[go: up one dir, main page]

JPH07225924A - Magnetoresistive element, magnetic induction element and thin film magnetic head - Google Patents

Magnetoresistive element, magnetic induction element and thin film magnetic head

Info

Publication number
JPH07225924A
JPH07225924A JP6004320A JP432094A JPH07225924A JP H07225924 A JPH07225924 A JP H07225924A JP 6004320 A JP6004320 A JP 6004320A JP 432094 A JP432094 A JP 432094A JP H07225924 A JPH07225924 A JP H07225924A
Authority
JP
Japan
Prior art keywords
film
magnetic
alloy
magnetoresistive
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6004320A
Other languages
Japanese (ja)
Inventor
Toyomichi Ataka
豊路 安宅
Takafumi Fumoto
孝文 麓
Keiji Okubo
恵司 大久保
Osamu Saito
斎藤  修
Yuko Okamura
祐子 岡村
Megumi Nagano
恵 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6004320A priority Critical patent/JPH07225924A/en
Publication of JPH07225924A publication Critical patent/JPH07225924A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Magnetic Heads (AREA)
  • Power Engineering (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)

Abstract

(57)【要約】 【目的】 結合交換膜の電気的抵抗値を適正化すること
によって、磁気抵抗変化率を大きくし、感度の向上した
磁気抵抗素子を実現すること。 【構成】 磁気抵抗素子20は、基板1の表面側に、補
助膜31としてのCu膜と、MnFeベースにCu,N
i,PdまたはCoが添加された交換結合膜32と、磁
気抵抗効果膜33としてのNiが82at. %NiFe膜
と、非磁性膜34と、シャントバイアス膜または軟磁性
バイアス膜からなる横バイアス膜35とが順次積層され
た構造を有している。交換結合膜32は、Cu,Ni,
PdまたはCoの添加によって、その電気的抵抗値がM
nFe合金膜のそれに比して大きいにので、センサ電流
が交換結合膜32へ分流し難く、見かけ上、抵抗変化量
が増大し、相対的に磁気抵抗変化率が向上する。
(57) [Abstract] [Purpose] To realize a magnetoresistive element with increased sensitivity by increasing the rate of change in magnetoresistance by optimizing the electrical resistance of the coupling exchange film. The magnetoresistive element 20 includes a Cu film as an auxiliary film 31 on the front surface side of the substrate 1 and Cu, N on the MnFe base.
An exchange coupling film 32 to which i, Pd or Co is added, a Ni at 82% NiFe film as a magnetoresistive film 33, a non-magnetic film 34, and a lateral bias film composed of a shunt bias film or a soft magnetic bias film. 35 and 35 are sequentially laminated. The exchange coupling film 32 is made of Cu, Ni,
By adding Pd or Co, the electrical resistance value becomes M
Since it is larger than that of the nFe alloy film, it is difficult for the sensor current to be shunted to the exchange coupling film 32, and the resistance change amount apparently increases, and the magnetoresistance change rate relatively improves.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄膜磁気ヘッドに関
し、特に、高密度記録再生に適した再生用の磁気抵抗素
子及び記録用の磁気誘導素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin film magnetic head, and more particularly to a reproducing magnetic resistance element and a recording magnetic induction element suitable for high density recording and reproduction.

【0002】[0002]

【従来の技術】図18(a)は磁気抵抗型薄膜磁気ヘッ
ドの概略断面図、図18(b)はその情報再生専用素子
に係る磁気抵抗素子の構造を示す平面図、図18(c)
はその情報記録専用素子に係る磁気誘導素子の構造を示
す平面図である。
18 (a) is a schematic sectional view of a magnetoresistive thin-film magnetic head, FIG. 18 (b) is a plan view showing the structure of a magnetoresistive element relating to the information read-only element, and FIG. 18 (c).
FIG. 4 is a plan view showing the structure of a magnetic induction element related to the information recording dedicated element.

【0003】図18(a)に示すように、固定磁気ディ
スク装置等に使用される薄膜磁気ヘッド100 は、再生専
用素子(磁気抵抗素子)101 及び記録専用素子(磁気誘
導素子)102 から成る。磁気抵抗素子101 は基板1上に
絶縁膜7を介して形成された磁気抵抗材料膜2と電極膜
3を有する。磁気抵抗材料膜2の両端には図18(b)
に示すように電極膜3が接続されている。磁気誘導素子
102 は、磁気抵抗素子101 上に絶縁膜8を介して積層さ
れた軟磁性材料の上下部コア4(4a,4b)と、その
コア4a,4b間に層間絶縁膜6を介して形成されたコ
イル5とから成り、コイル5は図18(c)に示すよう
に螺旋状に巻回されている。
As shown in FIG. 18A, a thin film magnetic head 100 used in a fixed magnetic disk device or the like comprises a read-only element (magnetoresistive element) 101 and a write-only element (magnetic induction element) 102. The magnetoresistive element 101 has a magnetoresistive material film 2 and an electrode film 3 formed on a substrate 1 with an insulating film 7 interposed therebetween. The both ends of the magnetoresistive material film 2 are shown in FIG.
The electrode film 3 is connected as shown in FIG. Magnetic induction element
Reference numeral 102 denotes upper and lower cores 4 (4a, 4b) of a soft magnetic material laminated on the magnetoresistive element 101 with an insulating film 8 interposed between the cores 4a and 4b with an interlayer insulating film 6 interposed therebetween. The coil 5 and the coil 5 are spirally wound as shown in FIG.

【0004】[0004]

【発明が解決しようとする課題】磁気抵抗素子101 の磁
気抵抗材料膜2は、図19(a)に示すように、基板
(絶縁膜も含む)1上にNiCr等の下地膜(面心立方
格子膜,補助膜)2a,MnFe(Mnが50アトミッ
ク%)の交換結合膜2b,NiFe又はNiFeCo合
金単層薄膜の磁気抵抗効果膜2c,シャントバイアス膜
2d及び横バイアス膜2eが順次積層されており、この
横バイアス膜2eの両端に電極膜3が形成されて磁気抵
抗素子101 が構成されている。ここで、下地膜2aはそ
の上に成膜する交換結合膜2bの配向を制御する膜、交
換結合膜2bは隣接の磁気抵抗効果膜2cに縦バイアス
磁界を付与し単磁区化することで磁気抵抗効果膜2cの
磁化のばらつきによるバルクハウゼン・ノイズ防止のた
めの磁化を制御する膜、磁気抵抗効果膜2cは素子に印
加される磁束の変化を膜抵抗率へ変換する膜、横バイア
ス膜2eは磁気抵抗効果膜2cに横バイアス磁界を印加
し最適動作バイアス点で漏洩磁界を重畳して再生出力の
振幅を大きくする膜、シャントバイアス膜2dは横バイ
アス膜2eの磁化と磁気抵抗効果膜2cへの横バイアス
磁界強度を調整等する膜である。
The magnetoresistive material film 2 of the magnetoresistive element 101 is, as shown in FIG. 19A, a base film (face-centered cubic) such as NiCr on a substrate (including an insulating film) 1. A lattice film, an auxiliary film 2a, an exchange coupling film 2b of MnFe (Mn is 50 atomic%), a magnetoresistive film 2c of a NiFe or NiFeCo alloy single-layer thin film, a shunt bias film 2d, and a lateral bias film 2e are sequentially laminated. Thus, the electrode films 3 are formed on both ends of the lateral bias film 2e to form the magnetoresistive element 101. Here, the base film 2a is a film for controlling the orientation of the exchange coupling film 2b formed thereon, and the exchange coupling film 2b is magnetized by applying a longitudinal bias magnetic field to the adjacent magnetoresistive effect film 2c to form a single magnetic domain. A film for controlling magnetization for preventing Barkhausen noise due to variations in magnetization of the resistance effect film 2c, a magnetoresistive film 2c for converting a change in magnetic flux applied to the element into a film resistivity, and a lateral bias film 2e. Is a film that applies a lateral bias magnetic field to the magnetoresistive film 2c and superimposes a leakage magnetic field at the optimum operating bias point to increase the amplitude of the reproduction output. The shunt bias film 2d is the magnetization of the lateral bias film 2e and the magnetoresistive film 2c. Is a film for adjusting the lateral bias magnetic field strength to the.

【0005】交換結合膜2bの配向が基板1に直接成膜
しても特に不都合のない場合は、図19(b)に示すよ
うに、磁気抵抗材料膜2は、下地膜2aを除いて、交換
結合膜2b,磁気抵抗効果膜2c,シャントバイアス膜
2d,横バイアス膜2eが順次積層されて成る。また図
19(c)に示すように、磁気抵抗材料膜2の層順位を
逆転し、基板1上に横バイアス膜2e,シャントバイア
ス膜2d,磁気抵抗効果膜2c,交換結合膜2bが順次
積層されて成るものもある。なお、図19(a)〜
(c)に示す層構成の磁気抵抗材料膜2においては、交
換結合膜2bを磁気抵抗効果膜2cの一部(例えば磁気
抵抗効果膜2cの両端の電極部等)に用いることもでき
る。
When there is no particular inconvenience when the orientation of the exchange coupling film 2b is directly formed on the substrate 1, as shown in FIG. 19B, the magnetoresistive material film 2 except for the base film 2a, The exchange coupling film 2b, the magnetoresistive effect film 2c, the shunt bias film 2d, and the lateral bias film 2e are sequentially laminated. As shown in FIG. 19C, the layer order of the magnetoresistive material film 2 is reversed, and the lateral bias film 2e, the shunt bias film 2d, the magnetoresistive effect film 2c, and the exchange coupling film 2b are sequentially laminated on the substrate 1. Some are made up of. Note that FIG.
In the magnetoresistive material film 2 having the layer structure shown in (c), the exchange coupling film 2b can be used as a part of the magnetoresistive effect film 2c (for example, electrode portions at both ends of the magnetoresistive effect film 2c).

【0006】上記の磁気抵抗材料膜2の層構成における
交換結合膜2bには、磁気抵抗効果膜(NiFe合金単
層薄膜又はNiFeCo合金単層薄膜)2cと同じ結晶
構造(面心立方相)の反強磁性膜であるFeMn系合金
が用いられている。しかし、特開平4−211106,
特開平3−144909に見られるように、MnFe系
合金は耐食性が低い。また、単層構造のMnFeを交換
結合膜として用いた磁気抵抗素子においては、磁気抵抗
効果膜と交換結合膜とが直に接触しているにもかかわら
ず、MnFeの交換結合膜の電気抵抗値がNiFe等の
磁気抵抗効果膜の電気抵抗値に比して約4倍程度しかな
いため、磁気抵抗効果膜に印加されたセンス電流の一部
が交換結合膜2bの方に分流して、出力電圧変化ΔV
(=ΔR・I)が小さくなる。
The exchange coupling film 2b in the layer structure of the magnetoresistive material film 2 has the same crystal structure (face-centered cubic phase) as the magnetoresistive effect film (NiFe alloy single layer thin film or NiFeCo alloy single layer thin film) 2c. An FeMn-based alloy that is an antiferromagnetic film is used. However, JP-A-4-211106,
As seen in JP-A-3-144909, MnFe alloys have low corrosion resistance. In addition, in a magnetoresistive element using MnFe having a single-layer structure as an exchange coupling film, the electric resistance value of the MnFe exchange coupling film is large even though the magnetoresistive effect film and the exchange coupling film are in direct contact with each other. Is only about four times the electric resistance value of the magnetoresistive film such as NiFe, so that part of the sense current applied to the magnetoresistive film is shunted to the exchange coupling film 2b and output. Voltage change ΔV
(= ΔR · I) becomes smaller.

【0007】上記の耐食性の向上と交換結合磁界の向上
及び安定化を図るために、交換結合膜2bとして反強磁
性膜であるCoX NiY 1-X-Y やフェリ磁性膜である
Tb1-Z CoZ を用いた例(アプライド・フィジックス
・レターズ 60巻,3060頁,(1992)、アイ
・トリプル・イー・トランジッション・マグネティクス
25巻,3695頁 (1989))も見られるが、
交換結合膜2bに上述の材料を用いる場合には、プロセ
ス中に酸化工程を必要とするため、工程数の増加をもた
らす。また稀土類元素を用いるため、コスト高になると
いう面もある。
In order to improve the corrosion resistance and improve and stabilize the exchange coupling magnetic field, an antiferromagnetic film of Co X Ni Y O 1-XY or a ferrimagnetic film of Tb 1 - is used as the exchange coupling film 2b. An example using Z Co Z (Applied Physics Letters 60, 3060, (1992), i Triple E Transition Magnetics, 25, 3695 (1989)) is also seen,
When the above-mentioned materials are used for the exchange coupling film 2b, an oxidation step is required during the process, which leads to an increase in the number of steps. In addition, since rare earth elements are used, there is also the aspect that the cost becomes high.

【0008】一方、最近では、磁気抵抗効果膜として磁
性膜と非磁性伝導膜等を交互に2回以上積層した積層周
期構造からなる人工格子膜を用いることが盛んに行われ
ている。この人工格子膜を用いた磁気抵抗素子として
は、図20に示すように、基板1上の下地膜11の上
に、Cu等の非磁性伝導膜12及び磁性膜13を交互に
2回以上(2積層周期以上)積層し、その上に保護膜1
4を形成した層構造を有している(特開平4−3600
09号)。ここで、図21(a)に示すように、磁性膜
13の一部に交換結合膜15と接した構造や、図21
(b)に示すように磁性膜13の上に交換結合膜15を
積層した構造を採用することにより、各積層周期内の磁
性膜13に縦バイアス磁界を印加しその磁化制御を行
い、バルクハウゼン・ノイズを抑制するようにしてい
る。このような人工格子膜の磁気抵抗効果膜と、単層の
NiFe合金膜の磁気抵抗効果膜を比較すると、NiF
e合金膜は磁気抵抗変化率(MR比)が3%と低いもの
の、磁気抵抗が飽和する飽和磁界強度HS が数10Oe
以下と低く、実用可能な磁気抵抗素子であるのに対し、
人工格子膜を用いた磁気抵抗効果膜はMR比が5%と若
干高いものの、飽和磁界強度HS が100Oe程度と高
すぎる。MR比が高いと再生信号出力を大きくとれるこ
とになるが、他方、飽和磁界強度HS が大きすぎると外
部磁界に対する磁界感度が低くなるので、人工格子膜の
実用化には更に飽和磁界強度HS の低減が要求される。
On the other hand, recently, an artificial lattice film having a laminated periodic structure in which a magnetic film and a nonmagnetic conductive film or the like are alternately laminated two or more times has been actively used as a magnetoresistive film. As a magnetoresistive element using this artificial lattice film, as shown in FIG. 20, a non-magnetic conductive film 12 such as Cu and a magnetic film 13 are alternately formed twice or more on a base film 11 on a substrate 1 ( (2 or more lamination cycles) are laminated, and the protective film 1 is formed thereon
4 has a layered structure (Japanese Patent Laid-Open No. 4-3600).
09). Here, as shown in FIG. 21A, a structure in which a part of the magnetic film 13 is in contact with the exchange coupling film 15,
By adopting a structure in which the exchange coupling film 15 is laminated on the magnetic film 13 as shown in (b), a longitudinal bias magnetic field is applied to the magnetic film 13 in each lamination period to control the magnetization of the magnetic film 13 and Barkhausen.・ We try to suppress noise. Comparing the magnetoresistive effect film of the artificial lattice film and the magnetoresistive effect film of the single-layer NiFe alloy film, the NiF
Although the e alloy film has a low magnetoresistance change rate (MR ratio) of 3%, the saturation magnetic field strength H S at which the magnetoresistance is saturated is several tens Oe.
It is low as below and is a practical magnetoresistive element,
Although the MR ratio of the magnetoresistive film using the artificial lattice film is slightly high at 5%, the saturation magnetic field strength H S is too high at about 100 Oe. When the MR ratio is high, the reproduction signal output can be large. On the other hand, when the saturation magnetic field strength H S is too large, the magnetic field sensitivity to the external magnetic field is low. Reduction of S is required.

