 8 sandwiched between the front and rear end portions P1 and P2
The layered structure of the intermediate portion P3 formed with a depth of 00 μm is different.
【0047】前記半導体装置の中間部P3の積層構造は
図1の断面に示した通りである。図1中の31はp型
(第1の導電型)InP基板、32はp型InP基板3
1上に形成されるp型InPバッファ層、33は駆動電
流を活性領域としてのリッジ導波路M1に集中させるよ
う埋め込み形成されたサイリスタ構造の電流狭窄部(漏
れ電流防止手段)、33aは電流狭窄部33のp型In
P層、33bは同じくn型(第2の導電型)InP層、
33cは同じくp型InP層、34,34aはp型In
Pバッファ層(第1の半導体層)、35は回折格子層、
36は活性層、37はn型InPスペーサ層(第2の半
導体層)、37aは前記n型InPスペーサ層(第2の
半導体層)37と同一材料で同時に形成されたn型In
P層(第3の半導体層)、38はチューニング層、39
は絶縁マスク、40はp側電極(第1の電極)、41は
n側電極(第2の電極)、42はp側電極(第3の電
極)、43はp型InGaAsPコンタクト層、45は
寄生容量を低減して漏れ電流を遮断するための寄生容量
防止溝(漏れ電流防止手段)、M2は前記寄生容量防止
溝45にて形成されるメサ、Dc1はダイシングカット
ラインである。ここで、前記寄生容量防止溝45の深さ
は、前記チューニング層38をn型InP層(第3の半
導体層)37aから完全に孤立させるために少なくとも
前記チューニング層38および前記n型InP層37a
の底面より深くなるよう設定する必要があり、例えば本
実施例では、前記p型InP基板31の上層部の一部に
達する程度に設定される。The laminated structure of the intermediate portion P3 of the semiconductor device is as shown in the cross section of FIG. In FIG. 1, 31 is a p-type (first conductivity type) InP substrate and 32 is a p-type InP substrate 3.
1 is a p-type InP buffer layer, 33 is a current narrowing portion (leakage current preventing means) of a thyristor structure embedded so as to concentrate the driving current in the ridge waveguide M1 as an active region, and 33a is a current narrowing. P-type In of part 33
P layer, 33b are also n-type (second conductivity type) InP layers,
33c is a p-type InP layer, and 34 and 34a are p-type InP layers.
P buffer layer (first semiconductor layer), 35 is a diffraction grating layer,
36 is an active layer, 37 is an n-type InP spacer layer (second semiconductor layer), and 37a is an n-type In formed of the same material as the n-type InP spacer layer (second semiconductor layer) 37 at the same time.
P layer (third semiconductor layer), 38 is tuning layer, 39
Is an insulating mask, 40 is a p-side electrode (first electrode), 41 is an n-side electrode (second electrode), 42 is a p-side electrode (third electrode), 43 is a p-type InGaAsP contact layer, and 45 is Parasitic capacitance prevention groove (leakage current prevention means) for reducing the parasitic capacitance to cut off the leakage current, M2 is a mesa formed in the parasitic capacitance prevention groove 45, and Dc1 is a dicing cut line. Here, the depth of the parasitic capacitance preventing groove 45 is at least the tuning layer 38 and the n-type InP layer 37a in order to completely isolate the tuning layer 38 from the n-type InP layer (third semiconductor layer) 37a.
Must be set to be deeper than the bottom surface of the p-type InP substrate 31, for example, in this embodiment.
【0048】一方、半導体装置の前後端部P1,P2の
構造は、図2および図3の如く、p型InP基板31、
p型InPバッファ層32、チューニング層38、n型
InPスペーサ層37、活性層36、回折格子層35、
p型InPバッファ層34,34aおよびp型InGa
AsPコンタクト層43が順次積層された点では図1に
示す中間部P3の断面構造と類似の構造であるが、前後
端部P1,P2では、図2および図3の如く、両脇の寄
生容量防止溝45および電流狭窄部33が省略されてお
り、前記n型InPスペーサ層37(第2の半導体層)
がn型InP層37a(第3の半導体層)としてデバイ
スの脇端部まで延設されて外側のn側電極41に密接さ
れる点で、図1に示す中間部P3の断面構造と異なって
いる。On the other hand, the structure of the front and rear end portions P1 and P2 of the semiconductor device is as shown in FIGS.
p-type InP buffer layer 32, tuning layer 38, n-type InP spacer layer 37, active layer 36, diffraction grating layer 35,
p-type InP buffer layers 34 and 34a and p-type InGa
Although the AsP contact layer 43 is sequentially laminated, the structure is similar to the cross-sectional structure of the intermediate portion P3 shown in FIG. 1, but the front and rear end portions P1 and P2 have parasitic capacitances on both sides as shown in FIGS. The prevention groove 45 and the current constriction portion 33 are omitted, and the n-type InP spacer layer 37 (second semiconductor layer) is provided.
Is different from the sectional structure of the intermediate portion P3 shown in FIG. 1 in that it is extended as an n-type InP layer 37a (third semiconductor layer) to the side edge of the device and is in close contact with the outer n-side electrode 41. There is.
【0049】上記構成の半導体装置では、リッジ導波路
M1内で活性層36とチューニング層38の間に挟まれ
たn型InPスペーサ層37は、両側が電流狭窄部3
3、さらには寄生容量防止溝45に挟まれるため、故に
n型InPスペーサ層37は外側のn側電極41から孤
立し、したがって、前記リッジ導波路M1内のn型In
Pスペーサ層37と外側のn側電極41との間で漏れ電
流が流れるのを防止でき、高い発光効率を得ることがで
きる。In the semiconductor device having the above structure, the n-type InP spacer layer 37 sandwiched between the active layer 36 and the tuning layer 38 in the ridge waveguide M1 has the current constricting portion 3 on both sides.
3. Furthermore, the n-type InP spacer layer 37 is isolated from the outer n-side electrode 41 because it is sandwiched by the parasitic capacitance preventing groove 45, and therefore, the n-type In in the ridge waveguide M1 is formed.
Leakage current can be prevented from flowing between the P spacer layer 37 and the outer n-side electrode 41, and high luminous efficiency can be obtained.
【0050】ただし、上記のように構成すれば、n型I
nPスペーサ層37と外側のn側電極41との接続が問
題となるが、図2および図3に示すように、ダイシング
カットラインDc1近傍の前後端部P1,P2の領域で
は、電流狭窄部33の埋め込み成長および寄生容量防止
溝45の形成を行なっていないため、n型InP層37
a(第3の半導体層)をデバイスの脇端部まで形成して
外側のn側電極41に直接接続することができ、両者間
の接続を確保できる。However, with the above configuration, the n-type I
The connection between the nP spacer layer 37 and the outer n-side electrode 41 poses a problem, but as shown in FIGS. 2 and 3, in the regions of the front and rear end portions P1 and P2 near the dicing cut line Dc1, the current constriction portion 33 is formed. Embedded growth and formation of the parasitic capacitance preventing groove 45 are not performed, so that the n-type InP layer 37 is formed.
It is possible to form a (third semiconductor layer) up to the side end portion of the device and directly connect to the outer n-side electrode 41, so that the connection between the two can be secured.
【0051】次に、本実施例の半導体装置の製造工程を
説明する。まず、図4の如く、p型InP基板31上
に、p型InPバッファ層32、チューニング層38、
n型InPスペーサ層37、n型InP層37a、活性
層36、回折格子層35およびp型InPバッファ層3
4を順次エピタキシャル成長法にて形成する。ここで、
n型InPスペーサ層37およびn型InP層37aは
実質的に同一部材であるため、同一材料を用いて同時に
形成する。次いで、p型InPバッファ層34の上面の
正面視中央部のみに、SiO2 膜またはSiN膜等を用
いて奥から手前に長い帯状の絶縁マスク39aを形成す
る。そして、p型InPバッファ層34、回折格子層3
5および活性層36のうち回折格子層35のうち絶縁マ
スク39aが形成されない平面視領域について、図5の
ようにn型InP層37aの上面が露出するまでエッチ
ング除去する。Next, the manufacturing process of the semiconductor device of this embodiment will be described. First, as shown in FIG. 4, on the p-type InP substrate 31, the p-type InP buffer layer 32, the tuning layer 38,
The n-type InP spacer layer 37, the n-type InP layer 37a, the active layer 36, the diffraction grating layer 35, and the p-type InP buffer layer 3
4 are sequentially formed by the epitaxial growth method. here,
Since the n-type InP spacer layer 37 and the n-type InP layer 37a are substantially the same member, they are simultaneously formed by using the same material. Next, a long strip-shaped insulating mask 39a is formed from the back to the front using a SiO 2 film or a SiN film only on the central portion of the upper surface of the p-type InP buffer layer 34 when viewed from the front. Then, the p-type InP buffer layer 34 and the diffraction grating layer 3
5 and the area of the diffraction grating layer 35 of the active layer 36 where the insulating mask 39a is not formed are removed by etching until the upper surface of the n-type InP layer 37a is exposed as shown in FIG.