【0009】また別の人工格子膜を用いた磁気抵抗素子
としては、図22に示すように、基板1上の下地膜11
の上に、補助膜16又は非磁性伝導膜12,第1の磁性
膜である軟磁性膜17,非磁性伝導膜12,第2の磁性
膜である磁性膜13又は軟磁性膜17,交換結合膜15
を1積層周期構造とし、2周期以上積層した人工格子膜
を有している。この人工格子膜では、MnFeの交換結
合膜15の隣に形成された第2の磁性膜13には一方向
の磁気異方性が生じるので、異方性を付与された第2の
磁性膜13と異方性の付与されない第1の磁性膜17の
それぞれの磁化のなす角度が媒体からの漏洩磁界(外部
磁界)によって変化する。つまり、図23に示すよう
に、外部磁界が印加されていないときは(Hex=0)、
隣の磁性膜同士の磁化のなす角度は反平行に近いが(9
0〜180°)、外部磁界が印加されているときは(H
ex≠0)、隣の磁性膜同士の磁化のなす角度は平行に近
くなり(90°以下)、磁化制御が可能となる。このよ
うな人工格子膜では、磁気抵抗効果が磁性膜の自発磁化
の伝導電子に及ぼすスピン散乱により起こり、巨大磁気
抵抗効果と呼ばれ、磁界応答が急峻で飽和磁界強度(H
S )が10Oe以下であるものの、磁気抵抗変化率がや
や小さい(<5%)。なぜなら、交換結合膜として磁性
膜(NiFe膜)や非磁性伝導膜(Cu膜)に比して電
気抵抗値が4〜10倍も大きなMnFe膜を用いている
ため、人工格子膜(複合磁気抵抗膜)の全体的な抵抗値
ρが高すぎるので、電気抵抗変化率Δρ/ρは相対的に
小さくなるからである。ここで、磁気抵抗変化率の値を
8%程度に高めようとすると、1nm膜厚以下のCo等
の磁性膜をCu等の非磁性伝導膜12の隣接に成膜しな
ければならず、成膜技術上、複雑な工程を必要とし、コ
スト高を招く(ジャーナルオブ アプライド フィジッ
クス 69,(8) (1991)4774,特開平4
−358310)。
As a magnetoresistive element using another artificial lattice film, as shown in FIG. 22, a base film 11 on a substrate 1 is used.
On top of this, an auxiliary film 16 or a non-magnetic conductive film 12, a soft magnetic film 17 which is a first magnetic film, a non-magnetic conductive film 12, a magnetic film 13 or a soft magnetic film 17 which is a second magnetic film, and exchange coupling. Membrane 15
Has one laminated periodic structure and has an artificial lattice film in which two or more periods are laminated. In this artificial lattice film, unidirectional magnetic anisotropy occurs in the second magnetic film 13 formed next to the MnFe exchange coupling film 15, so that the anisotropy-provided second magnetic film 13 is formed. And the angle formed by the respective magnetizations of the first magnetic film 17 to which anisotropy is not applied is changed by the leakage magnetic field (external magnetic field) from the medium. That is, as shown in FIG. 23, when no external magnetic field is applied (H ex = 0),
Although the angle formed by the magnetizations of adjacent magnetic films is nearly antiparallel (9
0 to 180 °), when an external magnetic field is applied (H
ex ≠ 0), the angle formed by the magnetizations of the adjacent magnetic films becomes nearly parallel (90 ° or less), and the magnetization can be controlled. In such an artificial lattice film, the magnetoresistive effect is caused by spin scattering that affects the conduction electrons of the spontaneous magnetization of the magnetic film, which is called a giant magnetoresistive effect, and the magnetic field response is steep and the saturation magnetic field strength (H
S ) is 10 Oe or less, but the magnetoresistance change rate is rather small (<5%). This is because the MnFe film whose electric resistance value is 4 to 10 times larger than that of the magnetic film (NiFe film) or the non-magnetic conductive film (Cu film) is used as the exchange coupling film. Because the overall resistance value ρ of the film) is too high, the electrical resistance change rate Δρ / ρ becomes relatively small. Here, in order to increase the value of the magnetoresistance change rate to about 8%, a magnetic film of Co or the like having a thickness of 1 nm or less must be formed adjacent to the non-magnetic conductive film 12 of Cu or the like. Membrane technology requires complicated steps, resulting in high cost (Journal of Applied Physics 69, (8) (1991) 4774, Japanese Patent Laid-Open No. Hei 4).
-358310).

【0010】ところで、高密度記録再生においては、当
然のことながら記録ビット領域が微小化するため、微弱
な外部磁界(漏れ磁界)によっても大きな振幅の再生出
力が得られる磁気抵抗素子が必要である。このような高
感度を得るには、図24のR−H特性において、横バイ
アス膜により特性曲線の傾きの大きな点に最適バイアス
点を設定することも重要であるが、それ以前に、傾きの
急峻なR−H特性を示す磁気抵抗効果膜を得ることが必
要となる。傾きの急峻なR−H特性を得るには、磁気抵
抗効果膜の磁気抵抗変化率Δρ/ρを大きくすると共
に、飽和磁界強度HS を小さくすることにより、相乗的
にその傾きが急峻になる。また、磁気抵抗変化率Δρ/
ρを大きくするには、磁気抵抗効果膜の全体の抵抗値ρ
を小さくし、その抵抗変化量Δρを大きくすることが必
要である。
By the way, in high density recording / reproduction, the recording bit area is naturally miniaturized, so that a magnetoresistive element capable of obtaining a reproduction output having a large amplitude even with a weak external magnetic field (leakage magnetic field) is required. . In order to obtain such high sensitivity, it is important to set an optimum bias point at a point having a large slope of the characteristic curve by the lateral bias film in the RH characteristic of FIG. It is necessary to obtain a magnetoresistive effect film that exhibits steep RH characteristics. In order to obtain an R-H characteristic having a steep slope, the magnetoresistive change rate Δρ / ρ of the magnetoresistive film is increased and the saturation magnetic field strength H S is decreased to synergistically increase the slope. . The rate of change in magnetic resistance Δρ /
To increase ρ, the total resistance value of the magnetoresistive film ρ
Is required to be small and the resistance change amount Δρ is required to be large.

【0011】他方、図25(A)は磁気誘導素子102 の
断面図であり、図25(B)はその磁気誘導素子102 の
磁気コア4の還流磁区構造を説明する図である。磁気誘
導素子102 は、図25(A)において、基板1上(基板
1,磁気抵抗素子101 及び絶縁膜8の上)に下部磁気コ
ア4a,磁気ギャップg,コイル5,絶縁膜6,上部磁
気コア4b及び保護膜9が順次設けられて成る。下部磁
気コア4aと上部磁気コア4bとは磁気回路を構成し、
それがヘッド面の磁気ギャップgによって開かれてい
る。コイル5は絶縁膜6を介在させて複数回巻回されて
おり、高周波の磁気記録信号が供給される。保護層9は
基板1の最上部に設けられた上部磁気コア4b上を覆っ
ている。また、磁気コア4a,4bには、高透磁率の軟
磁性薄膜が用いられ、それに一軸異方性を付与し、その
困難軸が磁気ヘッドの磁路方向に向けて使用される。現
状では磁気コア4a,4bの材料として、飽和磁束密度
0.7〜 0.8T程度のパーマロイ合金が一般に用いられ
る。
On the other hand, FIG. 25 (A) is a sectional view of the magnetic induction element 102, and FIG. 25 (B) is a view for explaining the return magnetic domain structure of the magnetic core 4 of the magnetic induction element 102. 25A, the magnetic induction element 102 includes a lower magnetic core 4a, a magnetic gap g, a coil 5, an insulating film 6, and an upper magnetic layer on the substrate 1 (the substrate 1, the magnetoresistive element 101 and the insulating film 8). The core 4b and the protective film 9 are sequentially provided. The lower magnetic core 4a and the upper magnetic core 4b constitute a magnetic circuit,
It is opened by the magnetic gap g on the head surface. The coil 5 is wound a plurality of times with the insulating film 6 interposed, and a high frequency magnetic recording signal is supplied. The protective layer 9 covers the upper magnetic core 4b provided on the uppermost part of the substrate 1. The magnetic cores 4a and 4b are made of a soft magnetic thin film having a high magnetic permeability, and uniaxial anisotropy is imparted to the magnetic cores 4a and 4b, and the hard axis is used in the magnetic path direction of the magnetic head. Currently, the saturation magnetic flux density is used as the material of the magnetic cores 4a and 4b.
Permalloy alloy of about 0.7 to 0.8 T is generally used.

【0012】高密度記録化に伴い、磁気誘導素子102 の
磁気コア4には10MHz以上の高周波数帯域において
も、初期磁化過程での初透磁率の高いことが要求され
る。また、更なるデータ処理の高密度化に対応するため
に、飽和磁束密度の高い磁性材料が求められており、飽
和磁束密度が 1.2Tのコバルト(Co)−ハフニウム
(Hf)−タンタル(Ta)の3元素非晶質(アモルフ
ァス)合金膜やCo−Hf−Ta−パラジウム(Pd)
等のCo系アモルファス合金膜が検討されている。
With the increase in recording density, the magnetic core 4 of the magnetic induction element 102 is required to have a high initial permeability in the initial magnetization process even in a high frequency band of 10 MHz or higher. Further, in order to cope with higher density of data processing, a magnetic material having a high saturation magnetic flux density is required, and cobalt (Co) -hafnium (Hf) -tantalum (Ta) having a saturation magnetic flux density of 1.2T is required. 3 element amorphous alloy film or Co-Hf-Ta-palladium (Pd)
Co-based amorphous alloy films such as the above have been studied.

【0013】ところで、コイル5に流れる磁気記録信号
によって外部磁界が磁気コア4a,4bに与えられる
と、磁気コア4a,4bには図25(B)に示すような
プリズム状の還流磁区構造が現れ、コア端部(ヘッド面
側)では三角磁区が形成される。この三角磁区の磁化は
媒体からの磁化と平行であるため、高周波磁界に対して
不連続的な磁壁移動を起こす。これに対して、六角磁区
内の磁化は媒体からの磁化と垂直であるため、高周波磁
界に対して磁化回転を起こす。このため、データ処理の
高速化,高密度化に伴い磁気ヘッドの動作周波数が高く
なると、動的磁化過程の一つの特徴として論議できるよ
うに、外部磁界の時間的な変化に対して磁化の時間的変
化が時間的にずれを生じ、数MHzから磁壁移動が追従し
なくなる。
When an external magnetic field is applied to the magnetic cores 4a and 4b by the magnetic recording signal flowing through the coil 5, a prism-like free-wheeling magnetic domain structure as shown in FIG. 25B appears in the magnetic cores 4a and 4b. A triangular magnetic domain is formed at the core end (head surface side). Since the magnetization of the triangular magnetic domain is parallel to the magnetization from the medium, it causes discontinuous domain wall motion with respect to the high frequency magnetic field. On the other hand, the magnetization in the hexagonal domain is perpendicular to the magnetization from the medium, so that the magnetization rotation occurs with respect to the high frequency magnetic field. For this reason, when the operating frequency of the magnetic head becomes higher as the data processing speed becomes higher and the density becomes higher, it can be discussed as one of the characteristics of the dynamic magnetization process. Changes occur over time, and domain wall movement stops following from several MHz.

【0014】よって、高周波帯域では磁気コア4a,4
bの初透磁率(初磁化率)が低下する。また、磁壁移動
が非可逆的であることから、安定した再生を行うことが
困難となる。なお、磁化回転は更に、高周波帯域まで追
従する。そこで、磁気コアの安定した磁区構造が必要と
なる。
Therefore, in the high frequency band, the magnetic cores 4a, 4a
The initial magnetic permeability (initial magnetic susceptibility) of b decreases. Moreover, since the domain wall movement is irreversible, it becomes difficult to perform stable reproduction. The magnetization rotation further follows the high frequency band. Therefore, a stable magnetic domain structure of the magnetic core is required.

【0015】この問題点を解決するために、磁性体と非
磁性体とを交互に積層し、その積層構造を磁気コアに採
用し、その単磁区化を図る方法が考えられる。例えば、
IBM Disclosure Bulletin ,Vol.21 ,No.11 ,
1979,pp.4367 にはパーマロイと酸化シリコンの薄膜
を交互に積層する構造が開示されている。この構造は、
十分に薄い酸化シリコン膜をパーマロイ薄膜で挟み込む
ことにより、上下のパーマロイ薄膜を相互に密に磁気結
合させて磁化の環状路を作成し、三角磁区の発生を抑
え、六角磁区のみにより磁気コアの単磁区化を図ること
を狙ったものである。しかし、データ処理の高密度化に
対応するためには、磁気コアに飽和磁束密度(Bs)の
高い材料を用いる必要がある。なぜなら、飽和磁束密度
(Bs)が小さいと媒体に対する書込み磁界も小さくな
るからである。
In order to solve this problem, a method is conceivable in which a magnetic material and a non-magnetic material are alternately laminated, and the laminated structure is adopted as a magnetic core to form a single magnetic domain. For example,
IBM Disclosure Bulletin, Vol.21, No.11,
1979, pp. 4367 discloses a structure in which thin films of permalloy and silicon oxide are alternately laminated. This structure is
By sandwiching a sufficiently thin silicon oxide film between permalloy thin films, the upper and lower permalloy thin films are tightly magnetically coupled to each other to create an annular path of magnetization, suppressing the occurrence of triangular magnetic domains, and suppressing the magnetic core's single magnetic domain only by the hexagonal magnetic domains. This is aimed at achieving magnetic domains. However, it is necessary to use a material having a high saturation magnetic flux density (Bs) for the magnetic core in order to cope with higher density of data processing. This is because when the saturation magnetic flux density (Bs) is small, the write magnetic field for the medium also becomes small.

【0016】高飽和磁束密度材料としては、軟磁性Co
合金と窒化シリコンとの積層膜が特開平4−214205号に
記載されている。この組み合わせによれば、良好な磁気
特性が得られる。ところで、軟磁性Co合金と窒化シリ
コンとを積層する場合、窒化シリコンの成膜時にAr+
2 雰囲気中で反応性スパッタを行う必要がある。しか
し、Co合金膜の形成に移る前に、スパッタ装置の真空
容器内の窒素を引くために、全体の成膜時間が長くな
り、コスト高となる。これにより、量産性に欠けるとい
う問題がある。また、Ar+N2 雰囲気中でCo合金膜
を成膜するとCo合金に窒素が混入するので、飽和磁束
密度が低下するという問題がある。
As a material having a high saturation magnetic flux density, soft magnetic Co is used.
A laminated film of an alloy and silicon nitride is described in JP-A-4-214205. With this combination, good magnetic properties can be obtained. By the way, when a soft magnetic Co alloy and silicon nitride are laminated, Ar + is formed at the time of film formation of silicon nitride.
It is necessary to carry out reactive sputtering in an N 2 atmosphere. However, before the formation of the Co alloy film is started, nitrogen is drawn in the vacuum container of the sputtering apparatus, so that the entire film forming time becomes long and the cost becomes high. This causes a problem of lack of mass productivity. Further, when a Co alloy film is formed in an Ar + N 2 atmosphere, nitrogen is mixed into the Co alloy, so that there is a problem that the saturation magnetic flux density is lowered.

【0017】そこで、上記従来の磁気抵抗素子及び磁気
誘導素子を備えた薄膜磁気ヘッドのの種々の問題点に鑑
み、本発明の第1の課題としては、交換結合膜,磁性膜
や非磁性伝導膜の膜材料の選定を最適化することによ
り、高密度磁気記録に対応した高感度の磁気抵抗素子を
実現することにあり、また、本発明の第2の課題として
は、Arガス中でのスパッタ成膜が可能である非磁性薄
膜の膜材料の選定を最適化することにより、高速・高密
度記録可能の磁気誘導素子を実現することにあり、もっ
て本発明は高速高密度記録・再生に適した薄膜磁気ヘッ
ドを提供することにある。
In view of various problems of the thin film magnetic head including the conventional magnetoresistive element and magnetic induction element, the first object of the present invention is to provide an exchange coupling film, a magnetic film and a non-magnetic conductive film. It is to realize a high-sensitivity magnetoresistive element compatible with high-density magnetic recording by optimizing the selection of the film material of the film, and a second object of the present invention is to realize a high-sensitivity magnetoresistive element. By optimizing the selection of the non-magnetic thin film material capable of sputter film formation, it is intended to realize a magnetic induction element capable of high speed and high density recording. Therefore, the present invention is applicable to high speed and high density recording and reproduction. An object is to provide a suitable thin film magnetic head.

【0018】[0018]

【課題を解決するための手段】薄膜磁気抵抗素子として
は、交換結合膜に隣接した単層構造の磁気抵抗効果膜を
有する磁気抵抗素子と、交換結合膜に隣接した第1の磁
性膜,非磁性伝導膜及び第2の磁性膜を少なくとも含む
積層構造を1積層周期として2周期以上積層した人工格
子膜からなる磁気抵抗効果膜を有する磁気抵抗素子とに
大別できるものである。
As a thin film magnetoresistive element, a magnetoresistive element having a single-layer structure magnetoresistive film adjacent to an exchange coupling film, a first magnetic film adjacent to the exchange coupling film, It can be roughly classified into a magnetoresistive element having a magnetoresistive effect film composed of an artificial lattice film in which two or more cycles are stacked with one stacked cycle including at least a magnetic conductive film and a second magnetic film.

【0019】上記の問題点を解決するために、本発明の
講じた第1の手段は、磁気抵抗効果膜にNiFe膜等の
単層膜を用いる場合、上記交換結合膜として、Mn50
at.%のMnFeに対してCu,Ni,PdおよびCo
からなる群から選ばれた少なくとも1つの添加物が25
at. %以下の添加物総濃度で添加された合金膜であるこ
とを特徴とする。
In order to solve the above problems, the first means taken by the present invention is to use Mn50 as the exchange coupling film when a single layer film such as a NiFe film is used as the magnetoresistive film.
Cu, Ni, Pd and Co for at.% MnFe
At least one additive selected from the group consisting of 25
The alloy film is characterized by being added at a total additive concentration of at.% or less.

【0020】本発明の第2の手段は、磁気抵抗効果膜に
人工格子膜を用いる場合、交換結合膜として純Mnに、
Cu,Ni,Pd及びCoからなる群から選ばれた少な
くとも1つの添加元素が25at. %以下の添加濃度で添
加された合金膜であることを特徴とする。このような材
料組成の交換結合膜は、例えば、イオンビームスパッタ
法、DCマグネトロンスパッタ法、RFマグネトロンス
パッタ法または蒸着法で成膜することができる。
The second means of the present invention is to use pure Mn as an exchange coupling film when an artificial lattice film is used as the magnetoresistive film.
The alloy film is characterized in that at least one additive element selected from the group consisting of Cu, Ni, Pd and Co is added at an additive concentration of 25 at.% Or less. The exchange coupling film having such a material composition can be formed by, for example, an ion beam sputtering method, a DC magnetron sputtering method, an RF magnetron sputtering method or a vapor deposition method.

【0021】本発明の第3の手段としては、単層構造の
磁気抵抗効果膜を有する磁気抵抗素子において、交換結
合膜をMnA Co1-A 合金磁性薄膜を主とする反強磁性
膜又はフェリ磁性膜で構成し、MnA Co1-A 合金磁性
薄膜の組成範囲が0.5<A<0.9を満たすことを特
徴とする。ここで、そのMnA Co1-A 合金磁性薄膜
に、Ru,Re,Ir,Pd,Fe,Ni,Cu,S
c,Y,Ti,Zr,Hf,Th,V,Nb,Ta,P
a,Cr,Mo,W,Tc,Np,Zn,Al,Si,
Au,Pt及びAgから成る群から選ばれた少なくとも
1種の元素を30at.%添加してなることが望まし
い。また、MnA Co1-A 合金磁性薄膜の膜厚は100
0Å以下であることが望ましい。他方、人工格子膜から
なる磁気抵抗効果膜を有する磁気抵抗素子においても、
交換結合膜をMnCo合金磁性薄膜を主とする反強磁性
膜又はフェリ磁性膜で構成したことを特徴とする。かか
る場合でも、MnCo合金磁性薄膜に、Ru,Re,I
r,Pd,Fe,Ni,Cu,Sc,Y,Ti,Zr,
Hf,Th,V,Nb,Ta,Pa,Cr,Mo,W,
Tc,Np,Zn,Al,Si,Au,Pt及びAgか
ら成る群から選ばれた少なくとも1種の元素を添加して
なることが望ましい。
As a third means of the present invention, in a magnetoresistive element having a magnetoresistive film having a single-layer structure, the exchange coupling film is an antiferromagnetic film mainly composed of Mn A Co 1-A alloy magnetic thin film or It is characterized in that it is composed of a ferrimagnetic film, and the composition range of the Mn A Co 1-A alloy magnetic thin film satisfies 0.5 <A <0.9. Here, Ru, Re, Ir, Pd, Fe, Ni, Cu, S are added to the Mn A Co 1-A alloy magnetic thin film.
c, Y, Ti, Zr, Hf, Th, V, Nb, Ta, P
a, Cr, Mo, W, Tc, Np, Zn, Al, Si,
At least one element selected from the group consisting of Au, Pt and Ag is added at 30 at. % Addition is desirable. The thickness of the Mn A Co 1-A alloy magnetic thin film is 100.
It is desirable that it is less than 0Å. On the other hand, even in a magnetoresistive element having a magnetoresistive film made of an artificial lattice film,
It is characterized in that the exchange coupling film is composed of an antiferromagnetic film or a ferrimagnetic film mainly composed of a magnetic thin film of MnCo alloy. Even in such a case, Ru, Re, I may be added to the MnCo alloy magnetic thin film.
r, Pd, Fe, Ni, Cu, Sc, Y, Ti, Zr,
Hf, Th, V, Nb, Ta, Pa, Cr, Mo, W,
It is desirable to add at least one element selected from the group consisting of Tc, Np, Zn, Al, Si, Au, Pt and Ag.

【0022】本発明の第4の手段としては、磁性膜と非
磁性伝導膜とを少なくとも含む積層構造を1積層周期と
して2周期以上積層した人工格子膜からなる磁気抵抗効
果膜を有する磁気抵抗素子において、磁性膜がFe
1-B-C CrB CoC 合金磁性薄膜から成り、非磁性伝導
膜がCu,CrあるいはCuCrから成り、Fe1-B-C
CrB CoC 合金磁性薄膜の組成範囲が0.05<B<0.15
及び0.50<C<0.60を満足するものであることを特徴と
する。磁性膜の膜厚は300 Å以下が望ましい。また、そ
の磁性膜が、Fe1-B-C CrB CoC 合金磁性薄膜に代
えて、FeD Al1- D 合金磁性膜から成り、FeD Al
1-D 合金磁性膜の組成範囲が、0.75<D<0.95を満足す
るものであっても良い。さらに、磁性膜が、Fe1-B-C
CrB CoC合金磁性薄膜に代えて、NiE Co1-E
金磁性膜から成り、NiE Co1-E 合金磁性膜の組成範
囲が、0.70<E<0.85を満足するものであっても良い。
更にまた、磁性膜が、Fe1-B-C CrB CoC 合金磁性
薄膜に代えて、FeF Co1-F合金磁性膜から成り、F
F Co1-F 合金磁性膜の組成範囲が、0.65<F<0.95
を満足するものであっても良い。そして、上記の各種の
合金磁性膜に総濃度で10at%以下のTi,Ta及び
/又はRuが添加される場合もある。
As a fourth means of the present invention, a magnetoresistive element having a magnetoresistive effect film composed of an artificial lattice film in which a laminated structure including at least a magnetic film and a non-magnetic conductive film is laminated for two cycles or more as one lamination cycle. In, the magnetic film is Fe
1-BC Cr B Co C alloy magnetic thin film, non-magnetic conductive film Cu, Cr or CuCr, Fe 1-BC
The composition range of the Cr B Co C alloy magnetic thin film is 0.05 <B <0.15.
And 0.50 <C <0.60 are satisfied. The thickness of the magnetic film is preferably 300 Å or less. Further, the magnetic film, instead of the Fe 1-BC Cr B Co C alloy magnetic thin film made of Fe D Al 1-D alloy magnetic film, Fe D Al
The composition range of the 1-D alloy magnetic film may satisfy 0.75 <D <0.95. Furthermore, the magnetic film is Fe 1-BC
In place of the Cr B Co C alloy magnetic thin film, a Ni E Co 1-E alloy magnetic film is formed, and the composition range of the Ni E Co 1-E alloy magnetic film satisfies 0.70 <E <0.85. good.
Furthermore, the magnetic film is made of a Fe F Co 1-F alloy magnetic film in place of the Fe 1-BC Cr B Co C alloy magnetic thin film,
e The composition range of the F Co 1-F alloy magnetic film is 0.65 <F <0.95.
May be satisfied. Then, Ti, Ta and / or Ru in a total concentration of 10 at% or less may be added to the above various alloy magnetic films.

【0023】本発明の第5の手段としては、磁気ギャッ
プgを持つ磁気コアを備えた磁気誘導素子において、そ
の磁気コアが、軟磁性薄膜と非磁性薄膜とを順次積み重
ねた積層構造を有しており、その軟磁性薄膜が、コバル
トCo,ハフニウムHf,タンタルTa,パラジウムP
dの4元素非晶質合金から成り、その非磁性薄膜11B
が、シリコンSi,アルミニウムAl,酸素O及び窒素
Nから成ることを特徴とする。かかる場合において、軟
磁性薄膜のコバルトCo,ハフニウムHf,タンタルT
a,パラジウムPdの組成比は、Co(1-X-Y-Z) HfX
TaY PdZ とすると、 3.0≦X≦4.0 at%,4.5 ≦
Y≦5.5 at%,1.3 ≦Z≦2.3 at%であることが望
ましい。さらに、その軟磁性薄膜の一層の膜厚が1500〜
3000〔Å〕であり、非磁性薄膜の一層の膜厚が50〜15
0 〔Å〕であり、軟磁性薄膜と非磁性薄膜との積層数が
偶数であることが望ましい。
As a fifth means of the present invention, in a magnetic induction element having a magnetic core having a magnetic gap g, the magnetic core has a laminated structure in which a soft magnetic thin film and a non-magnetic thin film are sequentially stacked. The soft magnetic thin film is composed of cobalt Co, hafnium Hf, tantalum Ta, and palladium P.
A non-magnetic thin film 11B composed of a four-element amorphous alloy of d
Is composed of silicon Si, aluminum Al, oxygen O and nitrogen N. In such a case, cobalt Co, hafnium Hf, tantalum T of the soft magnetic thin film
The composition ratio of a and palladium Pd is Co (1-XYZ) Hf X
If Ta Y Pd Z , 3.0 ≦ X ≦ 4.0 at%, 4.5 ≦
It is desirable that Y ≦ 5.5 at% and 1.3 ≦ Z ≦ 2.3 at%. Furthermore, the layer thickness of the soft magnetic thin film is 1500 ~
3000 [Å], and the thickness of one layer of non-magnetic thin film is 50-15
It is 0 [Å], and it is desirable that the number of stacked soft magnetic thin films and non-magnetic thin films is an even number.

【0024】そして、薄膜磁気ヘッドとしては、上述の
ような構成の磁気抵抗素子と磁気誘導素子とを積層して
なることが望ましい。
The thin film magnetic head is preferably formed by laminating the magnetoresistive element and the magnetic induction element having the above structure.

【0025】[0025]

【作用】第1の手段によれば、上述のような単層構造の
磁気抵抗効果膜を有する磁気抵抗素子では、磁気抵抗膜
に一定のセンス電流を印加しておくと、磁気記録媒体か
らの漏れ磁界の変化によって、磁気抵抗膜の抵抗変化に
対応した電圧変化が得られ、漏れ磁界の向きを検出でき
るが、ここで、交換結合膜を、50at. %MnFeに対
してCu,Ni,PdまたはCoを25at. %以下の添
加物総濃度で添加した3〜6元合金薄膜で構成すると、
交換結合膜の電気抵抗値が、従来の交換結合膜に用いら
れていたMnFe膜の電気抵抗値に比して高いため、こ
のタイプの磁気抵抗素子では、磁気抵抗効果膜に印加さ
れたセンス電流が交換結合膜の方に分流しにくくなる。
それ故、抵抗値変化のある磁気抵抗効果膜に流れる電流
がより多くなるので、出力電圧変化ΔV(=ΔR・I)
が増大し、再生感度が向上する。また、第2の手段によ
れば、人工格子膜からなる磁気抵抗効果膜を用いた磁気
抵抗素子においては、磁気抵抗効果が上記の単層構造の
磁気抵抗効果膜のメカニズムとは異なり、磁性膜の自発
磁化の配列(平行又は反平行)によって伝導電子のスピ
ン散乱確率が変化することにより起こる巨大磁気抵抗効
果を利用するものであるが、交換結合膜を、MnにC
u,Ni,PdまたはCoを25at. %以下の添加物総
濃度で添加した2〜4元合金薄膜から構成すると、交換
結合膜の電気抵抗値が従来の交換結合膜に用いられてい
たMnFe膜の電気抵抗値に比して小さいため、このタ
イプの磁気抵抗素子では、磁気抵抗効果膜全体の電気抵
抗値ρを小さくでき、相対的に磁気抵抗変化率がΔρ/
ρ増大し、再生感度が向上する。いずれのタイプにおい
ても再生感度の向上によって高密度記録の再生に有意義
となる。
According to the first means, in the magnetoresistive element having the magnetoresistive film having the single-layered structure as described above, when a constant sense current is applied to the magnetoresistive film, the magnetoresistive film is removed from the magnetic recording medium. By changing the leakage magnetic field, a voltage change corresponding to the resistance change of the magnetoresistive film can be obtained, and the direction of the leakage magnetic field can be detected. Here, the exchange coupling film is changed to Cu, Ni, Pd with respect to 50 at.% MnFe. Or, if it is composed of a ternary to ternary alloy thin film in which Co is added at a total additive concentration of 25 at.% Or less,
Since the electric resistance value of the exchange coupling film is higher than the electric resistance value of the MnFe film used in the conventional exchange coupling film, in this type of magnetoresistive element, the sense current applied to the magnetoresistive effect film is used. Is more difficult to split into the exchange coupling membrane.
Therefore, the amount of current flowing through the magnetoresistive film having a change in resistance value becomes larger, so that the output voltage change ΔV (= ΔR · I).
And the reproduction sensitivity is improved. According to the second means, in the magnetoresistive element using the magnetoresistive effect film made of the artificial lattice film, the magnetoresistive effect is different from the mechanism of the magnetoresistive effect film having the single-layer structure described above. The giant magnetoresistive effect, which occurs when the spin scattering probability of conduction electrons is changed by the arrangement of the spontaneous magnetization (parallel or antiparallel), is used.
When composed of a 2-4 quaternary alloy thin film in which u, Ni, Pd or Co is added at a total additive concentration of 25 at.% or less, the electrical resistance value of the exchange coupling film is the MnFe film used in the conventional exchange coupling film. Since this is smaller than the electric resistance value of, the magnetoresistive element of this type can reduce the electric resistance value ρ of the entire magnetoresistive effect film, and the magnetoresistance change rate is relatively Δρ /
ρ increases, and the reproduction sensitivity improves. In any of the types, the improvement of the reproduction sensitivity is meaningful for the reproduction of high density recording.

【0026】第3の手段によれば、磁気抵抗効果膜が単
層の磁性膜である場合は、交換結合膜にMnCoを主と
する反強磁性膜又はフェリ磁性膜を用いることによっ
て、磁性膜に対する良好な磁化制御が可能であり、磁気
抵抗変化率が大で、磁界感度も高い磁気抵抗素子を得る
ことができる。また交換結合膜がFeMn系合金ではな
いので耐食性も高い。更に、Ru,Re,Ir,Pd,
Fe,Ni,Cu,Sc,Y,Ti,Zr,Hf,T
h,V,Nb,Ta,Pa,Cr,Mo,W,Tc,N
p,Zn,Al,Si,Au,Pt及びAgから成る群
から選ばれた少なくとも1種の元素を添加することによ
って、耐熱性等の一層の向上を図ることができる。更
に、磁気抵抗効果膜が人工格子膜である場合、交換結合
膜にMnCoを主とする反強磁性膜又はフェリ磁性膜を
用いることによって、隔層の磁性膜の磁気異方性が制御
可能であり、大きな磁気抵抗変化率を得ることができ、
磁気感度の向上に資する。また酸化工程も不要であるの
で、低製造コストを実現できる。
According to the third means, when the magnetoresistive film is a single-layer magnetic film, an antiferromagnetic film mainly composed of MnCo or a ferrimagnetic film is used as the exchange coupling film, whereby the magnetic film is formed. It is possible to obtain a magnetoresistive element capable of excellent magnetization control, having a large magnetoresistance change rate, and high magnetic field sensitivity. Further, since the exchange coupling film is not a FeMn-based alloy, it has high corrosion resistance. Furthermore, Ru, Re, Ir, Pd,
Fe, Ni, Cu, Sc, Y, Ti, Zr, Hf, T
h, V, Nb, Ta, Pa, Cr, Mo, W, Tc, N
By adding at least one element selected from the group consisting of p, Zn, Al, Si, Au, Pt and Ag, heat resistance and the like can be further improved. Furthermore, when the magnetoresistive film is an artificial lattice film, the magnetic anisotropy of the magnetic film in the barrier layer can be controlled by using an antiferromagnetic film mainly containing MnCo or a ferrimagnetic film as the exchange coupling film. Yes, a large magnetoresistance change rate can be obtained,
Contributes to the improvement of magnetic sensitivity. Further, since an oxidation step is unnecessary, low manufacturing cost can be realized.