【0052】その後、前記絶縁マスク39aを除去した
後、図6の如く、露出したn型InP層37aの正面視
端部、p型InPバッファ層34の正面視中央部、およ
び最終的にデバイス単位ごとに分離される際のダイシン
グカットラインDc1上に、SiO2 膜またはSiN膜
等を用いて平面視略王型の絶縁マスク39bを形成す
る。そして、図7の如く、絶縁マスク39bが形成され
ない平面視領域について、p型InPバッファ層32、
チューニング層38、n型InPスペーサ層37、n型
InP層37a、活性層36、回折格子層35およびp
型InPバッファ層34を、p型InP基板31の上層
部の一部に達する程度の深さで正面視略J型にエッチン
グ除去する。この際、活性層36の幅が1〜2μmにな
るようにし、各デバイスの奥から手前にかけてその正面
視中央部に隆起(メサ)形状のリッジ導波路M1を形成
する。Then, after removing the insulating mask 39a, as shown in FIG. 6, the exposed end of the n-type InP layer 37a in the front view, the central part of the p-type InP buffer layer 34 in the front view, and finally the device unit. An insulating mask 39b having a substantially king-shaped plan view is formed by using a SiO 2 film, a SiN film, or the like on the dicing cut line Dc1 when separated for each. Then, as shown in FIG. 7, in the plan view region where the insulating mask 39b is not formed, the p-type InP buffer layer 32,
Tuning layer 38, n-type InP spacer layer 37, n-type InP layer 37a, active layer 36, diffraction grating layer 35 and p
The type InP buffer layer 34 is removed by etching to a substantially J type in a front view at a depth that reaches a part of the upper layer portion of the p type InP substrate 31. At this time, the width of the active layer 36 is set to 1 to 2 μm, and a ridge waveguide M1 having a raised (mesa) shape is formed in the central portion of the front view of each device from the back to the front.
【0053】次に、図8の如く、リッジ導波路M1の両
側のエッチング除去された領域に電流狭窄部33のp型
InP層33a、n型InP層33bおよびp型InP
層33cを順次埋め込み成長形成する。ただし、前記ダ
イシングカットラインDc1上の前記絶縁マスク39b
で被覆された領域は、図7のエッチング除去段階でエッ
チング除去を行わないため、リッジ導波路M1の形成が
行われず、したがって前記ダイシングカットラインDc
1での断面は図9のようになる。Next, as shown in FIG. 8, the p-type InP layer 33a, the n-type InP layer 33b and the p-type InP of the current confinement portion 33 are formed in the regions removed by etching on both sides of the ridge waveguide M1.
The layer 33c is sequentially embedded and grown. However, the insulating mask 39b on the dicing cut line Dc1
Since the region covered with is not etched away in the etching removal step of FIG. 7, the ridge waveguide M1 is not formed, and thus the dicing cut line Dc is not formed.
The cross section at 1 is as shown in FIG.
【0054】しかる後、絶縁マスク39bを溶剤にて除
去し、さらに露出したn型InPスペーサ層37aの正
面視端部のみ、図10のように再びSiO2 膜またはS
iN膜等を用いて絶縁マスク39cを形成し、その後、
前記p型InP層33cの上面の一部および前記p型I
nPバッファ層34の上面のみに、p型InPバッファ
層34aおよびp型InGaAsPコンタクト層43を
選択的に形成する。Thereafter, the insulating mask 39b is removed with a solvent, and only the exposed end portion of the n-type InP spacer layer 37a in a front view is again exposed to the SiO 2 film or S as shown in FIG.
An insulating mask 39c is formed using an iN film or the like, and then,
Part of the upper surface of the p-type InP layer 33c and the p-type I
The p-type InP buffer layer 34a and the p-type InGaAsP contact layer 43 are selectively formed only on the upper surface of the nP buffer layer 34.
【0055】次に、前記絶縁マスク39cを除去し、図
11の如く、露出した前記n型InPスペーサ層37a
の正面視端部、前記p型InGaAsPコンタクト層4
3の正面視中央部、および最終的にデバイス単位ごとに
分離される際のダイシングカットラインDc1上に、S
iO2 膜またはSiN膜等を用いて平面視略王型の絶縁
マスク39dを形成する。ここで、絶縁マスク39dの
うち、前記p型InGaAsPコンタクト層43の正面
視中央部に形成する部分の幅は、前記活性層36の幅
(1〜2μm)、すなわちリッジ導波路M1の幅より大
としておく。そして、図12の如く、絶縁マスク39d
の形成されない平面視領域をエッチング除去し、寄生容
量低減のための正面視略J型の寄生容量防止溝45を形
成する。これにより、各デバイスの奥から手前にかけて
その正面視中央部にリッジM2が形成される。Next, the insulating mask 39c is removed, and the exposed n-type InP spacer layer 37a is formed as shown in FIG.
Front end portion of the p-type InGaAsP contact layer 4
S in the center part of the front view of FIG. 3 and on the dicing cut line Dc1 when the devices are finally separated for each device.
An insulating mask 39d having a substantially king-shaped plan view is formed using an iO 2 film or a SiN film. Here, the width of the portion of the insulating mask 39d formed in the central portion of the p-type InGaAsP contact layer 43 in front view is larger than the width (1 to 2 μm) of the active layer 36, that is, the width of the ridge waveguide M1. I will keep it. Then, as shown in FIG. 12, the insulating mask 39d
The planar view region where no is formed is removed by etching to form a substantially J-shaped parasitic capacitance preventing groove 45 in front view for reducing the parasitic capacitance. As a result, the ridge M2 is formed in the center of the front view of each device from the back to the front.
【0056】しかる後、図1の如く、電極を形成しない
領域を絶縁マスク39で覆い、絶縁マスク39の形成さ
れない上面部分にp側電極40およびn側電極41を、
前記p型InP基板31の全下面にp側電極42を夫々
形成する。その後、デバイス単位ごとにダイシングカッ
トし、図2に示す個々の半導体装置が完成する。Thereafter, as shown in FIG. 1, a region where no electrode is formed is covered with an insulating mask 39, and a p-side electrode 40 and an n-side electrode 41 are provided on the upper surface portion where the insulating mask 39 is not formed.
P-side electrodes 42 are formed on the entire lower surface of the p-type InP substrate 31. Thereafter, dicing cutting is performed for each device unit, and the individual semiconductor devices shown in FIG. 2 are completed.
【0057】[第2の実施例]図13は本発明の第2の
実施例の半導体装置としての半導体レーザ装置を示す図
である。本実施例の半導体装置は第1の実施例と同様の
波長可変型のものであって、図13中の51はp型In
P基板、52はp型InP基板51上に形成されるp型
InPバッファ層、53はn型InP層(埋め込み層:
第3の半導体層)、54,54aはp型InPバッファ
層(第1の半導体層)、55は回折格子層、56は活性
層、57はn型InPスペーサ層(第2の半導体層)、
58はチューニング層、59は絶縁膜、60はp側電極
(第1の電極)、61はn側電極(第2の電極)、62
はp側電極(第3の電極)、63はp型InPコンタク
ト層、65は不純物ドープにて形成されたInP半絶縁
性結晶構造の高抵抗層(漏れ電流防止手段)、66は前
記n型InP層53と前記n側電極(第2の電極)61
とを電気的に接続するための開口部、M3は隆起(メ
サ)形状のリッジ導波路である。[Second Embodiment] FIG. 13 is a diagram showing a semiconductor laser device as a semiconductor device according to a second embodiment of the present invention. The semiconductor device of this embodiment is of the wavelength tunable type similar to that of the first embodiment, and 51 in FIG. 13 is p-type In.