【0027】そしてかかる人工格子膜のMnCo合金膜
に、上述の元素を添加したものにおいても耐熱性の向上
を期すことができる。
Further, even if the above-mentioned elements are added to the MnCo alloy film of the artificial lattice film, the heat resistance can be improved.

【0028】第4の手段によれば、磁気抵抗膜が、Fe
1-B-C CrB CoC (コバルト・クロム・鉄)合金磁性
薄膜から成る磁性膜、FeD Al1-D (アルミニウム・
鉄)合金磁性膜から成る磁性膜、NiE Co1-E 合金磁
性膜から成る磁性膜、又はFeF Co1-F 合金磁性膜か
ら成る磁性膜と、Cu(銅),Cr(クロム),あるい
はCuCr(クロム・銅)から成る非磁性伝導膜とが交
互に2回以上積層された人工格子膜であり、Fe1-B-C
CrB CoC 合金磁性薄膜の組成範囲は0.05<B<0.1
5,0.50<C<0.60、FeD Al1-D 合金磁性膜の組成
範囲は0.75<D<0.95、NiE Co1-E 合金磁性膜の組
成範囲は0.70<E<0.85、FeF Co1-F合金磁性膜の
組成範囲は0.65<F<0.95とすることにより、磁気抵抗
変化率の増大を図ることができる。例えば、従来例に比
べて5%以上の高い磁気抵抗変化率が得ることができ
る。また、本発明の磁気抵抗体では非磁性伝導膜の厚さ
を調整し、隔層の磁性膜の磁化制御に交換結合膜を用
い、かつ他方の磁性膜にはFeNi等の軟磁性膜を用い
ることにより、磁界感度の向上を図ることができる。例
えば、磁性膜に磁歪定数の比較的小さい(<10-6)組
成域であるFeCrCo合金薄膜,FeAl合金薄膜,
NiCo合金薄膜及びFeNi合金薄膜を用いることに
より、磁性膜の磁歪定数が高い場合に生ずる膜に印加さ
れる応力から逆磁歪効果により誘起される磁気抵抗の飽
和磁界強度(磁界感度)のバラツキや量産される素子間
の特性のばらつきを低下させ、信頼性を向上させること
ができる。この結果、良品率の向上を図ることが可能と
なる。なお、磁性膜や非磁性伝導膜の成膜の際に、分子
線蒸着に比べて成膜速度の速い、イオンビームスパッタ
法等を用いることにより、磁気抵抗効果膜の作製に要す
るコスト低減を図ることができる。さらに、上記各種の
合金磁性膜に総濃度で10〔at%〕以下のTi,Ta
及び/又はRu(ルテニウム)が添加されている場合
は、従来例に比べて、磁気抵抗効果膜の耐食性の向上を
図ることができる。
According to the fourth means, the magnetoresistive film is made of Fe.
1-BC Cr B Co C (cobalt-chromium-iron) alloy magnetic thin film, Fe D Al 1-D (aluminum
A magnetic film formed of an iron) alloy magnetic film, a magnetic film formed of a Ni E Co 1-E alloy magnetic film, or a magnetic film formed of a Fe F Co 1-F alloy magnetic film, and Cu (copper), Cr (chrome), Alternatively, it is an artificial lattice film in which a non-magnetic conductive film made of CuCr (chromium / copper) is alternately laminated two or more times, and Fe 1-BC
The composition range of the Cr B Co C alloy magnetic thin film is 0.05 <B <0.1.
5, 0.50 <C <0.60, the composition range of the Fe D Al 1-D alloy magnetic film is 0.75 <D <0.95, and the composition range of the Ni E Co 1-E alloy magnetic film is 0.70 <E <0.85, Fe F Co 1 By setting the composition range of the -F alloy magnetic film to be 0.65 <F <0.95, it is possible to increase the magnetoresistance change rate. For example, a high magnetoresistance change rate of 5% or more can be obtained as compared with the conventional example. Further, in the magnetoresistive element of the present invention, the thickness of the non-magnetic conductive film is adjusted, the exchange coupling film is used for controlling the magnetization of the magnetic film of the barrier layer, and the soft magnetic film such as FeNi is used for the other magnetic film. As a result, the magnetic field sensitivity can be improved. For example, in a magnetic film, a FeCrCo alloy thin film, a FeAl alloy thin film having a relatively small magnetostriction constant (<10 −6 ) composition range,
By using the NiCo alloy thin film and the FeNi alloy thin film, variations in saturation magnetic field strength (magnetic field sensitivity) of magnetoresistance induced by the inverse magnetostrictive effect from the stress applied to the film when the magnetostriction constant of the magnetic film is high, and mass production It is possible to reduce variations in the characteristics of the devices to be manufactured and improve the reliability. As a result, it is possible to improve the yield rate. When forming a magnetic film or a non-magnetic conductive film, the cost required for producing a magnetoresistive film is reduced by using an ion beam sputtering method or the like, which has a faster film forming rate than molecular beam evaporation. be able to. Further, the total concentration of Ti and Ta in the various alloy magnetic films is 10 [at%] or less.
When Ru and / or Ru (ruthenium) is added, the corrosion resistance of the magnetoresistive effect film can be improved as compared with the conventional example.

【0029】第5の手段によれば、磁気誘導素子の磁気
コアは軟磁性薄膜と非磁性薄膜とを順次積み重ねた積層
構造であり、しかも、軟磁性薄膜はCo(1-X-Y-Z) Hf
X TaY PdZ の4元素非晶質合金から成り、非磁性薄
膜はSi,Al,O及びNから成るものであるから、デ
ータ処理の高速化,高密度化に伴い書込み周波数が高く
なった場合に、その透磁率の低下を極力抑制することが
可能となる。殊に、軟磁性薄膜と非磁性薄膜とを偶数回
積み重ねた磁気コアでは、安定した単磁区構造となるた
め、磁壁移動の抑制が良好となり、透磁率の低下を極力
抑制でき、高速高密度の記録に好適となる。また、Ar
中のスパッタにより非磁性薄膜を連続して成膜すること
ができることから、製造コストの低減を図ることができ
る。
According to the fifth means, the magnetic core of the magnetic induction element has a laminated structure in which a soft magnetic thin film and a non-magnetic thin film are sequentially stacked, and the soft magnetic thin film is Co (1-XYZ) Hf.
Consisting X Ta Y Pd Z of 4 elements amorphous alloy, since the non-magnetic thin film is made of Si, Al, O and N, faster data processing, write frequency increases in density becomes higher In this case, it is possible to suppress the decrease in magnetic permeability as much as possible. In particular, a magnetic core in which a soft magnetic thin film and a non-magnetic thin film are stacked an even number of times has a stable single domain structure, so that the domain wall movement can be suppressed well, and the decrease in permeability can be suppressed as much as possible. Suitable for recording. Also, Ar
Since the non-magnetic thin film can be continuously formed by the inside sputtering, the manufacturing cost can be reduced.

【0030】[0030]

【実施例】次に、本発明の実施例に係る薄膜磁気ヘッド
について説明をする。
EXAMPLE Next, a thin film magnetic head according to an example of the present invention will be described.

【0031】〔実施例1〕図1(a)は本発明の実施例
1に係る磁気抵抗素子の構造を示す断面図である。
[Embodiment 1] FIG. 1A is a sectional view showing the structure of a magnetoresistive element according to Embodiment 1 of the present invention.

【0032】本例の磁気抵抗素子20は、基板1の表面
側に、補助膜31としてのNiCr膜と、MnFeベー
スにCu,Ni,PdまたはCoが添加された交換結合
膜32と、磁気抵抗効果膜33としてのNiFe膜(N
iが82at. %)と、非磁性膜34と、シャントバイア
ス膜または軟磁性バイアス膜からなる横バイアス膜35
とが順次積層された構造を有している。ここで、補助膜
31は、その上層側に成膜される交換結合膜32の結晶
構造を面心立方構造で成長促進する。このような磁気抵
抗素子20では、磁気記録媒体からの漏れ磁界の変化に
よって磁気抵抗効果膜33の電気抵抗が変化することを
利用して磁気記録媒体から漏洩する磁束の方向が検出さ
れる。すなわち、磁気抵抗効果膜33に電極膜を介して
一定のセンス電流を印加した状態で、磁気記録媒体から
の漏れ磁界が変化すると、磁気抵抗効果膜33の電気抵
抗値が変化するため、その抵抗変化に対応した電圧変化
が得られる結果、磁束の方向が検出される。横バイアス
膜35は、横バイアス磁界を磁気抵抗効果膜33に対し
て最適バイアス点を設定する。非磁性膜34はその横バ
イアス磁界を調整する。交換結合膜32は、磁気抵抗効
果膜33に直に接触する状態にあって、縦バイアス磁界
を磁気抵抗効果膜33に印加して磁気抵抗効果膜33を
単磁区化し、多磁区性および磁壁の移動に起因するバル
クハウゼンノイズを抑制する。
The magnetoresistive element 20 of the present example has a NiCr film as an auxiliary film 31, an exchange coupling film 32 in which Cu, Ni, Pd or Co is added to an MnFe base on the surface side of the substrate 1, and a magnetoresistive film. NiFe film (N
i is 82 at.%), a non-magnetic film 34, and a lateral bias film 35 made of a shunt bias film or a soft magnetic bias film.
And has a structure in which they are sequentially stacked. Here, the auxiliary film 31 promotes the growth of the crystal structure of the exchange coupling film 32 formed on the upper layer side by a face-centered cubic structure. In such a magnetoresistive element 20, the direction of the magnetic flux leaking from the magnetic recording medium is detected by utilizing the fact that the electric resistance of the magnetoresistive effect film 33 changes due to the change of the leakage magnetic field from the magnetic recording medium. That is, when the leakage magnetic field from the magnetic recording medium changes in a state where a constant sense current is applied to the magnetoresistive effect film 33 via the electrode film, the electric resistance value of the magnetoresistive effect film 33 changes. As a result of obtaining the voltage change corresponding to the change, the direction of the magnetic flux is detected. The lateral bias film 35 sets the optimum bias point for the lateral bias magnetic field with respect to the magnetoresistive effect film 33. The non-magnetic film 34 adjusts its lateral bias magnetic field. The exchange coupling film 32 is in a state of being in direct contact with the magnetoresistive effect film 33, and a longitudinal bias magnetic field is applied to the magnetoresistive effect film 33 to make the magnetoresistive effect film 33 into a single magnetic domain, thereby providing multi-domain property and domain wall. Barkhausen noise due to movement is suppressed.

【0033】ここで、交換結合膜32は、磁気抵抗効果
膜33に直接積層された状態にあるため、磁気抵抗効果
膜33に印加されたセンス電流の一部が交換結合膜32
の方に分流すると、磁気抵抗効果膜33から大きな電圧
変化(再生出力)を得ることができなくなる。そこで、
本例においては、交換結合膜33を、Mn50at. %の
MnFe合金に、Cu,Ni,PdまたはCoなどの添
加物が25at. %以下の添加物総濃度をもって含まれる
多元合金薄膜として形成する。
Since the exchange coupling film 32 is directly laminated on the magnetoresistive film 33, a part of the sense current applied to the magnetoresistive film 33 is partially exchanged.
If the current is shunted to (1), a large voltage change (reproduction output) cannot be obtained from the magnetoresistive effect film 33. Therefore,
In the present example, the exchange coupling film 33 is formed as a multi-component alloy thin film in which an additive such as Cu, Ni, Pd or Co is contained in an MnFe alloy having Mn of 50 at.% With a total additive concentration of 25 at.% Or less.

【0034】このような交換結合膜32は、イオンビー
ムスパッタ法により成膜し、その成膜条件は次の通りで
ある。
The exchange coupling film 32 is formed by the ion beam sputtering method under the following film forming conditions.

【0035】成膜条件 アルゴンガス圧 PAr=1.0×10-4Torr 加速電圧 VACC =0.5kV 加速電流 IACC =120mA 基板温度 TSUB <43℃ ターゲット 6″φ(純度 99.9%以上) この条件により成膜した交換結合膜32の組成は、表1
に示す通りであって、交換結合膜32から交換結合力が
得られる組成範囲は、表1の矢印で規定する範囲内であ
った。
Film forming conditions Argon gas pressure P Ar = 1.0 × 10 −4 Torr Accelerating voltage V ACC = 0.5 kV Accelerating current I ACC = 120 mA Substrate temperature T SUB <43 ° C. Target 6 ″ φ (Purity 99.9) % Or more) The composition of the exchange coupling film 32 formed under these conditions is shown in Table 1.
The composition range in which the exchange coupling force is obtained from the exchange coupling film 32 is within the range defined by the arrow in Table 1.

【0036】[0036]

【表1】 [Table 1]

【0037】すなわち、Mnが50at. %のMnFeに
Cuを約4at. %〜約11at. %添加した合金、Mnが
50at. %MnFeにNiを約11at. %〜約20at.
%添加した合金、Mnが50at. %MnFeにPdを約
10at. %〜約20at. %添加した合金、Mnが50a
t. %MnFeにCoを約5at. %以下に添加した合金
において、NiFe膜との積層により交換結合を示し、
交換結合膜32としての機能が発揮されることが判明し
た。
That is, an alloy in which Cu is added to MnFe having an Mn of 50 at.% And Cu of about 4 at.% To about 11 at.%, And Mn of 50 at.% MnFe with Ni of about 11 at.% To about 20 at.
% Alloy with Mn of 50 at.% MnFe alloy with Pd of about 10 at.% To about 20 at.%, Mn of 50 a
In an alloy in which Co is added to t.% MnFe at about 5 at.% or less, exchange coupling is exhibited by stacking with a NiFe film,
It was found that the function as the exchange coupling film 32 is exerted.

【0038】また、表1に示す組成のうち、交換結合力
が得られる組成範囲においては、いずれの合金(MnF
eCu,MnFeNi,MnFePd,MnFeCo)
も、Mnが50at. %のMnFe合金(2元合金)に比
較して電気抵抗値が高いことが確認された。従って、上
記の組成範囲内にある合金を交換結合膜32として使用
することによって、磁気抵抗効果膜33に縦バイアスを
印加可能であることに加えて、交換結合膜32の電気抵
抗値が従来の磁気ヘッドにおいて交換結合膜として使用
している50at. %MnFe膜の電気抵抗値に比して充
分に高いため、磁気抵抗効果膜33に印加されたセンス
電流が交換結合膜32の方に分流しにくい。それ故、小
さなセンス電流で大きな電圧変化(再生出力)を得るこ
とができるので、感度の向上とともに、低消費電力化を
実現できる。
Among the compositions shown in Table 1, in the composition range where the exchange coupling force is obtained, which alloy (MnF
eCu, MnFeNi, MnFePd, MnFeCo)
It was also confirmed that the electric resistance value was higher than that of the MnFe alloy (binary alloy) having Mn of 50 at.%. Therefore, by using an alloy within the above composition range as the exchange coupling film 32, it is possible to apply a longitudinal bias to the magnetoresistive effect film 33, and the electric resistance value of the exchange coupling film 32 is the same as that of the conventional one. Since the electric resistance value of the 50 at.% MnFe film used as the exchange coupling film in the magnetic head is sufficiently high, the sense current applied to the magnetoresistive film 33 is shunted to the exchange coupling film 32. Hateful. Therefore, a large voltage change (reproduction output) can be obtained with a small sense current, so that sensitivity can be improved and power consumption can be reduced.