P substrate, 52 is a p-type InP buffer layer formed on the p-type InP substrate 51, and 53 is an n-type InP layer (buried layer:
Third semiconductor layer), 54 and 54a are p-type InP buffer layers (first semiconductor layers), 55 is a diffraction grating layer, 56 is an active layer, 57 is an n-type InP spacer layer (second semiconductor layer),
58 is a tuning layer, 59 is an insulating film, 60 is a p-side electrode (first electrode), 61 is an n-side electrode (second electrode), 62
Is a p-side electrode (third electrode), 63 is a p-type InP contact layer, 65 is a high resistance layer (leakage current preventing means) of InP semi-insulating crystal structure formed by impurity doping, and 66 is the n-type InP layer 53 and the n-side electrode (second electrode) 61
M3 is a ridge waveguide in the form of a ridge (mesa) for electrically connecting and.
【0058】前記高抵抗層65にドーピングされる不純
物としては、Fe、Co、Cr、Ti、VまたはMn等
が用いられる。ここで、前記p型InPバッファ層54
からn型InP層53へのリークパスの発生を確実に防
止するよう、前記高抵抗層65の側面が前記活性層56
の側面の少なくとも一部に重なるよう接することが望ま
しい。該高抵抗層65を設けることによって、p型In
Pバッファ層54からn型InP層53へ流れるリーク
パスを効果的に遮断することができるので、従来例で問
題とされていた漏れ電流を大幅に低減することができ
る。As impurities to be doped in the high resistance layer 65, Fe, Co, Cr, Ti, V, Mn or the like is used. Here, the p-type InP buffer layer 54
The side surface of the high resistance layer 65 is formed on the side surface of the active layer 56 so as to surely prevent a leak path from the n-type InP layer 53 to the n-type InP layer 53.
It is desirable to make contact with at least a part of the side surface of the. By providing the high resistance layer 65, p-type In
Since the leak path flowing from the P buffer layer 54 to the n-type InP layer 53 can be effectively blocked, the leak current, which has been a problem in the conventional example, can be significantly reduced.
【0059】次に、本実施例の半導体装置の製造方法を
図14〜図20に基づいて説明する。まず、図14に示
すように、p型InP基板51上に、p型InPバッフ
ァ層52、チューニング層58、n型InPスペーサ層
57、活性層56、p型InPバッファ層54b、回折
格子層55およびp型InPバッファ層(回折格子埋め
込み層)54cをエピタキシャル成長にて順次形成す
る。Next, a method of manufacturing the semiconductor device of this embodiment will be described with reference to FIGS. First, as shown in FIG. 14, on a p-type InP substrate 51, a p-type InP buffer layer 52, a tuning layer 58, an n-type InP spacer layer 57, an active layer 56, a p-type InP buffer layer 54b, and a diffraction grating layer 55. Then, a p-type InP buffer layer (diffraction grating buried layer) 54c is sequentially formed by epitaxial growth.
【0060】ここで、図15に示すように、p型InP
バッファ層54cの上面の一部に例えばSiN、SiO
N等を用いて帯状の絶縁マスク59eを形成する。そし
て、該絶縁マスク59eの形成されない領域をp型In
Pバッファ層52の上層部までエッチング除去し、絶縁
マスク59eの下方向に隆起(メサ)形状のリッジ導波
路M3を形成する。Here, as shown in FIG. 15, p-type InP
For example, SiN or SiO may be formed on a part of the upper surface of the buffer layer 54c.
A strip-shaped insulating mask 59e is formed using N or the like. Then, the region where the insulating mask 59e is not formed is p-type In.
The upper layer portion of the P buffer layer 52 is removed by etching, and a ridge waveguide M3 having a raised (mesa) shape is formed below the insulating mask 59e.
【0061】次に、図16に示すように先に形成したリ
ッジの両脇に絶縁マスク59eをマスクとして、n型I
nP層53および高抵抗層65を選択的に順次成長させ
る。該高抵抗層65は、InP中に、例えばFe、C
o、Cr、Ti、VまたはMn等の不純物をドーピング
して形成する。ここで、前記n型InP層53および前
記高抵抗層65の層厚は、リッジ導波路M3の側面で該
高抵抗層65の側面が活性層56の側面の少なくとも一
部にでも接する程度に設定する。Next, as shown in FIG. 16, the n-type I is formed on both sides of the previously formed ridge using the insulating masks 59e as masks.
The nP layer 53 and the high resistance layer 65 are selectively grown sequentially. The high resistance layer 65 is made of, for example, Fe, C in InP.
It is formed by doping impurities such as o, Cr, Ti, V or Mn. Here, the layer thicknesses of the n-type InP layer 53 and the high resistance layer 65 are set such that the side surface of the ridge waveguide M3 is in contact with at least a part of the side surface of the active layer 56. To do.
【0062】そして、図17に示すように絶縁マスク5
9eを除去した後、p型InPバッファ層54d、p型
InPコンタクト層63を成長する。次に、図18に示
すように、p型InPバッファ層54dおよびp型In
Pコンタクト層63のうち前記リッジ導波路M3から離
間した領域の一部をエッチング除去して開口部66を形
成し、前記高抵抗層65の上面の一部を上方に露出させ
る。Then, as shown in FIG. 17, the insulating mask 5
After removing 9e, a p-type InP buffer layer 54d and a p-type InP contact layer 63 are grown. Next, as shown in FIG. 18, the p-type InP buffer layer 54d and the p-type In are formed.
A part of the region of the P contact layer 63 which is separated from the ridge waveguide M3 is removed by etching to form an opening 66, and a part of the upper surface of the high resistance layer 65 is exposed upward.
【0063】次に、図19に示すように、前記リッジ導
波路M3の直上部および前記開口部66の底部以外の全
上面に、例えばSiOからなる電流狭窄用の絶縁マスク
59fを形成する。そして、図20に示すように、先に
形成した開口部66に形成された絶縁マスク59fをマ
スクにして高抵抗層65の一部をエッチング除去し、n
型InP層53の上面の一部を上方に露出させる。Then, as shown in FIG. 19, an insulating mask 59f for current confinement made of, for example, SiO is formed on the entire upper surface except for the upper portion of the ridge waveguide M3 and the bottom portion of the opening 66. Then, as shown in FIG. 20, a part of the high resistance layer 65 is removed by etching using the insulating mask 59f formed in the opening 66 formed previously as a mask, and n
A part of the upper surface of the type InP layer 53 is exposed upward.
【0064】最後に、活性層56に電流注入するための
p側電極60、チューニング層58に電流注入するため
のp側電極62、およびn側電極61を形成して、図1
3に示す波長可変半導体レーザ装置が完成する。Finally, a p-side electrode 60 for injecting a current into the active layer 56, a p-side electrode 62 for injecting a current into the tuning layer 58, and an n-side electrode 61 are formed, as shown in FIG.
The wavelength tunable semiconductor laser device shown in 3 is completed.
【0065】[第3の実施例]図21は本発明の第3の
実施例の半導体装置としての半導体レーザ装置を示す図
である。なお、図21中の符号のうち第2の実施例と同
様の部分または領域については同一の符号を付してい
る。本実施例は、第2の実施例と同様の波長可変型のも
のであるが、第2の実施例において高抵抗層65を不純
物ドープにて形成しInP半絶縁性結晶構造としていた
のに対し、本実施例では、イオン注入によって高抵抗層
67(漏れ電流防止手段)を形成している点で第2の実
施例と異なる。該高抵抗層67に注入されるイオンとし
てはプロトン、B(ホウ素)等が用いられる。そして、
該高抵抗層67は、前記p型InPバッファ層54から
n型InP層53へのリークパスを確実に防止するよ
う、活性層56とその側面同士が接していることが望ま
しい。ここで、該高抵抗層67に、前述のようにプロト
ンを用いることで、他のイオンを用いる場合に比べて深
い位置まで注入を行うことができ、高抵抗層の形成位置
を深く設定できることから、高抵抗層67の端部を活性
層56の端部に重ねる作業を容易に行うことができる。
また、該高抵抗層67にホウ素を用いることで、熱的に
安定な高抵抗層を得ることができ、熱処理が施されても
性能が劣化しない半導体装置を得ることができる。該高
抵抗層67を設けることによって、p型InPバッファ
層54からn型InP層53へ流れるリークパスを効果
的に遮断することができるので、第2の実施例と同様、
従来例で問題とされていた漏れ電流を大幅に低減するこ
とができる。[Third Embodiment] FIG. 21 is a diagram showing a semiconductor laser device as a semiconductor device according to a third embodiment of the present invention. Note that, of the reference numerals in FIG. 21, the same portions or regions as those in the second embodiment are designated by the same reference numerals. This embodiment is of the same wavelength tunable type as the second embodiment, but the high resistance layer 65 is formed by impurity doping in the second embodiment to have an InP semi-insulating crystal structure. The present embodiment is different from the second embodiment in that the high resistance layer 67 (leakage current preventing means) is formed by ion implantation. Protons, B (boron) or the like are used as the ions implanted in the high resistance layer 67. And
It is desirable that the high resistance layer 67 be in contact with the active layer 56 and its side surfaces so as to surely prevent a leak path from the p-type InP buffer layer 54 to the n-type InP layer 53. Here, as described above, by using protons in the high resistance layer 67, it is possible to perform implantation to a deeper position than in the case of using other ions, and it is possible to set the formation position of the high resistance layer deep. The work of overlapping the end of the high resistance layer 67 with the end of the active layer 56 can be easily performed.
Further, by using boron for the high resistance layer 67, a thermally stable high resistance layer can be obtained, and a semiconductor device whose performance does not deteriorate even when subjected to heat treatment can be obtained. By providing the high resistance layer 67, it is possible to effectively block the leak path flowing from the p-type InP buffer layer 54 to the n-type InP layer 53. Therefore, similar to the second embodiment.
The leakage current, which has been a problem in the conventional example, can be significantly reduced.
【0066】次に、本実施例の製造方法を説明する。ま
ず、図14に示した第2の実施例と同様、p型InP基
板51上にp型InPバッファ層52、チューニング層
58、n型InPスペーサ層57、活性層56、p型I
nPバッファ層54b、回折格子層55およびp型In
Pバッファ層(回折格子埋め込み層)54cをエピタキ
シャル成長にて形成する。Next, the manufacturing method of this embodiment will be described. First, similar to the second embodiment shown in FIG. 14, a p-type InP buffer layer 52, a tuning layer 58, an n-type InP spacer layer 57, an active layer 56 and a p-type I are formed on a p-type InP substrate 51.
nP buffer layer 54b, diffraction grating layer 55, and p-type In
The P buffer layer (diffraction grating embedded layer) 54c is formed by epitaxial growth.
【0067】ここで、図15に示した第2の実施例と同
様、p型InPバッファ層54cの上面の一部に例えば
SiN、SiON等を用いて帯状の絶縁マスク59eを
形成する。そして、該絶縁マスク59eの形成されない
領域をp型InPバッファ層52の上層部までエッチン
グ除去し、絶縁マスク59eの下方向に隆起(メサ)形
状のリッジ導波路M3を形成する。Here, similarly to the second embodiment shown in FIG. 15, a strip-shaped insulating mask 59e is formed on a part of the upper surface of the p-type InP buffer layer 54c by using, for example, SiN or SiON. Then, the region where the insulating mask 59e is not formed is removed by etching to the upper layer portion of the p-type InP buffer layer 52, and a ridge waveguide M3 having a raised (mesa) shape is formed in the lower direction of the insulating mask 59e.
【0068】次に、図22に示すように、先に形成した
リッジ導波路M3の両脇に、絶縁マスク59eをマスク
としてn型InP層53を選択的に埋め込み成長する。
そして、図23の如く、該n型InP層53の表面に、
プロトンのイオン注入により高抵抗層67を形成する。
このとき、絶縁マスク59eをリッジ導波路M3の上面
に備えたままイオン注入するので、リッジ導波路M3の
内部にはイオン注入されず、n型InP層53の表面の
みにイオン注入による高抵抗層67が形成される。ま
た、注入深さは、注入領域がリッジ導波路M3の側面で
活性層56に重なって接するような深さとする。Next, as shown in FIG. 22, the n-type InP layer 53 is selectively embedded and grown on both sides of the ridge waveguide M3 previously formed using the insulating mask 59e as a mask.
Then, as shown in FIG. 23, on the surface of the n-type InP layer 53,
The high resistance layer 67 is formed by ion implantation of protons.
At this time, the insulating mask 59e is ion-implanted with the insulating mask 59e provided on the upper surface of the ridge waveguide M3. 67 is formed. Further, the implantation depth is set such that the implantation region overlaps and contacts the active layer 56 on the side surface of the ridge waveguide M3.
【0069】そして、絶縁マスク59eを除去した後、
第2の実施例と同様にして、p型InPバッファ層54
d、p型InPコンタクト層63、開口部66、p側電
極60、p側電極62およびn側電極61を形成して、
図21に示す波長可変半導体レーザ装置が完成する。After removing the insulating mask 59e,
Similar to the second embodiment, the p-type InP buffer layer 54
By forming the d, p-type InP contact layer 63, the opening 66, the p-side electrode 60, the p-side electrode 62 and the n-side electrode 61,
The wavelength tunable semiconductor laser device shown in FIG. 21 is completed.
【0070】[第4の実施例]第2および第3の実施例
において、高抵抗層65の側面と活性層56の側面とが
互いに接しているよう構成していたが、製造技術上の困
難さが原因で該高抵抗層65,67の側面と活性層56
の側面とを接することができなくても、該高抵抗層6
5,67を設けることによって、リークパスはp型In
Pバッファ層54とn型InP層53が直接に接してい
るリッジ側面の微少な領域に限定されるので、該高抵抗
層65,67が設けられていない場合と比較すると、リ
ーク電流は大幅に低減される。[Fourth Embodiment] In the second and third embodiments, the side surface of the high resistance layer 65 and the side surface of the active layer 56 are in contact with each other, but this is difficult in terms of manufacturing technology. Side surfaces of the high resistance layers 65 and 67 and the active layer 56 due to
Even if it is not possible to contact the side surface of the high resistance layer 6
By providing 5, 67, the leak path is p-type In
Since the P buffer layer 54 and the n-type InP layer 53 are limited to a small region on the side surface of the ridge in which the P type buffer layer 54 and the n-type InP layer 53 are in direct contact with each other, the leakage current is significantly larger than that when the high resistance layers 65 and 67 are not provided. Will be reduced.
【0071】[第5の実施例]上記各実施例では、基板
を第1の導電型(p型)に設定し、基板と第2の半導体
層(スペーサ層)との間にチューニング層を設けて二重
導波路構造を形成していたが、チューニング層を省略し
て単純な上面電極取り出しの単導波路構造を形成するも
のであってもよい。[Fifth Embodiment] In each of the above embodiments, the substrate is set to the first conductivity type (p type), and the tuning layer is provided between the substrate and the second semiconductor layer (spacer layer). Although the double waveguide structure is formed by using the above, the tuning layer may be omitted to form a simple single waveguide structure with the upper electrode taken out.
【0072】[第6の実施例]第2および第3の実施例
では、高抵抗層を第3の半導体層(n型InP層すなわ
ち埋め込み層)の上面にのみ形成していたが、図24の
如く、第3の半導体層の下面にも併せて高抵抗層69を
形成し、基板側の電極との間の漏れ電流を防止してもよ
い。また、第1の実施例において、第3の半導体層の下
面に高抵抗層を形成してもよい(図示せず)。ここで、
前記高抵抗層69は、第2の実施例と同様にして不純物
ドープにて半絶縁性結晶構造に形成してもよいし、ある
いは第3の実施例と同様にしてホウ素、プロトン等の所
定のイオンを注入して形成してもよい。[Sixth Embodiment] In the second and third embodiments, the high resistance layer is formed only on the upper surface of the third semiconductor layer (n-type InP layer, that is, the buried layer). As described above, the high resistance layer 69 may be formed also on the lower surface of the third semiconductor layer to prevent leakage current between the third semiconductor layer and the electrode on the substrate side. Further, in the first embodiment, a high resistance layer may be formed on the lower surface of the third semiconductor layer (not shown). here,
The high resistance layer 69 may be formed into a semi-insulating crystal structure by impurity doping in the same manner as in the second embodiment, or a predetermined boron, proton, etc. may be formed in the same manner as in the third embodiment. It may be formed by implanting ions.
【0073】[0073]
【発明の効果】本発明請求項1によると、漏れ電流防止
手段を設けているので、活性層を駆動する際、第1の半
導体層と第3の半導体層との間に漏れ電流が発生するの
を防止でき、電流を効率よく流すことができるという効
果がある。According to claim 1 of the present invention, since the leakage current preventing means is provided, a leakage current is generated between the first semiconductor layer and the third semiconductor layer when driving the active layer. There is an effect that it is possible to prevent the electric current from flowing and the electric current can efficiently flow.