【0039】なお、交換結合膜32として、50at. %
MnFeにCu,Ni,PdまたはCoなどを添加した
組成については、図1(a)に示す積層構造を有する磁
気抵抗素子20に限らず、図1(b),(c)に示す構
造の磁気抵抗素子21,22にも採用することができ
る。すなわち、図1(b)に示す磁気抵抗素子(実施例
1の変形例)21のように、基板1の表面に、補助膜3
1を形成することなく、交換結合膜32,磁気抵抗効果
膜33,非磁性膜34および横バイアス膜35の順序で
積層された構造にしてもよい。この場合には、補助膜3
1に代えて、基板1によって、交換結合膜33の結晶構
造を制御してもよい。一方、図1(c)に示す磁気抵抗
素子(実施例1の別の変形例)22においては、図1
(a)に示す積層順序とは上下逆に、基板1の表面に、
横バイアス膜35,非磁性膜34,磁気抵抗効果膜33
および交換結合膜32の順序で積層した構造になってい
る。この場合には、磁気抵抗効果膜33として用いたN
iFe膜によって交換結合膜32の結晶構造を制御して
もよい。
As the exchange coupling film 32, 50 at.%
The composition obtained by adding Cu, Ni, Pd, Co, or the like to MnFe is not limited to the magnetoresistive element 20 having the laminated structure shown in FIG. 1A, but the magnetic structure shown in FIGS. It can also be used for the resistance elements 21 and 22. That is, as in the magnetoresistive element (modification of Example 1) 21 shown in FIG. 1B, the auxiliary film 3 is formed on the surface of the substrate 1.
Instead of forming 1, the exchange coupling film 32, the magnetoresistive effect film 33, the nonmagnetic film 34, and the lateral bias film 35 may be laminated in this order. In this case, the auxiliary film 3
Instead of 1, the substrate 1 may control the crystal structure of the exchange coupling film 33. On the other hand, in the magnetoresistive element (another modification of the first embodiment) 22 shown in FIG.
Upside down from the stacking order shown in (a), on the surface of the substrate 1,
Lateral bias film 35, non-magnetic film 34, magnetoresistive film 33
And the exchange coupling film 32 are laminated in this order. In this case, N used as the magnetoresistive film 33 is used.
The crystal structure of the exchange coupling film 32 may be controlled by the iFe film.

【0040】このように、単層構造の磁気抵抗効果膜3
3を備える磁気抵抗素子20,21,22においては、
交換結合膜32としてMn50at. %のMnFe合金
に、Cu,Ni,PdまたはCoなどの添加物が25a
t. %以下の添加物総濃度をもって含まれる多元合金薄
膜となっているため、交換結合膜33の電気抵抗値が従
前に比して大きくなり、高感度の磁気再生特性を得るこ
とができる。
As described above, the magnetoresistive film 3 having a single-layer structure is used.
In the magnetoresistive elements 20, 21, and 22 provided with 3,
As the exchange coupling film 32, an MnFe alloy containing 50 at.% Of Mn and 25 a of an additive such as Cu, Ni, Pd or Co is used.
Since it is a multi-component alloy thin film containing a total additive concentration of t.% or less, the electric resistance value of the exchange coupling film 33 becomes larger than before, and a highly sensitive magnetic reproducing characteristic can be obtained.

【0041】〔実施例2〕図2は、本発明の実施例に実
施例2に係る磁気抵抗素子の構造を示す断面図である。
[Second Embodiment] FIG. 2 is a sectional view showing the structure of a magnetoresistive element according to a second embodiment of the present invention.

【0042】本例の磁気抵抗素子23においては、磁気
抵抗効果膜として人工格子膜からなる多層の磁気抵抗効
果膜40を有している。すなわち、図2に示すように、
磁気抵抗素子23は、基板1上に、補助膜31,人工格
子膜からなる多層の磁気抵抗効果膜40,非磁性膜34
および横バイアス膜35の順序で積層した構造を有して
おり、磁気抵抗効果膜40は、図3に示すように、基板
41(基板1と補助膜31を含む)上に、Cu膜又はC
r膜の非磁性伝導膜45,NiFe膜又はFe膜の第1
の磁性膜44,Cu,Ni,Pd又はCoを添加物とし
て含むMnベースの交換結合膜43,非磁性伝導膜4
5,及びNiFe膜,Fe膜,Co膜又はFeCo膜の
第2の磁性膜46の層順序を1積層周期構造として、2
周期以上積層した人工格子膜である。
The magnetoresistive element 23 of this example has a multi-layered magnetoresistive film 40 made of an artificial lattice film as a magnetoresistive film. That is, as shown in FIG.
The magnetoresistive element 23 includes the auxiliary film 31, a multi-layered magnetoresistive film 40 including an artificial lattice film, and a nonmagnetic film 34 on the substrate 1.
And the lateral bias film 35 are laminated in this order. The magnetoresistive film 40 is formed of a Cu film or a C film on a substrate 41 (including the substrate 1 and the auxiliary film 31) as shown in FIG.
First non-magnetic conductive film 45 of r film, NiFe film or Fe film
Magnetic film 44, Mn-based exchange coupling film 43 containing Cu, Ni, Pd or Co as an additive, and non-magnetic conductive film 4
5, and the second magnetic film 46 of the NiFe film, the Fe film, the Co film, or the FeCo film has a layer sequence of one stacking period structure, and 2
It is an artificial lattice film that is laminated for more than a period.

【0043】このような構成の磁気抵抗素子23におい
ても、磁気抵抗効果膜40では、磁気記録媒体からの漏
れ磁界の変化によって電気抵抗が変化することを利用し
て磁気記録媒体から漏洩する磁束の方向が検出される。
すなわち、磁気抵抗効果膜40に電極膜を介して一定の
センス電流を印加しておくと、磁気記録媒体からの漏れ
磁界の変化によって、磁気抵抗効果膜40の抵抗変化に
対応した電圧変化が得られる。ここで、横バイアス膜3
5は横バイアス磁界を磁気抵抗効果膜40に付与し最適
バイアス点を設定する。
Also in the magnetoresistive element 23 having such a structure, in the magnetoresistive effect film 40, the electric resistance changes due to the change of the leakage magnetic field from the magnetic recording medium, so that the magnetic flux leaking from the magnetic recording medium is utilized. The direction is detected.
That is, when a constant sense current is applied to the magnetoresistive film 40 via the electrode film, a change in the leakage magnetic field from the magnetic recording medium causes a voltage change corresponding to the resistance change of the magnetoresistive film 40. To be Here, the lateral bias film 3
Reference numeral 5 applies a lateral bias magnetic field to the magnetoresistive film 40 to set an optimum bias point.

【0044】人工格子膜の磁気抵抗効果膜40における
交換結合膜43はその表面側に形成される第1の磁性膜
44に一方向性の異方性を付与するように磁化の方向を
制御する機能を有し、磁気抵抗効果膜40の第1及び第
2の磁性膜44,46の磁化は、図23に示したよう
に、外部磁場Hexが印加されない状態(消磁状態、H
ex=0)では、非磁性伝導膜45を挟んで上層側の第
2の磁性膜46の磁化と下層側の第1の磁性膜44の磁
化の間で反平行、すなわち、隔層毎に反平行に配列され
る一方、外部磁場Hexが印加された状態では平行に配
列される。それ故、外部磁場がかかると、つまり、磁気
記録媒体からの漏れ磁界が変化すると、磁気抵抗効果膜
40の第1及び第2の磁性膜44,46の自発磁化の配
列による伝導電子に及ぼすスピン散乱確率が変化し、巨
大磁気抵抗効果が現れ、磁気抵抗効果膜40の電気抵抗
値が変化する。
The exchange coupling film 43 in the magnetoresistive film 40 of the artificial lattice film controls the direction of magnetization so as to impart unidirectional anisotropy to the first magnetic film 44 formed on the surface side thereof. As shown in FIG. 23, the magnetization of the first and second magnetic films 44 and 46 of the magnetoresistive effect film 40, which has a function, is in a state where the external magnetic field Hex is not applied (demagnetization state, H
ex = 0), the magnetization of the second magnetic film 46 on the upper layer side and the magnetization of the first magnetic film 44 on the lower layer side are antiparallel to each other with the non-magnetic conductive film 45 sandwiched therebetween, that is, the anti-magnetism is different between the layers. While they are arranged in parallel, they are arranged in parallel when the external magnetic field Hex is applied. Therefore, when an external magnetic field is applied, that is, when the leakage magnetic field from the magnetic recording medium changes, the spin exerted on the conduction electrons due to the arrangement of the spontaneous magnetization of the first and second magnetic films 44 and 46 of the magnetoresistive film 40. The scattering probability changes, the giant magnetoresistive effect appears, and the electric resistance value of the magnetoresistive film 40 changes.

【0045】このような人工格子膜の磁気抵抗効果膜4
0を有する磁気抵抗素子23において、交換結合膜43
は、磁気抵抗効果膜40の抵抗変化が飽和するのに必要
な磁界を小さくしてその感度を高める機能を有すること
が確認されていると共に、非磁性伝導膜45と同様に、
磁気抵抗効果膜40の全体的な抵抗値(ρ0 )を低減し
て、全体の抵抗に対する磁性膜の抵抗変化(Δρ)の比
である磁気抵抗変化率(Δρ/ρ0 )を大きくする機能
も有する。
Magnetoresistive film 4 of such an artificial lattice film
In the magnetoresistive element 23 having 0, the exchange coupling film 43
Has been confirmed to have the function of reducing the magnetic field required to saturate the resistance change of the magnetoresistive film 40 and increasing its sensitivity, and like the nonmagnetic conductive film 45,
A function of reducing the overall resistance value (ρ 0 ) of the magnetoresistive film 40 and increasing the magnetoresistance change rate (Δρ / ρ 0 ) which is the ratio of the resistance change (Δρ) of the magnetic film to the overall resistance. Also has.

【0046】本例においては、人工格子膜の交換結合膜
43を、純MnにCu,Ni,PdまたはCoを25a
t%以下の添加物総濃度をもって含まれる合金として形
成してある。ここで、交換結合膜43は、イオンビーム
スパッタ法により成膜し、その成膜条件は次の通りであ
る。
In this example, the exchange coupling film 43 of the artificial lattice film is made of pure Mn containing Cu, Ni, Pd or Co of 25a.
It is formed as an alloy containing a total additive concentration of t% or less. Here, the exchange coupling film 43 is formed by an ion beam sputtering method, and the film forming conditions are as follows.

【0047】成膜条件 アルゴンガス圧 PAr=1.0×10-4Torr 加速電圧 VACC =0.5kV 加速電流 IACC =120mA 基板温度 TSUB <43℃ ターゲット 6″φ(純度 99.9%以上) この条件により成膜した交換結合膜53は、表2に示す
通りであって、交換結合力が得られる組成範囲は、表2
の矢印で示す範囲である。
Film forming conditions Argon gas pressure P Ar = 1.0 × 10 −4 Torr Accelerating voltage V ACC = 0.5 kV Accelerating current I ACC = 120 mA Substrate temperature T SUB <43 ° C. Target 6 ″ φ (Purity 99.9) % Or more) The exchange coupling film 53 formed under these conditions is as shown in Table 2, and the composition range in which the exchange coupling force is obtained is shown in Table 2.
Is the range indicated by the arrow.

【0048】[0048]

【表2】 [Table 2]

【0049】すなわち、MnにCuを約4at. %〜約1
5at. %添加した合金、MnにNiを約14at. %〜約
30at. %添加した合金、MnにPdを約13at. %〜
約25at. %添加した合金、MnにCoを約9at. %〜
約39at. %添加した合金において、磁性膜(例えばN
iFe膜)を積層した際に交換結合を示し、これらの組
成の合金膜は、交換結合膜43として使用可能である。
That is, Cu is added to Mn at about 4 at.% To about 1.
5 at.% Added alloy, Mn to about 14 at.% To about 30 at.% Alloy, and Mn to about 13 at.% To Pd.
Alloy containing approximately 25 at.%, Co in Mn of approximately 9 at.% ~
In the alloy with about 39 at.% Added, a magnetic film (eg N
When an iFe film) is laminated, it exhibits exchange coupling, and alloy films having these compositions can be used as the exchange coupling film 43.

【0050】また、表2に示す組成のうち、交換結合力
が得られる組成範囲においては、いずれの合金(MnC
u,MnNi,MnPd,MnCo)も、純Mnに比し
て電気抵抗値が大きいが、従来の磁気ヘッドの交換結合
膜に使用されているMnFe合金に比して電気抵抗値が
小さくなっている。このため、磁気抵抗効果膜40全体
の抵抗値ρが低減し、磁気抵抗素子23から得られる磁
気抵抗変化率Δρ/ρは相対的に大きい。従って、再生
感度の向上を図ることができる。しかも、磁気抵抗効果
膜40は、非磁性伝導膜45,第1の磁性膜44,交換
結合膜43,非磁性伝導膜45および第2の磁性膜46
の積層構造を1周期構造として2周期以上積層して形成
されており、並列接続の抵抗構造となっているので、磁
気抵抗効果膜40全体の合成抵抗値は小さい。従って、
磁気抵抗変化率が大きい。
Among the compositions shown in Table 2, in the composition range where the exchange coupling force is obtained, which alloy (MnC
u, MnNi, MnPd, MnCo) also has a larger electric resistance value than pure Mn, but has a smaller electric resistance value than the MnFe alloy used for the exchange coupling film of the conventional magnetic head. . Therefore, the resistance value ρ of the entire magnetoresistive effect film 40 decreases, and the magnetoresistance change rate Δρ / ρ obtained from the magnetoresistive element 23 is relatively large. Therefore, the reproduction sensitivity can be improved. Moreover, the magnetoresistive effect film 40 includes the nonmagnetic conductive film 45, the first magnetic film 44, the exchange coupling film 43, the nonmagnetic conductive film 45, and the second magnetic film 46.
The laminated structure is formed by stacking two or more cycles as one cycle structure, and the resistance structure is a parallel connection. Therefore, the combined resistance value of the entire magnetoresistive effect film 40 is small. Therefore,
The rate of change in magnetic resistance is large.

【0051】なお、交換結合膜43として、MnにC
u,Ni,PdまたはCoなどを添加した組成について
は、図2に示す積層構造を有する磁気抵抗素子23に限
らず、図4(a),(b)に示す構造の磁気抵抗素子2
4,25にも採用することができる。すなわち、図4
(a)に示す磁気抵抗素子24は、基板1の表面に、補
助膜32を形成することなく、図3に示す人工格子膜の
磁気抵抗効果膜40を形成し、その表面側に非磁性膜3
4および横バイアス膜35を積層した構造を有してい
る。一方、図4(b)に示す磁気抵抗素子25は、図4
(a)に示す積層構造とは上下逆に、基板1の表面に横
バイアス膜35を形成し、その表面側に、非磁性膜34
および人工格子膜の磁気抵抗効果膜40を積層した構造
を有している。
As the exchange coupling film 43, Mn was replaced with C.
The composition to which u, Ni, Pd or Co is added is not limited to the magnetoresistive element 23 having the laminated structure shown in FIG. 2, but the magnetoresistive element 2 having the structure shown in FIGS. 4A and 4B.
It can also be used for 4, 25. That is, FIG.
In the magnetoresistive element 24 shown in (a), the magnetoresistive effect film 40 of the artificial lattice film shown in FIG. 3 is formed on the surface of the substrate 1 without forming the auxiliary film 32, and the nonmagnetic film is formed on the surface side. Three
4 and the lateral bias film 35 are laminated. On the other hand, the magnetoresistive element 25 shown in FIG.
The lateral bias film 35 is formed on the surface of the substrate 1 upside down from the laminated structure shown in (a), and the nonmagnetic film 34 is formed on the surface side.
And a structure in which the magnetoresistive effect film 40 of the artificial lattice film is laminated.

【0052】以上の通り、実施例1,2においても、交
換結合を示す交換結合膜の組成を変えて、その電気抵抗
値を適正化することによって、感度を向上可能な磁気抵
抗素子を実現しているが、その製造方法のうち、成膜方
法については、イオンビームスパッタ法に限らず、DC
マグネトロンスパッタ法、RFマグネトロンスパッタ法
または蒸着法によって成膜してもよい。
As described above, also in Examples 1 and 2, by changing the composition of the exchange coupling film exhibiting exchange coupling and optimizing the electric resistance value thereof, the magnetoresistive element capable of improving the sensitivity was realized. However, among the manufacturing methods, the film forming method is not limited to the ion beam sputtering method, and DC
The film may be formed by a magnetron sputtering method, an RF magnetron sputtering method or a vapor deposition method.