【0074】本発明請求項2によると、サイリスタ構造
の電流狭窄部を設けているので、活性層を駆動する際、
第1の半導体層と第3の半導体層との間に漏れ電流が発
生するのを防止でき、電流を効率よく流すことができる
という効果がある。According to the second aspect of the present invention, since the current constriction portion having the thyristor structure is provided, when the active layer is driven,
The leakage current can be prevented from occurring between the first semiconductor layer and the third semiconductor layer, and the current can be efficiently flowed.
【0075】本発明請求項3および請求項4によると、
寄生容量防止溝を設けているので、活性層を駆動する
際、第1の半導体層と第3の半導体層との間に発生する
寄生容量を防止でき、この部分での漏れ電流を防止する
ことで、電流を効率よく流すことができるという効果が
ある。According to claims 3 and 4 of the present invention,
Since the parasitic capacitance prevention groove is provided, it is possible to prevent the parasitic capacitance generated between the first semiconductor layer and the third semiconductor layer when driving the active layer, and to prevent the leakage current in this portion. Therefore, there is an effect that the current can be efficiently passed.
【0076】本発明請求項5によると、二重導波路構造
を形成しているので、チューニング層へ電流を注入する
ことにより大きな波長可変幅が得られる。かかる二重導
波路構造では、特に第1の電極および第2の電極の両方
をデバイスの上側に引き出す必要があり、この場合に漏
れ電流を防止して電流を活性層に効率よく流すことがで
きるという効果がある。According to the fifth aspect of the present invention, since the double waveguide structure is formed, a large wavelength tunable width can be obtained by injecting a current into the tuning layer. In such a double waveguide structure, in particular, both the first electrode and the second electrode need to be drawn to the upper side of the device, and in this case, leakage current can be prevented and current can be efficiently passed through the active layer. There is an effect.
【0077】本発明請求項6によると、第2の半導体層
と第3の半導体層を同一材料を用いて連続形成している
ので、両半導体層を同時に形成することができ、従来例
に比べて積層工程に要する時間を短縮できるという効果
がある。According to claim 6 of the present invention, since the second semiconductor layer and the third semiconductor layer are continuously formed by using the same material, both semiconductor layers can be simultaneously formed, and compared with the conventional example. As a result, the time required for the laminating process can be shortened.
【0078】本発明請求項7および請求項11による
と、中間部において電流狭窄部にて第2の半導体層を第
3の半導体層から孤立させて漏れ電流を防止しながら、
前端部および後端部のうち少なくとも一方において第2
の半導体層と第2の電極とを第3の半導体層を介して電
気的に接続しているので、発光効率を向上させつつ、同
時に第2の半導体層への電気的配線を第2の電極を通じ
てデバイスの上面側に引き出すことができるという効果
がある。According to claims 7 and 11 of the present invention, while preventing the leakage current by isolating the second semiconductor layer from the third semiconductor layer in the current confinement portion in the intermediate portion,
Second at least one of the front end and the rear end
Since the semiconductor layer and the second electrode are electrically connected via the third semiconductor layer, the luminous efficiency is improved and at the same time, the electrical wiring to the second semiconductor layer is connected to the second electrode. There is an effect that it can be pulled out to the upper surface side of the device through.
【0079】本発明請求項8によると、中間部において
寄生容量防止溝にて第2の半導体層を第3の半導体層か
ら孤立させて漏れ電流を防止しながら、前端部および後
端部のうち少なくとも一方において第2の半導体層と第
2の電極とを第3の半導体層を介して電気的に接続して
いるので、発光効率を向上させつつ、同時に第2の半導
体層への電気的配線を第2の電極を通じてデバイスの上
面側に引き出すことができるという効果がある。According to claim 8 of the present invention, the second semiconductor layer is isolated from the third semiconductor layer by the parasitic capacitance preventing groove in the intermediate portion to prevent leakage current, and at the same time, in the front end portion and the rear end portion, Since the second semiconductor layer and the second electrode are electrically connected via the third semiconductor layer on at least one side, the luminous efficiency is improved and at the same time, the electrical wiring to the second semiconductor layer is achieved. Can be drawn out to the upper surface side of the device through the second electrode.
【0080】本発明請求項9および請求項10による
と、寄生容量防止溝を形成する領域についてチューニン
グ層を第3の半導体層から完全に孤立させることがで
き、二重導波路構造とされたうちのいずれの導波路につ
いても漏れ電流を低減できる。特に請求項10では、基
板と第3の半導体層との接合面積を寄生容量防止溝にて
大幅に縮小できるため、基板と第3の半導体層との間の
漏れ電流を大幅に低減できるという効果がある。According to the ninth and tenth aspects of the present invention, the tuning layer can be completely isolated from the third semiconductor layer in the region where the parasitic capacitance preventing groove is formed. The leakage current can be reduced in any of the waveguides. In particular, according to claim 10, the junction area between the substrate and the third semiconductor layer can be significantly reduced by the parasitic capacitance preventing groove, so that the leakage current between the substrate and the third semiconductor layer can be significantly reduced. There is.
【0081】本発明請求項12によると、漏れ電流防止
手段としての高抵抗層の端部を活性層の端部に可及的に
近接させているので、活性層を駆動する際、第1の半導
体層と第3の半導体層との接触面積を低減でき、漏れ電
流を大幅に低減できる。特に、高抵抗層の端部を活性層
の端部に重ねて密着させれば、活性層を駆動する際、第
1の半導体層と第3の半導体層との接触を確実に防止で
き、ここに漏れ電流が発生するのを確実に防止できると
いう効果がある。According to the twelfth aspect of the present invention, since the end portion of the high resistance layer as the leakage current preventing means is brought as close as possible to the end portion of the active layer, it is possible to reduce the first portion when driving the active layer. The contact area between the semiconductor layer and the third semiconductor layer can be reduced, and the leakage current can be significantly reduced. In particular, if the end of the high resistance layer is overlaid on and closely adhered to the end of the active layer, contact between the first semiconductor layer and the third semiconductor layer can be reliably prevented when the active layer is driven. There is an effect that the leakage current can be surely prevented from occurring.
【0082】本発明請求項13によると、二重導波路構
造において、第3の半導体層の下面にも高抵抗層を設け
ているので、基板と第3の半導体層との間の漏れ電流を
高抵抗層にて低減できるという効果がある。According to claim 13 of the present invention, in the double waveguide structure, since the high resistance layer is provided also on the lower surface of the third semiconductor layer, the leakage current between the substrate and the third semiconductor layer is reduced. There is an effect that it can be reduced in the high resistance layer.
【0083】本発明請求項14によると、二重導波路構
造において第1の電極および第2の電極の両方をデバイ
スの上側に引き出す必要がある場合に、第1の半導体層
と第3の半導体層との間に電流狭窄部および寄生容量防
止溝を配置することができ、第1の半導体層と第3の半
導体層との間に発生する漏れ電流を防止できるという効
果がある。According to claim 14 of the present invention, in the double waveguide structure, when both the first electrode and the second electrode need to be drawn out to the upper side of the device, the first semiconductor layer and the third semiconductor layer are formed. A current constriction portion and a parasitic capacitance prevention groove can be arranged between the first semiconductor layer and the third semiconductor layer, and a leakage current generated between the first semiconductor layer and the third semiconductor layer can be prevented.
【0084】本発明請求項15によると、第2の半導体
層と第3の半導体層を同時に形成するので、従来例に比
べて積層工程に要する時間を短縮できるという効果があ
る。According to the fifteenth aspect of the present invention, since the second semiconductor layer and the third semiconductor layer are formed at the same time, there is an effect that the time required for the laminating step can be shortened as compared with the conventional example.
【0085】本発明請求項16によると、第3の半導体
層をリッジ導波路の側方に埋め込み形成する場合、第3
の半導体層の上面に高抵抗層を形成した後、リッジ導波
路および高抵抗層の上面に第1の半導体層を形成するの
で、第3の半導体層を第1の半導体層から孤立させるこ
とができ、この間の漏れ電流の発生を防止できるという
効果がある。According to the sixteenth aspect of the present invention, when the third semiconductor layer is embedded and formed laterally of the ridge waveguide,
After the high resistance layer is formed on the upper surface of the semiconductor layer, the first semiconductor layer is formed on the upper surfaces of the ridge waveguide and the high resistance layer, so that the third semiconductor layer can be isolated from the first semiconductor layer. Therefore, there is an effect that leakage current can be prevented from occurring during this period.