【0053】また、Mnに対するCu,Ni,Pdまた
はCoの添加量については、各添加物を単独で添加する
場合、複数の添加物を添加する場合のいずれにおいて
も、交換結合を発揮可能なように、25at. %以下の添
加物総濃度に設定することによって、その交換結合膜の
電気抵抗値も適正に設定できる。
Regarding the amount of Cu, Ni, Pd or Co added with respect to Mn, it is possible to exhibit exchange coupling whether each additive is added alone or a plurality of additives are added. In addition, by setting the total concentration of the additive to 25 at.% Or less, the electric resistance value of the exchange coupling film can be properly set.

【0054】〔実施例3〕図5は本発明の実施例3に係
る磁気抵抗素子の層構成を模式的に示す断面図である。
本例の磁気抵抗素子26は単層構造の磁気抵抗効果膜を
有する層構成で、基板1上にNiFeを主とする膜厚3
0nm単層の磁気抵抗効果膜51と、CoMn合金の反
強磁性膜又はフェリ磁性膜である膜厚50nmの交換結
合膜52が順次積層された構造を有している。交換結合
膜52は前述したように磁気抵抗効果膜51の磁化を制
御する膜である。また図示してないが、横バイアス膜,
必要に応じ下地膜及びシャントバイアス膜が形成されて
いる。
[Third Embodiment] FIG. 5 is a sectional view schematically showing the layer structure of a magnetoresistive element according to a third embodiment of the present invention.
The magnetoresistive element 26 of this example has a layer structure having a magnetoresistive effect film having a single-layer structure, and has a film thickness of 3 mainly on NiFe on the substrate 1.
It has a structure in which a 0 nm single-layer magnetoresistive film 51 and an exchange coupling film 52 having a film thickness of 50 nm which is an antiferromagnetic film or a ferrimagnetic film of a CoMn alloy are sequentially laminated. The exchange coupling film 52 is a film that controls the magnetization of the magnetoresistive effect film 51 as described above. Although not shown, the lateral bias film,
A base film and a shunt bias film are formed as needed.

【0055】薄膜は、本例ではイオンビームスパッタ法
を用いて作製した。しかし、一般的な蒸着法,スパッタ
法又は分子ビーム蒸着法であっても構わない。成膜条件
は次の通りである。
The thin film was produced by the ion beam sputtering method in this example. However, a general vapor deposition method, a sputtering method, or a molecular beam vapor deposition method may be used. The film forming conditions are as follows.

【0056】成膜条件 アルゴンガス圧 PAr=1.0×10-4Torr 加速電圧 VACC =0.5kV 減速電圧 −200V 加速電流 IACC =120mA 基板回転 3rpm 基板温度 TSUB <45℃ 基板印加磁界 100〜300Oe ターゲット CoMn,NiFe(純度>9
9.9%) チップ Ru,Re,Ir,Pd,Fe,
Ni,Cu 薄膜製作基板1は、ガラス,Al2 3 −TiC等のセ
ラミックス、酸化マグネシウム、Si等を用いる。基板
1上の平坦度を増すため、及び配向制御のために、下地
膜としてNiCr等の遷移金属合金薄膜を50Å以上成
膜しても良い。
Film forming conditions Argon gas pressure P Ar = 1.0 × 10 −4 Torr Accelerating voltage V ACC = 0.5 kV Decelerating voltage −200 V Accelerating current I ACC = 120 mA Substrate rotation 3 rpm Substrate temperature T SUB <45 ° C. Substrate applied Magnetic field 100-300 Oe target CoMn, NiFe (purity> 9
9.9%) Chip Ru, Re, Ir, Pd, Fe,
For the Ni, Cu thin film production substrate 1, glass, ceramics such as Al 2 O 3 —TiC, magnesium oxide, Si or the like is used. In order to increase the flatness on the substrate 1 and to control the orientation, a transition metal alloy thin film such as NiCr may be formed as a base film of 50 Å or more.

【0057】また下地膜の平坦度を増すため、及び基板
表面を清浄化するために、成膜時又は成膜前に基板加熱
(熱処理)及びイオン照射を行っても良い。
In order to increase the flatness of the base film and to clean the substrate surface, substrate heating (heat treatment) and ion irradiation may be performed during or before film formation.

【0058】図5に示す本例の層構成では、磁気抵抗効
果膜51と交換結合膜52との交換結合磁界により、磁
気抵抗効果膜51には一方向の磁気異方性が生じること
が実験的に観測された。
In the layer structure of the present example shown in FIG. 5, it was tested that the exchange coupling magnetic field between the magnetoresistive effect film 51 and the exchange coupling film 52 causes unidirectional magnetic anisotropy in the magnetoresistive effect film 51. Was observed.

【0059】図6(a)に交換結合膜52のMn組成比
(A)に対する交換結合磁界(He1 )の変化を示す。
この図から明らかなように、0.5<A<0.9におい
て、交換結合が生じており、A〜0.7で交換結合磁界
He1 の極大値を示した。交換結合膜にFeMnを用い
た単層の磁気抵抗効果膜では、交換結合磁界He1 は〜
20Oe程度であるが、本例のように、交換結合膜52
にMn−Coの2元合金薄膜を用いた場合でも20Oe
程度の交換結合磁界He1 を得ることができた。これに
よってNiFe膜の磁化制御が可能となり、MR素子に
用いた場合のバルクハウゼンノイズ低減が可能となる。
図6(b)は交換結合膜52にMnCo膜を用いた場合
とMnFe膜を用いた場合において恒温恒湿下(80°
C,湿度80%)での交換結合磁界He1 の保持時間依
存性を示すグラフである。この図6(b)から判るよう
に、交換結合膜52としてMnCo膜を用いた方が耐食
性に優れている。
FIG. 6A shows changes in the exchange coupling magnetic field (He 1 ) with respect to the Mn composition ratio (A) of the exchange coupling film 52.
As is clear from this figure, exchange coupling occurs at 0.5 <A <0.9, and the maximum value of the exchange coupling magnetic field He 1 is shown at A to 0.7. In a single-layer magnetoresistive effect film using FeMn for the exchange coupling film, the exchange coupling magnetic field He 1 is
Although it is about 20 Oe, as in this example, the exchange coupling film 52
Even when a binary alloy thin film of Mn-Co is used for
An exchange coupling magnetic field He 1 of a certain degree could be obtained. This makes it possible to control the magnetization of the NiFe film and reduce Barkhausen noise when used in an MR element.
FIG. 6B shows a case where the MnCo film and the MnFe film are used as the exchange coupling film 52 under constant temperature and humidity (80 ° C.).
6 is a graph showing the holding time dependence of the exchange coupling magnetic field He 1 at C, 80% humidity. As can be seen from FIG. 6B, the corrosion resistance is superior when the MnCo film is used as the exchange coupling film 52.

【0060】〔実施例4〕本例も図5に示すような単層
構造の磁気抵抗効果膜を有する磁気抵抗素子の例であ
り、実施例3と異なる点はMn−Co2元合金薄膜に所
定の添加元素を添加した交換結合膜にある。製作方法は
実施例3と同様とした。ただ、上記の成膜条件の最後の
項に示すように、MnCoターゲット上に、添加元素
(Ru,Re,Ir,Pd,Fe,Ni,Cu,Sc,
Y,Ti,Zr,Hf,Th,V,Nb,Ta,Pa,
Cr,Mo,W,Tc,Np,Zn,Al,Si,A
u,Pt,Ag)をチップ(形状5×5×1t、3×3
×1t)により供給することによって複合化されたター
ゲットを用い、交換結合膜を成膜している点が異なる。
[Embodiment 4] This embodiment is also an example of a magnetoresistive element having a magnetoresistive film having a single-layer structure as shown in FIG. 5, and the point different from Embodiment 3 is that the Mn--Co binary alloy thin film is predetermined. In the exchange-coupling film to which the additional element of is added. The manufacturing method was the same as in Example 3. However, as shown in the last section of the above film forming conditions, on the MnCo target, additional elements (Ru, Re, Ir, Pd, Fe, Ni, Cu, Sc,
Y, Ti, Zr, Hf, Th, V, Nb, Ta, Pa,
Cr, Mo, W, Tc, Np, Zn, Al, Si, A
u, Pt, Ag) chips (shape 5 × 5 × 1t, 3 × 3)
The difference is that the exchange-coupling film is formed by using the target that has been composited by supplying by x1t).

【0061】図7は交換結合膜にFeMn,MnCo,
MnCoRu,MnCoTiの薄膜を用いた場合の耐熱
試験結果を示す。この耐熱試験は、3.0×10-5Torr
以下まで排気後、100°C〜400°Cの温度で約1
時間保温し、その後大気に取り出してから試料の交換結
合磁界の測定を行ったものである。Ru,Tiを添加し
た交換結合膜(MnCoRu,MnCoTi)の場合
は、高温においても交換結合磁界がRu,Tiを添加し
ないいずれの交換結合膜(FeMn,MnCo)に比し
て低下せず、耐熱性が向上していることが判った。な
お、MnCoはFeMnに比して交換結合磁界の耐熱特
性が良い。
FIG. 7 shows the exchange coupling film with FeMn, MnCo,
The heat resistance test result when a thin film of MnCoRu or MnCoTi is used is shown. This heat resistance test was conducted at 3.0 × 10 -5 Torr
After exhausting to below, at about 1 to 100 ° C-400 ° C
The sample was measured for the exchange coupling magnetic field after being kept warm for a certain period of time and then taken out to the atmosphere. In the case of the exchange coupling film (MnCoRu, MnCoTi) added with Ru and Ti, the exchange coupling magnetic field does not decrease as compared with any exchange coupling film (FeMn, MnCo) without addition of Ru and Ti even at high temperature, and the heat resistance is high. It was found that the sex was improved. It should be noted that MnCo has better heat resistance characteristics of the exchange coupling magnetic field than FeMn.

【0062】〔実施例5〕図8は本発明の実施例5に係
る磁気抵抗素子における磁気抵抗効果膜の構造を模式的
に示す断面図である。
[Embodiment 5] FIG. 8 is a sectional view schematically showing the structure of a magnetoresistive film in a magnetoresistive element according to Embodiment 5 of the present invention.

【0063】本例は、実施例2と同様に、基板61上の
補助膜62の上に、非磁性伝導膜67,第1の磁性膜6
4,交換結合膜63,非磁性伝導膜65,及び第2の磁
性膜66を積層した構造を1積層周期構造として2周期
以上積層した人工格子膜を磁気抵抗効果膜60とする磁
気抵抗素子の例である。ここで、例えばSUB/〔Cr
(5)/Fe(2)〕30と標記する場合は、基板(S
UB)の上に、膜厚5ÅのCr膜,次に膜厚2ÅのFe
膜を1積層周期構造として30周期積層した構造の人工
格子膜であることを示す。本例の磁気抵抗効果膜60の
膜層構造は、表3に示すように、SUB/Fe(50)
〔Cu(20)/NiFe(30)/CoMn(50)/Cu
(20)/NiFe(30)〕2で表される。即ち、図8に
示すように、基板61の表面側に上層側に形成される膜
の結晶構造を制御するための補助膜62としての膜厚5
0ÅのFe膜を有し、この上に、膜厚20ÅのCuの非
磁性伝導膜67と、膜厚30ÅのNiFeの第1の磁性
膜64と、膜厚50ÅのCoMn合金薄膜の交換結合膜
63と、膜厚20ÅのCuの非磁性伝導膜65と、膜厚
30ÅのNiFeの第2の磁性膜66を順次積層した構
造を1周期として2回積層した人工格子膜である。これ
に対して、表3の比較例(1)は、磁気抵抗効果膜が単
層のNiFe膜である場合を示し、また比較例(2)
は、磁気抵抗効果膜が人工格子膜であるが、補助膜62
としての膜厚50ÅのFe膜を有し、この上に、膜厚2
0ÅのCuの非磁性伝導膜67と、膜厚30ÅのNiF
eの第1の磁性膜64と、膜厚50ÅのFeMn合金薄
膜の交換結合膜63と、膜厚20ÅのCuの非磁性伝導
膜65と、膜厚30ÅのNiFeの第2の磁性膜66を
順次積層した構造を1周期として2回積層し人工格子膜
からなる。本例は交換結合膜63としてFeMn合金薄
膜ではなく、CoMn合金薄膜を用いている点を特徴と
する。表3から明らかなように、本例の場合は、磁気抵
抗変化率(MR比)が7%で大きく、比較例(2)の場
合よりも優れており、再生信号出力を大きくできる。ま
た、比較例(1),(2)の場合に比べ磁気抵抗飽和磁
界(HS )は20Oe程度で若干大きいが、この程度の
値でも実用上高い磁気感度を得ることができる。また酸
化工程も不要であるので、低製造コストを実現できる。
In this example, similar to the second embodiment, the non-magnetic conductive film 67 and the first magnetic film 6 are formed on the auxiliary film 62 on the substrate 61.
4, a structure in which the exchange coupling film 63, the non-magnetic conductive film 65, and the second magnetic film 66 are stacked is defined as one stacked periodic structure, and an artificial lattice film in which two or more cycles are stacked is used as the magnetoresistive effect film 60. Here is an example. Here, for example, SUB / [Cr
(5) / Fe (2)] 30, the substrate (S
UB), a Cr film with a film thickness of 5Å, and then Fe with a film thickness of 2Å
It is shown that the artificial lattice film has a structure in which the films are laminated for 30 periods as one laminated periodic structure. As shown in Table 3, the film layer structure of the magnetoresistive effect film 60 of this example is SUB / Fe (50)
[Cu (20) / NiFe (30) / CoMn (50) / Cu
(20) / NiFe (30)] 2. That is, as shown in FIG. 8, the film thickness 5 as the auxiliary film 62 for controlling the crystal structure of the film formed on the upper surface side of the substrate 61.
An exchange coupling film having a 0Å Fe film, a Cu nonmagnetic conductive film 67 having a film thickness of 20Å, a first magnetic film 64 of NiFe having a film thickness of 30Å, and a CoMn alloy thin film having a film thickness of 50Å is formed on the Fe film. 63, a Cu non-magnetic conductive film 65 having a film thickness of 20 Å, and a second magnetic film 66 of NiFe having a film thickness of 30 Å are sequentially laminated twice as an artificial lattice film. On the other hand, Comparative Example (1) in Table 3 shows the case where the magnetoresistive film is a single-layer NiFe film, and Comparative Example (2)
Although the magnetoresistive film is an artificial lattice film,
Fe film with a thickness of 50Å as
0Å Cu non-magnetic conductive film 67 and 30Å film thickness NiF
The first magnetic film 64 of e, the exchange coupling film 63 of a FeMn alloy thin film having a film thickness of 50Å, the Cu nonmagnetic conductive film 65 having a film thickness of 20Å, and the second magnetic film 66 of NiFe having a film thickness of 30Å. An artificial lattice film is formed by stacking the structure in which the layers are sequentially stacked two times. This example is characterized in that a CoMn alloy thin film is used as the exchange coupling film 63 instead of the FeMn alloy thin film. As is clear from Table 3, in the case of this example, the magnetoresistance change rate (MR ratio) is large at 7%, which is superior to that of the comparative example (2), and the reproduction signal output can be increased. Further, the magnetoresistive saturation magnetic field (H s ) is slightly larger at about 20 Oe than in the cases of Comparative Examples (1) and (2), but even at this value, a high magnetic sensitivity can be practically obtained. Further, since an oxidation step is unnecessary, low manufacturing cost can be realized.