【0086】本発明請求項17によると、高抵抗層の形
成を、第3の半導体層の上面に不純物をドープして行う
ので、第3の半導体層および高抵抗層を連続形成によっ
て積層でき、積層作業が容易になるという効果がある。According to the seventeenth aspect of the present invention, since the high resistance layer is formed by doping the upper surface of the third semiconductor layer with impurities, the third semiconductor layer and the high resistance layer can be laminated by continuous formation, This has the effect of facilitating the laminating work.
【0087】本発明請求項18によると、第3の半導体
層の形成後、その上面に所定のイオンを注入して高抵抗
層を形成するので、第3の半導体層および高抵抗層を連
続形成によって積層でき、積層作業が容易になる。ま
た、第3の半導体層の形成工程後に高抵抗層の厚さを自
由に設定できるので、高抵抗層の端部を活性層の端部に
重ねたり、高抵抗層の端部を活性層の端部に可及的に近
接させる場合、第3の半導体層の形成厚みに誤差が生じ
ても、後にイオン注入深さを調整することで、高抵抗層
の形成位置を所望の通り設定できるという効果がある。According to the eighteenth aspect of the present invention, since the high resistance layer is formed by implanting predetermined ions into the upper surface of the third semiconductor layer after the formation of the third semiconductor layer, the third semiconductor layer and the high resistance layer are continuously formed. Can be stacked, and the stacking work becomes easy. Moreover, since the thickness of the high resistance layer can be freely set after the step of forming the third semiconductor layer, the end of the high resistance layer is overlapped with the end of the active layer, or the end of the high resistance layer is formed with the active layer. When the edge portion is made as close as possible, even if an error occurs in the formation thickness of the third semiconductor layer, the formation position of the high resistance layer can be set as desired by adjusting the ion implantation depth later. effective.
【0088】本発明請求項19によると、注入するイオ
ンとしてプロトンを用いるので、他のイオンを用いる場
合に比べて深い位置まで注入を行うことができ、高抵抗
層の形成位置を深く設定でき、高抵抗層の端部を活性層
の端部に重ねたり、高抵抗層の端部を活性層の端部に可
及的に近接させたりする作業を確実に行うことができる
という効果がある。According to the nineteenth aspect of the present invention, since protons are used as the ions to be implanted, it is possible to perform the implantation to a deeper position as compared with the case of using other ions, and it is possible to set the formation position of the high resistance layer deeply. There is an effect that the end of the high resistance layer can be overlapped with the end of the active layer, or the end of the high resistance layer can be brought as close as possible to the end of the active layer.
【0089】本発明請求項20によると、注入するイオ
ンとしてホウ素を用いるので、熱的に安定な高抵抗層を
得ることができ、熱処理が施されても性能が劣化しない
半導体装置を得ることができるという効果がある。According to the twentieth aspect of the present invention, since boron is used as the ions to be implanted, a thermally stable high resistance layer can be obtained, and a semiconductor device whose performance does not deteriorate even when subjected to heat treatment can be obtained. The effect is that you can do it.
【図1】本発明第1の実施例の半導体装置の製造工程を
示す一部断面斜視図である。FIG. 1 is a partial cross-sectional perspective view showing a manufacturing process of a semiconductor device according to a first embodiment of the present invention.
【図2】本発明第1の実施例の半導体装置を示す斜視図
である。FIG. 2 is a perspective view showing a semiconductor device according to a first embodiment of the present invention.
【図3】本発明第1の実施例の半導体装置を示す正面図
である。FIG. 3 is a front view showing the semiconductor device according to the first embodiment of the present invention.
【図4】本発明第1の実施例の半導体装置の製造工程を
示す斜視図である。FIG. 4 is a perspective view showing a manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図5】本発明第1の実施例の半導体装置の製造工程を
示す斜視図である。FIG. 5 is a perspective view showing a manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図6】本発明第1の実施例の半導体装置の製造工程を
示す斜視図である。FIG. 6 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図7】本発明第1の実施例の半導体装置の製造工程を
示す斜視図である。FIG. 7 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図8】本発明第1の実施例の半導体装置の製造工程を
示す斜視図である。FIG. 8 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図9】本発明第1の実施例の半導体装置の製造工程を
示す正面図である。FIG. 9 is a front view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図10】本発明第1の実施例の半導体装置の製造工程
を示す斜視図である。FIG. 10 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図11】本発明第1の実施例の半導体装置の製造工程
を示す斜視図である。FIG. 11 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図12】本発明第1の実施例の半導体装置の製造工程
を示す斜視図である。FIG. 12 is a perspective view showing the manufacturing process of the semiconductor device according to the first embodiment of the present invention.
【図13】本発明第2の実施例の半導体装置を示す断面
図である。FIG. 13 is a sectional view showing a semiconductor device according to a second embodiment of the present invention.
【図14】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 14 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図15】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 15 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図16】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 16 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図17】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 17 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図18】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 18 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図19】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 19 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図20】本発明第2の実施例の半導体装置の製造工程
を示す断面図である。FIG. 20 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the second embodiment of the present invention.
【図21】本発明第3の実施例の半導体装置を示す断面
図である。FIG. 21 is a sectional view showing a semiconductor device according to a third embodiment of the present invention.
【図22】本発明第3の実施例の半導体装置の製造工程
を示す断面図である。FIG. 22 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
【図23】本発明第3の実施例の半導体装置の製造工程
を示す断面図である。FIG. 23 is a cross-sectional view showing the manufacturing process of the semiconductor device according to the third embodiment of the present invention.
【図24】本発明第6の実施例の半導体装置を示す断面
図である。FIG. 24 is a sectional view showing a semiconductor device according to a sixth embodiment of the present invention.
【図25】従来例の半導体装置を示す断面図である。FIG. 25 is a cross-sectional view showing a conventional semiconductor device.
31 基板 33 電流狭窄部 34a 第1の半導体層 36 活性層 37 第2の半導体層 37a 第3の半導体層 38 チューニング層 40 第1の電極 41 第2の電極 42 第3の電極 45 寄生容量防止溝 51 基板 53 第3の半導体層 54a 第1の半導体層 56 活性層 57 第2の半導体層 58 チューニング層 60 第1の電極 61 第2の電極 62 第3の電極 66 高抵抗層 67 高抵抗層 P1 前端部 P2 後端部 P3 中間部 M1 リッジ導波路 M3 リッジ導波路 31 substrate 33 current constriction portion 34a first semiconductor layer 36 active layer 37 second semiconductor layer 37a third semiconductor layer 38 tuning layer 40 first electrode 41 second electrode 42 third electrode 45 parasitic capacitance prevention groove 51 substrate 53 third semiconductor layer 54a first semiconductor layer 56 active layer 57 second semiconductor layer 58 tuning layer 60 first electrode 61 second electrode 62 third electrode 66 high resistance layer 67 high resistance layer P1 Front end P2 Rear end P3 Middle part M1 ridge waveguide M3 ridge waveguide
Claims (20)
活性層を有するリッジ導波路と、 該リッジ導波路内で前記活性層の上側に形成される第1
の導電型の第1の半導体層と、 前記リッジ導波路内で前記活性層の下側に形成される第
2の導電型の第2の半導体層と、 前記リッジ導波路の側方に隣接されて前記第2の半導体
層に接続する第2の導電型の第3の半導体層と、 前記第1の半導体層の上側に形成される第1の電極と、 前記第3の半導体層の上側に形成される第2の電極とを
備え、 前記第1の半導体層と前記第3の半導体層との間で漏れ
電流を防止する漏れ電流防止手段が設けられる半導体装
置。1. A ridge waveguide formed on a part of an upper surface of a substrate and having an active layer in an intermediate layer region, and a first ridge waveguide formed above the active layer in the ridge waveguide.
A first semiconductor layer of a conductivity type, a second semiconductor layer of a second conductivity type formed below the active layer in the ridge waveguide, and adjacent to a side of the ridge waveguide. A third semiconductor layer of the second conductivity type connected to the second semiconductor layer, a first electrode formed on the upper side of the first semiconductor layer, and an upper side of the third semiconductor layer on the upper side of the third semiconductor layer. A semiconductor device comprising: a second electrode formed; and a leakage current prevention unit for preventing a leakage current between the first semiconductor layer and the third semiconductor layer.
活性層を有するリッジ導波路と、 該リッジ導波路内で前記活性層の上側に形成される第1
の導電型の第1の半導体層と、 前記リッジ導波路内で前記活性層の下側に形成される第
2の導電型の第2の半導体層と、 前記リッジ導波路の側方に隣接されて前記第2の半導体
層に接続する第2の導電型の第3の半導体層と、 前記第1の半導体層の上側に形成される第1の電極と、 前記第3の半導体層の上側に形成される第2の電極とを
備え、 前記第1の半導体層と前記第3の半導体層との間の一部
にサイリスタ構造の電流狭窄部が設けられる半導体装
置。2. A ridge waveguide formed on a part of an upper surface of a substrate and having an active layer in an intermediate layer region, and a first ridge waveguide formed above the active layer in the ridge waveguide.
A first semiconductor layer of conductivity type, a second semiconductor layer of a second conductivity type formed below the active layer in the ridge waveguide, and adjacent to the side of the ridge waveguide. A third semiconductor layer of a second conductivity type connected to the second semiconductor layer, a first electrode formed on the upper side of the first semiconductor layer, and an upper side of the third semiconductor layer on the upper side of the third semiconductor layer. A semiconductor device comprising a formed second electrode, wherein a current constriction portion having a thyristor structure is provided in a part between the first semiconductor layer and the third semiconductor layer.
活性層を有するリッジ導波路と、 該リッジ導波路内で前記活性層の上側に形成される第1
の導電型の第1の半導体層と、 前記リッジ導波路内で前記活性層の下側に形成される第
2の導電型の第2の半導体層と、 前記リッジ導波路の側方に隣接されて前記第2の半導体
層に接続する第2の導電型の第3の半導体層と、 前記第1の半導体層の上側に形成される第1の電極と、 前記第3の半導体層の上側に形成される第2の電極とを
備え、 前記第1の半導体層と前記第3の半導体層との間の一部
に、寄生容量を防止するための寄生容量防止溝が形成さ
れる半導体装置。3. A ridge waveguide formed on a part of an upper surface of a substrate and having an active layer in an intermediate layer region, and a first ridge waveguide formed above the active layer in the ridge waveguide.
A first semiconductor layer of a conductivity type, a second semiconductor layer of a second conductivity type formed below the active layer in the ridge waveguide, and adjacent to a side of the ridge waveguide. A third semiconductor layer of the second conductivity type connected to the second semiconductor layer, a first electrode formed on the upper side of the first semiconductor layer, and an upper side of the third semiconductor layer on the upper side of the third semiconductor layer. A semiconductor device comprising a formed second electrode, wherein a parasitic capacitance prevention groove for preventing parasitic capacitance is formed in a part between the first semiconductor layer and the third semiconductor layer.
するための寄生容量防止溝が形成される、請求項2記載
の半導体装置。4. The semiconductor device according to claim 2, wherein a parasitic capacitance preventing groove for preventing parasitic capacitance is formed on a side of the current constriction portion.
の間にチューニング層が設けられ、 前記基板の下面に第3の電極が形成される、請求項1、
請求項2、請求項3または請求項4記載の半導体装置。5. The substrate is set to a first conductivity type, a tuning layer is provided between the substrate and the second semiconductor layer in the ridge waveguide, and a third layer is provided on a lower surface of the substrate. An electrode is formed, claim 1,
The semiconductor device according to claim 2, claim 3, or claim 4.
層は同一材料を用いて連続形成される、請求項1、請求
項2、請求項3または請求項4記載の半導体装置。6. The semiconductor device according to claim 1, claim 2, claim 3, or claim 4, wherein the second semiconductor layer and the third semiconductor layer are continuously formed using the same material.
方において前記第2の半導体層と前記第3の半導体層と
が連続され、 少なくとも前記前端部および前記後端部に挟まれる中間
部において前記第2の半導体層と第3の半導体層との間
に前記電流狭窄部が形成される、請求項2または請求項
4記載の半導体装置。7. The second semiconductor layer and the third semiconductor layer are continuous in at least one of a front end portion and a rear end portion, and at least an intermediate portion sandwiched between the front end portion and the rear end portion is formed. The semiconductor device according to claim 2, wherein the current constriction portion is formed between the second semiconductor layer and the third semiconductor layer.
方において前記第2の半導体層と前記第3の半導体層と
が連続され、 少なくとも前記前端部および前記後端部に挟まれる中間
部において前記第2の半導体層と第3の半導体層との間
に前記寄生容量防止溝が形成される、請求項3または請
求項4記載の半導体装置。8. The second semiconductor layer and the third semiconductor layer are continuous at at least one of a front end portion and a rear end portion, and at least an intermediate portion sandwiched between the front end portion and the rear end portion. The semiconductor device according to claim 3, wherein the parasitic capacitance prevention groove is formed between the second semiconductor layer and the third semiconductor layer.
層および第3の半導体層の底面より深く形成される、請
求項5記載の半導体装置。9. The semiconductor device according to claim 5, wherein the parasitic capacitance prevention groove is formed deeper than bottom surfaces of the tuning layer and the third semiconductor layer.
る深さに形成される、請求項5記載の半導体装置。10. The semiconductor device according to claim 5, wherein the parasitic capacitance prevention groove is formed to a depth reaching the substrate.
あって、 前端部、後端部および中間部を備え、 前記中間部は、 基板の上面の一部に形成され中間層域に活性層を有する
リッジ導波路と、 該リッジ導波路内で前記活性層の上側に形成される第1
の導電型の第1の半導体層と、 前記リッジ導波路内で前記活性層の下側に形成される第
2の導電型の第2の半導体層と、 前記リッジ導波路の側方に隣接されて前記第2の半導体
層に接続する第2の導電型の第3の半導体層と、 前記第1の半導体層の上側に形成される第1の電極と、 前記第3の半導体層の上側に形成される第2の電極とを
備え、 前記第1の半導体層と前記第3の半導体層との間の一部
にサイリスタ構造の電流狭窄部が設けられ、 前記電流狭窄部の側方に寄生容量を防止するための寄生
容量防止溝が形成され、 前記前端部および前記後端部のうち少なくとも一方にお
いて前記第2の半導体層と前記第3の半導体層とが連続
され、 少なくとも前記前端部および前記後端部に挟まれる中間
部において前記第2の半導体層と第3の半導体層との間
に前記電流狭窄部が形成される半導体装置。11. A semiconductor device as a wavelength tunable laser, comprising a front end portion, a rear end portion and an intermediate portion, the intermediate portion being formed on a part of an upper surface of a substrate and having an active layer in an intermediate layer region. A ridge waveguide, and a first layer formed on the active layer in the ridge waveguide
A first semiconductor layer of conductivity type, a second semiconductor layer of a second conductivity type formed below the active layer in the ridge waveguide, and adjacent to the side of the ridge waveguide. A third semiconductor layer of a second conductivity type connected to the second semiconductor layer, a first electrode formed on the upper side of the first semiconductor layer, and an upper side of the third semiconductor layer on the upper side of the third semiconductor layer. A second electrode to be formed, a current constriction portion having a thyristor structure is provided in a part between the first semiconductor layer and the third semiconductor layer, and the current confinement portion is parasitic to a side of the current confinement portion. A parasitic capacitance preventing groove for preventing capacitance is formed, and the second semiconductor layer and the third semiconductor layer are continuous in at least one of the front end portion and the rear end portion, and at least the front end portion and The second semiconductor layer and the third semiconductor layer are formed in an intermediate portion sandwiched by the rear end portions. The semiconductor device wherein the current confinement portion is formed between the semiconductor layer.
半導体層の上面に形成される高抵抗層で構成され、 該高抵抗層の前記リッジ導波路に接する端部は前記活性
層の端部に可及的に近接する、請求項1記載の半導体装
置。12. The leakage current prevention means is composed of a high resistance layer formed on the upper surface of the third semiconductor layer, and an end portion of the high resistance layer in contact with the ridge waveguide is an end of the active layer. The semiconductor device according to claim 1, which is as close to the section as possible.
板と前記第3の半導体層との間で漏れ電流を防止するた
めの高抵抗層が設けられる、請求項5記載の半導体装
置。13. The semiconductor device according to claim 5, wherein a high resistance layer for preventing a leakage current is provided between the substrate and the third semiconductor layer on the lower surface of the third semiconductor layer.