【0064】[0064]

【表3】 [Table 3]

【0065】交換結合膜にCoMn合金薄膜を用いる
と、上述のように種々の利点があるが、本例では実施例
4と同様に、更に、CoMn合金薄膜に添加元素を添加
した合金薄膜を交換結合膜として用いた例を試した。即
ち、磁気抵抗効果膜60の膜層構造は、表4に示すよう
に、Fe(50)〔Cu(22)/NiFe(15)/CoM
nTi(50)/Cu(22)/NiFe(15)〕2で表さ
れる。即ち、図8に示すように、基板61の表面側に上
層側に形成される膜の結晶構造を制御するための補助膜
62としての膜厚50ÅのFe膜を有し、この上に、膜
厚22ÅのCuの非磁性伝導膜67と、膜厚15ÅのNi
Feの第1の磁性膜64と、膜厚50ÅのCoMnTi
合金薄膜の交換結合膜63と、膜厚22ÅのCuの非磁性
伝導膜65と、膜厚15ÅのNiFeの第2の磁性膜66
を順次積層した構造を1積層周期として2回積層した人
工格子膜である。表4から明らかなように、交換結合膜
がCoMn合金薄膜である比較例(1), (2)の場合は、そ
の耐熱温度が200 °C乃至300 °Cであるのに対し、C
oMn合金薄膜にTiを添加した合金薄膜(CoMnT
i)の交換結合膜を有する本例の場合は、その耐熱温度
は350 °Cであった。
The use of the CoMn alloy thin film as the exchange coupling film has various advantages as described above, but in this example, the alloy thin film obtained by further adding the additive element to the CoMn alloy thin film is replaced as in the case of Example 4. The example used as a binding film was tried. That is, the film layer structure of the magnetoresistive effect film 60 is, as shown in Table 4, Fe (50) [Cu (22) / NiFe (15) / CoM
nTi (50) / Cu (22) / NiFe (15)] 2. That is, as shown in FIG. 8, an Fe film having a film thickness of 50 Å is formed on the surface side of the substrate 61 as an auxiliary film 62 for controlling the crystal structure of the film formed on the upper layer side. 22 Å thick Cu non-magnetic conductive film 67 and 15 Å thick Ni
First magnetic film 64 of Fe and CoMnTi with a film thickness of 50Å
An alloy thin film exchange coupling film 63, a Cu non-magnetic conductive film 65 having a thickness of 22Å, and a NiFe second magnetic film 66 having a thickness of 15Å.
It is an artificial lattice film in which a structure in which the above is sequentially laminated is laminated twice with one lamination period. As is clear from Table 4, in the case of Comparative Examples (1) and (2) in which the exchange coupling film is a CoMn alloy thin film, the heat resistance temperature is 200 ° C to 300 ° C, whereas C
An alloy thin film (CoMnT) obtained by adding Ti to an oMn alloy thin film.
In the case of this example having the exchange coupling membrane of i), the heat resistant temperature was 350 ° C.

【0066】従って、CoMnTi合金薄膜の交換結合
膜とすることにより、耐熱性が向上する。添加元素とし
てはTiのみに限らず、実施例4の場合と同様に、R
u,Re,Ir,Pd,Fe,Ni,,Cu,Sc,
Y,Zr,Hf,Th,V,Nb,Ta,Pa,Cr,
Mo,W,Tc,Np,Zn,Al,Si,Au,P
t,Ag等の少なくとも1種の元素を用いることができ
る。
Therefore, the heat resistance is improved by using the CoMnTi alloy thin film as the exchange coupling film. The additive element is not limited to Ti, but R is similar to the case of the fourth embodiment.
u, Re, Ir, Pd, Fe, Ni, Cu, Sc,
Y, Zr, Hf, Th, V, Nb, Ta, Pa, Cr,
Mo, W, Tc, Np, Zn, Al, Si, Au, P
At least one element such as t or Ag can be used.

【0067】[0067]

【表4】 [Table 4]

【0068】〔実施例6〕図9は、本発明の実施例6に
係る磁気抵抗素子における人工格子膜の磁気抵抗効果膜
を模式的に示す断面図である。
[Embodiment 6] FIG. 9 is a sectional view schematically showing a magnetoresistive effect film of an artificial lattice film in a magnetoresistive element according to Embodiment 6 of the present invention.

【0069】本例の磁気抵抗効果膜27は、基板71上
に下地膜72が設けられ、その上層に非磁性伝導膜73
及び磁性膜74が順次繰り返し積層され、その上層に保
護膜75が設けられて成る。なお、本例では各薄膜7
1,72,73及び74はイオンビームスパッタ法によ
り作成したが、この方法に限定されることなく、一般的
な蒸着法,スパッタ法あるいは分子ビーム蒸着法であっ
ても良い。成膜条件は次の通りである。
In the magnetoresistive effect film 27 of this example, a base film 72 is provided on a substrate 71, and a nonmagnetic conductive film 73 is provided on the base film 72.
The magnetic film 74 and the magnetic film 74 are sequentially and repeatedly laminated, and the protective film 75 is provided thereon. In this example, each thin film 7
Although 1, 72, 73 and 74 were formed by the ion beam sputtering method, the method is not limited to this method, and a general vapor deposition method, a sputtering method or a molecular beam vapor deposition method may be used. The film forming conditions are as follows.

【0070】成膜条件 アルゴンガス圧 PAr=1.0×10-4Torr 加速電圧 VACC =0.5kV 減速電圧 −200V 加速電流 IACC =120mA 基板回転 3rpm 基板温度 TSUB <45℃ 基板印加磁界 100〜300Oe ターゲット FeCoCr,FeAl,NiC
o,FeCoCu,Cr,FeMn (純度>99.9
%) 例えば、本例では、薄膜作成用の基板71に、ガラス,
Al2 3 −TiC等のセラミックス,酸化マグネシウ
ム又はSi等を用いる。その上に、基板表面を清浄にす
るために基板加熱あるいは逆スパッタを行っても良い。
基板表面の平坦度を増すために、下地膜72に膜厚50Å
以上のCrの遷移金属薄膜あるいは遷移金属合金薄膜を
成膜しても良い。また、下地膜72の平坦度の向上と、
基板表面の清浄化とを図るために、成膜時に、基板加熱
及び逆スパッタあるいは基板バイアス印加を行っても良
い。成膜後に更に熱処理を行っても良い。
Film forming conditions Argon gas pressure P Ar = 1.0 × 10 −4 Torr Acceleration voltage V ACC = 0.5 kV Deceleration voltage −200 V Acceleration current I ACC = 120 mA Substrate rotation 3 rpm Substrate temperature T SUB <45 ° C. Substrate applied Magnetic field 100-300 Oe Target FeCoCr, FeAl, NiC
o, FeCoCu, Cr, FeMn (Purity> 99.9)
%) For example, in this example, the substrate 71 for forming a thin film is made of glass,
Ceramics such as Al 2 O 3 —TiC, magnesium oxide or Si is used. In addition, substrate heating or reverse sputtering may be performed to clean the substrate surface.
In order to increase the flatness of the substrate surface, the base film 72 has a film thickness of 50Å
The above transition metal thin film or transition metal alloy thin film of Cr may be formed. In addition, the flatness of the base film 72 is improved,
In order to clean the surface of the substrate, substrate heating and reverse sputtering or substrate bias application may be performed during film formation. Heat treatment may be further performed after the film formation.

【0071】ここで、磁性膜74としては、Fe1-B-C
CrB CoC 合金薄膜,FeD Al1-D 合金薄膜,Ni
E Co1-E 合金薄膜,FeF Co1-F 合金薄膜あるいは
FeG Ni1-G 合金薄膜を用いる。これらのFe1-B-C
CrB CoC 合金薄膜,FeD Al1-D 合金薄膜,Ni
E Co1-E 合金薄膜,FeF Co1-F 合金薄膜あるいは
FeG Ni1-G 合金薄膜は、表5に示す組成近傍におい
て、薄膜磁歪定数が10-6以下である。本例によれば、
磁気抵抗変化率の増大を図ることができる。
Here, as the magnetic film 74, Fe 1 -BC is used.
Cr B Co C alloy thin film, Fe D Al 1-D alloy thin film, Ni
An E Co 1-E alloy thin film, a Fe F Co 1-F alloy thin film or a Fe G Ni 1-G alloy thin film is used. These Fe 1-BC
Cr B Co C alloy thin film, Fe D Al 1-D alloy thin film, Ni
The E Co 1-E alloy thin film, the Fe F Co 1-F alloy thin film or the Fe G Ni 1-G alloy thin film has a thin film magnetostriction constant of 10 -6 or less in the vicinity of the composition shown in Table 5. According to this example,
The rate of change in magnetic resistance can be increased.

【0072】[0072]

【表5】 [Table 5]

【0073】更に、各磁性膜74の透磁率向上、膜構造
の均一性向上、結晶粒の微細化を目的として、Ti,T
a,Ru等を10〔at%〕以下加えることもある。ま
た、非磁性伝導膜73としては、Cu,Cr又はCuC
r合金薄膜を用い、該薄膜は、磁性膜74の抵抗率に合
わせて膜全体の磁気抵抗変化率が最も大きくなる組成を
用いるのが効果的である。なお、磁性膜74及び非磁性
伝導膜73の膜厚は、膜平坦性を保つために5〔Å〕以
上であって、200 〔Å〕以下とすることが望ましい。こ
れは、伝導電子の平均自由行程内にできる限り多くの磁
性膜74と非磁性伝導膜73とを設け、該薄膜の界面を
多くの伝導電子が横切るようにしてスピン散乱を増大さ
せるためである。
Further, for the purpose of improving the magnetic permeability of each magnetic film 74, improving the uniformity of the film structure, and refining the crystal grains, Ti, T
A, Ru, etc. may be added in an amount of 10 [at%] or less. Further, as the non-magnetic conductive film 73, Cu, Cr or CuC is used.
It is effective to use a r-alloy thin film and to use a composition that maximizes the magnetoresistive change rate of the entire film according to the resistivity of the magnetic film 74. The film thickness of the magnetic film 74 and the non-magnetic conductive film 73 is preferably 5 [Å] or more and 200 [Å] or less in order to maintain film flatness. This is because as many magnetic films 74 and nonmagnetic conductive films 73 as possible are provided within the mean free path of the conduction electrons, and many conduction electrons cross the interface of the thin film to increase spin scattering. .

【0074】〔実施例7〕図10は、本発明の実施例7
に係る磁気抵抗素子における人工格子膜の磁気抵抗効果
膜を模式的に示す断面図である。
[Seventh Embodiment] FIG. 10 shows a seventh embodiment of the present invention.
FIG. 6 is a cross-sectional view schematically showing a magnetoresistive effect film of an artificial lattice film in the magnetoresistive element according to the present invention.

【0075】本例の磁気抵抗効果膜28は、非磁性伝導
膜81,第1の磁性膜82,交換結合膜83,非磁性伝
導膜84及び第2の軟磁性の磁性膜85の順序で積層さ
れた構造を1周期構造として2周期以上積層された構造
であり、隔層の磁化制御のための交換結合膜83が含ま
れている。この交換結合膜83としては、FeMn(マ
ンガン・鉄),CuMn(マンガン・銅),NiMn
(ニッケル・マンガン),CoMn(コバルト・マンガ
ン)あるいはPdMn(パラジウム・マンガン)等が用
いられる。また、交換結合膜83は磁性膜82の材料に
合わせてNiFe膜等の磁性合金膜と積層して用いる場
合もある。更に、交換結合膜83はその磁性膜82,8
5の抵抗率に合わせて膜全体の磁気抵抗変化率が最も大
きくなるように選択される。なお、第2の軟磁性の磁性
膜85としてはFeG Ni1-G 合金薄膜が用いられる。
In the magnetoresistive film 28 of this example, a nonmagnetic conductive film 81, a first magnetic film 82, an exchange coupling film 83, a nonmagnetic conductive film 84 and a second soft magnetic magnetic film 85 are laminated in this order. The above structure is a structure in which two or more cycles are stacked with one cycle structure, and an exchange coupling film 83 for controlling the magnetization of the barrier layer is included. As the exchange coupling film 83, FeMn (manganese / iron), CuMn (manganese / copper), NiMn
(Nickel / manganese), CoMn (cobalt / manganese), PdMn (palladium / manganese) or the like is used. Further, the exchange coupling film 83 may be used by being laminated with a magnetic alloy film such as a NiFe film according to the material of the magnetic film 82. Further, the exchange coupling film 83 has its magnetic films 82, 8
5 is selected so that the rate of change in magnetoresistance of the entire film is maximized. A Fe G Ni 1-G alloy thin film is used as the second soft magnetic film 85.

【0076】このように作製された〔磁性膜/非磁性伝
導膜〕積層膜の磁気抵抗変化率及び磁気抵抗飽和磁界強
度等を、従来例に係る積層方法を用いた場合と本発明の
実施例の場合について、表6に比較表を示す。
The magnetoresistive change rate and the magnetoresistive saturation magnetic field strength of the thus-prepared [magnetic film / nonmagnetic conductive film] laminated film were determined using the lamination method according to the conventional example and the embodiment of the present invention. In the case of, the comparison table is shown in Table 6.

【0077】ここで、表6において、例えば〔Cr(5
0)/Fe(20)〕30として表記した場合には、基板
1上に、膜厚50Åの磁性伝導膜Crが成膜され、次
に、膜厚20Åの磁性膜Feが順次積層され、これを1
積層周期として30回積層した構造からなる磁性多層膜
であることを示す。また、成膜された積層膜を所定の温
度で、1時間磁場中で熱処理をし、巨大磁気抵抗の消失
する温度を調べ、その温度を耐熱温度とした。この温度
は、薄膜磁気ヘッドの作製上不可欠な熱処理工程を考慮
した場合に、素子特性の安定化の確立及び使用上の信頼
性向上のためできるだけ、高いことが望ましい。
In Table 6, for example, [Cr (5
0) / Fe (20)] 30, a magnetic conductive film Cr having a film thickness of 50Å is formed on the substrate 1, and then a magnetic film Fe having a film thickness of 20Å is sequentially laminated. 1
It is shown that the magnetic multilayer film has a structure in which the lamination period is 30 times. Further, the formed laminated film was heat-treated at a predetermined temperature in a magnetic field for 1 hour, the temperature at which the giant magnetoresistance disappeared was examined, and the temperature was set as the heat resistant temperature. It is desirable that this temperature is as high as possible in order to establish stabilization of element characteristics and improve reliability in use, in consideration of a heat treatment step indispensable for manufacturing a thin film magnetic head.

【0078】また、表6において、比較例(1),
(2),(3)は、従来例に係る積層方法を用いた場合
であり、実施例 (1),(2),(4),(5),
(7),(8),(10),(11),(13),(14),
(16),(17),(19),(20),(22)及び(23)
は、図9に示すような積層構造であって、磁性膜/非磁
性伝導膜の材料やその膜厚を変えたサンプルである。さ
らに、実施例 (3),(6),(9),(12),(1
5),(18),(21)及び(24)は、図10に示すよう
な積層構造であって、非磁性伝導膜81/磁性膜82/
交換結合膜83/非磁性伝導膜84/磁性膜85の材料
やその膜厚を変えたサンプルをそれぞれ示している。
In Table 6, Comparative Example (1),
(2) and (3) are the cases where the lamination method according to the conventional example is used, and examples (1), (2), (4), (5),
(7), (8), (10), (11), (13), (14),
(16), (17), (19), (20), (22) and (23)
9 is a sample having a laminated structure as shown in FIG. 9, in which the material of the magnetic film / nonmagnetic conductive film and the film thickness thereof are changed. Furthermore, Examples (3), (6), (9), (12), (1
5), (18), (21) and (24) have a laminated structure as shown in FIG. 10, and are non-magnetic conductive film 81 / magnetic film 82 /
Samples in which the materials of the exchange coupling film 83 / nonmagnetic conductive film 84 / magnetic film 85 and the film thickness thereof are changed are shown.

【0079】[0079]

【表6】 [Table 6]

【0080】このようにして、本発明の各実施例に係る
磁気抵抗効果膜によれば、膜厚300Å以下のFe1-B-C
CrB CoC 合金磁性薄膜から成る磁性膜、FeD Al
1-D合金磁性膜から成る磁性膜、NiE Co1-E 合金磁
性膜から成る磁性膜又はFeF Co1-F 合金磁性膜から
成る磁性膜と、Cu,Cr,CuあるいはCuCrから
成る非磁性伝導膜とが交互に2回以上積層された積層構
造を有している。表6に示すように、従来例の最も高い
磁気抵抗変化率3%に比べて9.5 %という高い磁気抵抗
変化率が得られ、磁界感度の増大を図ることが可能とな
った。
As described above, according to the magnetoresistive films according to the respective examples of the present invention, Fe 1 -BC having a film thickness of 300 Å or less is used .
Magnetic film consisting of Cr B Co C alloy magnetic thin film, Fe D Al
A magnetic film made of a 1-D alloy magnetic film, a magnetic film made of a Ni E Co 1-E alloy magnetic film, or a magnetic film made of a Fe F Co 1-F alloy magnetic film, and a non-made film made of Cu, Cr, Cu or CuCr. It has a laminated structure in which magnetic conductive films are alternately laminated two or more times. As shown in Table 6, a high magnetoresistance change rate of 9.5% was obtained as compared with the highest magnetoresistance change rate of 3% in the conventional example, and it was possible to increase the magnetic field sensitivity.