グ層、第2の導電型の第2の半導体層、活性層および第
1の導電型の第1の半導体層を含む複数の層を順次積層
し、かつ第2の導電型の第3の半導体層を前記第2の半
導体層に接続するよう形成し上方に露出させる積層工程
と、 前記積層工程で積層された複数の層のうち、前後端部に
挟まれる中間部の脇部の一部のみを選択的にエッチング
除去してリッジ導波路を形成するリッジ形成工程と、 前記リッジ導波路の脇方に電流狭窄部を埋め込み形成す
る埋め込み形成工程と、 前記電流狭窄部の外側部を選択的にエッチング除去して
寄生容量低減のための寄生容量防止溝を形成する溝形成
工程と、 前記第1の半導体層の上面に第1の電極を、前記第3の
半導体層の上面に第2の電極を、前記基板の下面に第3
の電極を夫々形成する電極形成工程とを備える半導体装
置の製造方法。14. A plurality of layers including a tuning layer, a second semiconductor layer of a second conductivity type, an active layer, and a first semiconductor layer of a first conductivity type on a substrate of the first conductivity type. A stacking step of sequentially stacking and forming a third semiconductor layer of the second conductivity type so as to be connected to the second semiconductor layer and exposing it upward, and a plurality of layers stacked in the stacking step, Ridge formation step of selectively removing only a part of the side part of the middle part sandwiched between the front and rear ends to form a ridge waveguide; and embedding for forming a current constriction part on the side of the ridge waveguide. A forming step, a groove forming step of selectively removing an outer portion of the current constriction portion by etching to form a parasitic capacitance preventing groove for reducing a parasitic capacitance, and a first electrode on the upper surface of the first semiconductor layer. A second electrode on the top surface of the third semiconductor layer, Third on the lower surface of the substrate
And a step of forming electrodes for forming the electrodes, respectively.
一材料を用いて同時に連続形成する連続形成工程と、 前記第1の半導体層の形成後に前記活性層および前記第
1の半導体層の脇部をエッチング除去して前記第3の半
導体層を露出させる露出工程とを備える、請求項14記
載の半導体装置の製造方法。15. The stacking step includes a continuous formation step of continuously forming the third semiconductor layer using the same material at the same time when the second semiconductor layer is formed, and a step of forming the first semiconductor layer after the continuous formation step. 15. The method of manufacturing a semiconductor device according to claim 14, further comprising an exposure step of exposing the third semiconductor layer by etching away an active layer and a side portion of the first semiconductor layer.
グ層、第2の導電型の第2の半導体層および活性層を含
む複数の層を順次積層する第1の積層工程と、 前記積層工程で積層された複数の層の脇部を選択的にエ
ッチング除去してリッジ導波路を形成するリッジ形成工
程と、 前記リッジ導波路の脇方に第2の導電型の第3の半導体
層を前記第2の半導体層に接続するよう埋め込み形成す
る埋め込み形成工程と、 前記第3の半導体層の上面に高抵抗層を形成する高抵抗
層形成工程と、 前記リッジ導波路および前記高抵抗層の上面に第1の導
電型の第1の半導体層を形成する第2の積層工程と、 前記第1の半導体層の上側に第1の電極を、前記第3の
半導体層の上面に第2の電極を、前記基板の下面に第3
の電極を夫々形成する電極形成工程とを備える半導体装
置の製造方法。16. A first stacking step of sequentially stacking a plurality of layers including a tuning layer, a second semiconductor layer of a second conductivity type and an active layer on a substrate of a first conductivity type, and the stacking. A ridge forming step of selectively removing the side portions of the plurality of layers laminated in the step by etching to form a ridge waveguide; A buried forming step of forming a buried connection so as to connect to the second semiconductor layer, a high resistance layer forming step of forming a high resistance layer on the upper surface of the third semiconductor layer, and a ridge waveguide and a high resistance layer A second stacking step of forming a first semiconductor layer of the first conductivity type on the upper surface; a first electrode on the upper side of the first semiconductor layer; and a second electrode on the upper surface of the third semiconductor layer. A third electrode is provided on the lower surface of the substrate.
And a step of forming electrodes for forming the electrodes, respectively.
3の半導体層の上面に不純物をドープして半絶縁性結晶
構造の前記高抵抗層を形成する、請求項16記載の半導
体装置の製造方法。17. The method for manufacturing a semiconductor device according to claim 16, wherein in the high resistance layer forming step, the high resistance layer having a semi-insulating crystal structure is formed by doping impurities on the upper surface of the third semiconductor layer. .
3の半導体層の形成後に該第3の半導体層の上面に所定
のイオンを注入して前記高抵抗層を形成する、請求項1
6記載の半導体装置の製造方法。18. The high resistance layer is formed by implanting predetermined ions into the upper surface of the third semiconductor layer after forming the third semiconductor layer in the high resistance layer forming step.
7. The method for manufacturing a semiconductor device according to item 6.
いる、請求項18記載の半導体装置の製造方法。19. The method of manufacturing a semiconductor device according to claim 18, wherein protons are used as the predetermined ions.
る、請求項18記載の半導体装置の製造方法。20. The method of manufacturing a semiconductor device according to claim 18, wherein boron is used as the predetermined ions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1823494A JPH07226565A (en) | 1994-02-15 | 1994-02-15 | Semiconductor device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1823494A JPH07226565A (en) | 1994-02-15 | 1994-02-15 | Semiconductor device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07226565A true JPH07226565A (en) | 1995-08-22 |
Family
ID=11965990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1823494A Pending JPH07226565A (en) | 1994-02-15 | 1994-02-15 | Semiconductor device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07226565A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6781147B2 (en) * | 2002-11-12 | 2004-08-24 | Epitech Corporation, Ltd. | Lateral current blocking light emitting diode and method of making the same |
JP2004349592A (en) * | 2003-05-26 | 2004-12-09 | Fujitsu Ltd | Tunable laser diode |
JP2005142182A (en) * | 2003-11-04 | 2005-06-02 | Nec Corp | Optical semiconductor device and its manufacturing method |
CN111641103A (en) * | 2020-06-09 | 2020-09-08 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
-
1994
- 1994-02-15 JP JP1823494A patent/JPH07226565A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6781147B2 (en) * | 2002-11-12 | 2004-08-24 | Epitech Corporation, Ltd. | Lateral current blocking light emitting diode and method of making the same |
JP2004349592A (en) * | 2003-05-26 | 2004-12-09 | Fujitsu Ltd | Tunable laser diode |
JP2005142182A (en) * | 2003-11-04 | 2005-06-02 | Nec Corp | Optical semiconductor device and its manufacturing method |
CN111641103A (en) * | 2020-06-09 | 2020-09-08 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
CN111641103B (en) * | 2020-06-09 | 2022-07-01 | 厦门市三安光电科技有限公司 | Laser diode and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5500868A (en) | Vertical-to-surface transmission electro-photonic device with ion implanted current control regions | |
US5889913A (en) | Optical semiconductor device and method of fabricating the same | |
EP0663710B1 (en) | Optical semiconductor device and method for producing the same | |
JP3941296B2 (en) | Modulator, semiconductor laser device with modulator, and manufacturing method thereof | |
EP0486128B1 (en) | A semiconductor optical device and a fabricating method therefor | |
JP5810720B2 (en) | Quantum cascade semiconductor laser, laser device, and method of manufacturing quantum cascade semiconductor laser | |
JPH1197799A (en) | Fabrication of semiconductor device | |
JP4909159B2 (en) | Semiconductor waveguide device, manufacturing method thereof, and semiconductor laser | |
JPH05251817A (en) | Tunable semiconductor laser system | |
JPH07183618A (en) | Semiconductor laser device, and manufacture of semiconductor laser device, and integrated semiconductor laser device | |
US4862474A (en) | Semicondutor laser device | |
JPH09331110A (en) | Optical semiconductor device and manufacture thereof | |
JPH05341242A (en) | Optical modulating element | |
JPH07226565A (en) | Semiconductor device and its manufacture | |
US5781577A (en) | Semiconductor laser | |
JP2005116644A (en) | Semiconductor optoelectronic waveguide | |
JP2002169132A (en) | Electric field absorption type optical modulator and method of manufacturing the same | |
JP2003101125A (en) | Waveguide type optical device | |
JP3346975B2 (en) | Optical semiconductor device and method of manufacturing the same | |
EP4080698A1 (en) | Dual-channel buried waveguide and method for fabricating the same | |
JPH07115242A (en) | Device and fabrication for semiconductor laser | |
JPH05307200A (en) | Waveguide type optical switch and its manufacture | |
JPS6119186A (en) | Manufacture of two-wavelength monolithic semiconductor laser array | |
JPH07325328A (en) | Semiconductor optical modulator | |
WO2025022644A1 (en) | Semiconductor laser |