【0081】良好な磁気抵抗変化率を得るためには、F
1-B-C CrB CoC 合金磁性薄膜の組成範囲は0.05<
B<0.15及び0.50<C<0.60、FeD Al1-D 合金磁性
膜の組成範囲は0.75<D<0.95、NiE Co1-E 合金磁
性膜の組成範囲は0.70<E<0.85、FeF Co1-F 合金
磁性膜の組成範囲は0.65<F<0.95であることが判明し
た。
To obtain a good magnetoresistance change rate, F
e 1-BC Cr B Co C alloy magnetic thin film composition range is 0.05 <
B <0.15 and 0.50 <C <0.60, composition range of Fe D Al 1-D alloy magnetic film is 0.75 <D <0.95, composition range of Ni E Co 1-E alloy magnetic film is 0.70 <E <0.85, Fe F It was found that the composition range of the Co 1 -F alloy magnetic film was 0.65 <F <0.95.

【0082】また、本発明の磁気抵抗素子では表5の各
実施例(1)〜(24)に示すように、非磁性伝導膜C
u,Crの厚さを調整し、更に磁気抵抗効果膜である人
工格子膜中の隔層の磁性膜の磁化制御に交換結合膜(F
eMn,CuMn,NiMn,CoMnあるいはPdM
n)を用いると共に、他方の磁性膜にはFeNi等の軟
磁性膜を用いながら、例えば、人工格子膜中の磁性膜に
磁歪定数の比較的小さい(<10-6)組成域であるFe
CrCo合金薄膜,FeAl合金薄膜,NiCo合金薄
膜,FeCo合金薄膜及びFeNi合金薄膜を用いるこ
とにより、磁性膜の磁歪定数が高い場合に生ずる膜に印
加される応力から逆磁歪効果により誘起される磁気抵抗
の飽和磁界強度(磁界感度)のバラツキや量産される素
子間の特性のばらつきを低下させ、磁界感度の向上及び
その信頼性の向上を図ることができた。
Further, in the magnetoresistive element of the present invention, as shown in each embodiment (1) to (24) of Table 5, the non-magnetic conductive film C is used.
The thickness of u and Cr is adjusted, and the exchange coupling film (F) is used to control the magnetization of the magnetic film of the barrier layer in the artificial lattice film that is the magnetoresistive film.
eMn, CuMn, NiMn, CoMn or PdM
n) is used and a soft magnetic film such as FeNi is used for the other magnetic film, the magnetic film in the artificial lattice film has a relatively small magnetostriction constant (<10 −6 ).
By using the CrCo alloy thin film, the FeAl alloy thin film, the NiCo alloy thin film, the FeCo alloy thin film and the FeNi alloy thin film, the magnetoresistance induced by the inverse magnetostriction effect from the stress applied to the film when the magnetostriction constant of the magnetic film is high. It was possible to reduce variations in saturation magnetic field strength (magnetic field sensitivity) and variations in characteristics among mass-produced elements, and to improve magnetic field sensitivity and reliability.

【0083】この結果、従来例に比べて急激な磁気応答
を得ることが可能となり、良品率の向上を図ることが可
能となる。なお、磁性膜や非磁性伝導膜の成膜の際に、
分子線蒸着に比べて成膜速度の速い、イオンビームスパ
ッタ法等を用いることにより、磁気抵抗効果膜の作製に
要するコスト低減を図ることができる。
As a result, a sharp magnetic response can be obtained as compared with the conventional example, and the yield rate can be improved. When forming a magnetic film or a non-magnetic conductive film,
By using an ion beam sputtering method or the like, which has a higher film formation rate than molecular beam evaporation, it is possible to reduce the cost required for producing the magnetoresistive effect film.

【0084】さらに、本発明の磁気抵抗体では上記各種
合金磁性薄膜に総濃度で10〔at%〕以下のTi,T
a及び/又はRu(ルテニウム)が添加される場合が含
まれるため、従来例に比べて、磁気抵抗型薄膜磁気ヘッ
ドに適用される磁気抵抗効果膜の耐食性の向上及びその
他の磁気特性の向上を図ることができる。
Further, in the magnetoresistive element of the present invention, the total concentration of Ti and T in the various alloy magnetic thin films is 10 [at%] or less.
Since the case where a and / or Ru (ruthenium) is added is included, it is possible to improve the corrosion resistance and other magnetic characteristics of the magnetoresistive effect film applied to the magnetoresistive thin film magnetic head as compared with the conventional example. Can be planned.

【0085】なお、実施例6及び7における人工格子膜
の磁気抵抗効果膜は、図2,図4(a),図4(b)の
層順序で積層することができる。
The magnetoresistive effect films of the artificial lattice films in Examples 6 and 7 can be laminated in the layer order shown in FIGS. 2, 4 (a) and 4 (b).

【0086】従来に比して磁気抵抗変化率が大きく(数
%以上)、かつ磁気抵抗飽和磁界が小さく(<100 O
e)、磁界感度が高く、更に、熱安定性に優れた(>30
0 °C)特性の磁気抵抗素子を構成することが可能とな
った。
The magnetoresistance change rate is large (several percent or more) and the magnetoresistance saturation magnetic field is small (<100 O compared to the conventional one.
e), high magnetic field sensitivity, and excellent thermal stability (> 30)
It has become possible to construct a magnetoresistive element having a 0 ° C. characteristic.

【0087】〔実施例8〕図11(A)は本発明の実施
例8に係る磁気誘導素子を模式的に示す平面図、図11
(B)はその磁気誘導素子を模式的に示す断面図であ
る。磁気誘導素子90においては、三角形状の磁気コア
91及びコイル93等から成る。すなわち、図11
(B)に示すように、磁気誘導素子90においては、基
板94上に下部磁気コア91A,磁気ギャップg,コイ
ル93,絶縁膜92,上部磁気コア91B及び保護膜9
5が順次設けられて成る。各磁気コア91A,91B
(91)は図12に示すように、軟磁性薄膜96Aと非
磁性薄膜96Bとを8層(偶数)積み重ねた積層構造で
ある。ここで、軟磁性薄膜96Aは、コバルトCo,ハ
フニウムHf,タンタルTa,パラジウムPdの4元素
非晶質合金から成り、非磁性薄膜96Bは、シリコンS
i,アルミニウムAl,酸素O,窒素Nから成る。軟磁
性薄膜96Aの組成比は、Co(1-X-Y-Z) HfX TaY
PdZ とすると、 3.0≦X≦4.0 at%,4.5 ≦Y≦5.
5 at%,1.3 ≦Z≦2.3 at%である。また、図12
において、軟磁性薄膜96Aの一層の膜厚は1500〜3000
〔Å〕であり、非磁性薄膜96Bの一層の膜厚は50〜
150 〔Å〕である。
[Embodiment 8] FIG. 11A is a plan view schematically showing a magnetic induction element according to Embodiment 8 of the present invention.
FIG. 3B is a sectional view schematically showing the magnetic induction element. The magnetic induction element 90 includes a triangular magnetic core 91 and a coil 93. That is, FIG.
As shown in (B), in the magnetic induction element 90, the lower magnetic core 91A, the magnetic gap g, the coil 93, the insulating film 92, the upper magnetic core 91B, and the protective film 9 are provided on the substrate 94.
5 are sequentially provided. Each magnetic core 91A, 91B
As shown in FIG. 12, (91) is a laminated structure in which a soft magnetic thin film 96A and a nonmagnetic thin film 96B are stacked in eight layers (even numbers). Here, the soft magnetic thin film 96A is made of a four-element amorphous alloy of cobalt Co, hafnium Hf, tantalum Ta, and palladium Pd, and the nonmagnetic thin film 96B is made of silicon S.
i, aluminum Al, oxygen O, nitrogen N. The composition ratio of the soft magnetic thin film 96A is Co (1-XYZ) Hf X Ta Y
If Pd Z , 3.0 ≦ X ≦ 4.0 at%, 4.5 ≦ Y ≦ 5.
5 at%, 1.3 ≦ Z ≦ 2.3 at%. In addition, FIG.
In, the thickness of one layer of the soft magnetic thin film 96A is 1500 to 3000
[Å], and the thickness of one layer of the non-magnetic thin film 96B is 50 to
It is 150 [Å].

【0088】図13は、本例のCoHfTaPd合金膜
の組成に対する特性図であり、図14は本例の磁気コア
の各組成膜の透磁率と書込み周波数との関係特性図であ
る。
FIG. 13 is a characteristic diagram for the composition of the CoHfTaPd alloy film of this example, and FIG. 14 is a characteristic diagram of the relationship between the magnetic permeability and the writing frequency of each composition film of the magnetic core of this example.

【0089】また、図15(A),(B)は、その磁区
の構造を説明する図であり、図16(A)〜(C)は、
その積層構造を説明する斜視図である。なお、図17
(A),(B)は、その各組成膜の1層膜厚と磁壁出現
率との関係図をそれぞれ示している。
Further, FIGS. 15A and 15B are views for explaining the structure of the magnetic domain, and FIGS. 16A to 16C are
It is a perspective view explaining the laminated structure. Note that FIG.
(A) and (B) respectively show the relationship between the one-layer film thickness of each composition film and the domain wall appearance rate.

【0090】図12に示すような非磁性薄膜と軟磁性性
薄膜の多重積層構造の磁気コア91を形成する場合、軟
磁性薄膜96AはDCマグネトロンスパッタ法により、
非磁性薄膜96BはRFマグネトロンスパッタ法によ
り、磁場を与えながら成膜し、順次両膜96A,96B
を交互に8回積層する。その成膜条件は表7に示す通り
である。
When forming a magnetic core 91 having a multi-layer structure of a non-magnetic thin film and a soft magnetic thin film as shown in FIG. 12, the soft magnetic thin film 96A is formed by a DC magnetron sputtering method.
The nonmagnetic thin film 96B is formed by applying a magnetic field by the RF magnetron sputtering method to sequentially form both films 96A and 96B.
Are alternately laminated eight times. The film forming conditions are as shown in Table 7.

【0091】[0091]

【表7】 [Table 7]

【0092】また、上記のような条件で軟磁性薄膜96
Aの成膜中に一軸異方性を付与し、表8の熱処理条件に
より、回転磁場中でその熱処理を行うことにより異方性
磁界を落として透磁率μを制御する。
Further, under the above conditions, the soft magnetic thin film 96
Uniaxial anisotropy is imparted during the film formation of A, and the anisotropic magnetic field is reduced by performing the heat treatment in the rotating magnetic field under the heat treatment conditions of Table 8 to control the magnetic permeability μ.

【0093】[0093]

【表8】 [Table 8]

【0094】このようにして形成された8層の積層薄膜
の磁気コア91では、飽和磁束密度がBs= 1.2T,高
周波磁界がHc=0.3 Oe,透磁率がμ〔10MHz〕=
6000,磁気歪みがλs=−0.9 ×10-6程度となる。
In the thus formed 8-layer laminated thin film magnetic core 91, the saturation magnetic flux density is Bs = 1.2 T, the high frequency magnetic field is Hc = 0.3 Oe, and the magnetic permeability is μ [10 MHz] =
6000, the magnetostriction is about λs = −0.9 × 10 −6 .

【0095】また、図13に示すようなCo,Hf+T
a,Pdの4元素非晶質合金に対する飽和磁束密度B
s,磁気歪みλs,処理温度Txとの関係特性におい
て、斜線で結んだ四辺形状の組成範囲がCo(1-X-Y-Z)
HfX TaY PdZ 非晶質合金単層膜(軟磁性薄膜96
A)の最適値を示している。なお、図13において、当
該単層膜は、飽和磁束密度をBs1=1.20,Bs2=1.25,
Bs3=1.30〔T〕とし、磁気歪みをλs=0とし、処理
温度をTx1=350 ,Tx2=375 ,Tx3=400 〔°C〕と
した場合の特性値であり、その組成比が 3.0≦X≦4.0
at%,4.5 ≦Y≦5.5 at%,1.3 ≦Z≦2.3 at%
となる。
Further, as shown in FIG. 13, Co, Hf + T
Saturation magnetic flux density B for 4-element amorphous alloy of a and Pd
s, magnetostriction λs, and processing temperature Tx, the composition range of the quadrilateral shape connected by diagonal lines is Co (1-XYZ).
Hf X Ta Y Pd Z amorphous alloy single layer film (soft magnetic thin film 96
The optimum value of A) is shown. Note that in FIG. 13, the single-layer film has saturation magnetic flux densities of Bs1 = 1.20, Bs2 = 1.25,
Bs3 = 1.30 [T], magnetostriction λs = 0, processing temperature Tx1 = 350, Tx2 = 375, Tx3 = 400 [° C], and the composition ratio is 3.0 ≦ X. ≤4.0
at%, 4.5 ≤ Y ≤ 5.5 at%, 1.3 ≤ Z ≤ 2.3 at%
Becomes

【0096】非磁性薄膜SiAlONと軟磁性薄膜Co
HfTaPdアモルファス合金の8周期膜は、Arガス
雰囲気中で基板を取付けたホルダを回転させ、各ターゲ
ットを順次スパッタすることにより同雰囲気中の同時放
電によるスパッタ成膜が可能となる。このため、非磁性
薄膜96BにSiNを用いた場合と比較して成膜時間を
1/2に短縮することができ、その量産性を図ることが
可能となる。次に、各組成膜の透磁率と周波数との関係
について説明をする。図14は、各積層薄膜の特性A,
Bと単層膜の特性Cとを比較する特性図である。図14
において、縦軸は透磁率μであり、横軸は周波数をそれ
ぞれ示している。特性AはCoHfTaPd非晶質合金
単層膜と非磁性薄膜SiAlONとを8周期積層した積
層膜の周波数特性である。特性BはCoHfTaPd非
晶質合金単層膜と非磁性薄膜SiNとを8周期積層した
積層膜の周波数特性である。なお、特性CはCoHfT
aPd非晶質合金単層膜のみの周波数特性である。これ
によれば、単層膜の特性Cでは、図14に示すように周
波数10MHz付近から透磁率μが急に低下をする。これ
に対して、積層膜の特性A,Bでは20MHzまでμが一
定であり、20MHzから徐々に低下をする。これは、高
周波数帯域において、単層膜に比べて積層薄膜では透磁
率の低減化を抑制できることを意味する。
Non-magnetic thin film SiAlON and soft magnetic thin film Co
The 8-period film of HfTaPd amorphous alloy can be sputtered by simultaneous discharge in the same atmosphere by rotating a holder attached with a substrate in an Ar gas atmosphere and sequentially sputtering each target. Therefore, the film formation time can be shortened to half as compared with the case where SiN is used for the non-magnetic thin film 96B, and the mass productivity thereof can be achieved. Next, the relationship between the magnetic permeability and the frequency of each composition film will be described. FIG. 14 shows characteristics A of each laminated thin film,
It is a characteristic view which compares B and the characteristic C of a single layer film. 14
In, the vertical axis represents the magnetic permeability μ and the horizontal axis represents the frequency. Characteristic A is a frequency characteristic of a laminated film in which a CoHfTaPd amorphous alloy single layer film and a non-magnetic thin film SiAlON are laminated for eight periods. Characteristic B is a frequency characteristic of a laminated film in which a CoHfTaPd amorphous alloy single-layer film and a nonmagnetic thin film SiN are laminated for eight periods. The characteristic C is CoHfT.
It is the frequency characteristic of the aPd amorphous alloy single layer film only. According to this, in the characteristic C of the single-layer film, as shown in FIG. 14, the magnetic permeability μ suddenly decreases from around the frequency of 10 MHz. On the other hand, in the characteristics A and B of the laminated film, μ is constant up to 20 MHz and gradually decreases from 20 MHz. This means that in the high frequency band, the reduction of magnetic permeability can be suppressed in the laminated thin film as compared with the single layer film.

【0097】次に、各組成膜を磁気コアに使用した場合
の磁区構造について説明をする。図15(A)は、単層
膜を磁気コアに使用した場合の磁区構造であり、図15
(B)は、各積層薄膜を磁気コアに使用した場合の磁区
構造をそれぞれ示している。
Next, the magnetic domain structure when each composition film is used for the magnetic core will be described. FIG. 15A shows a magnetic domain structure when a single-layer film is used for the magnetic core.
(B) shows the magnetic domain structure when each laminated thin film is used for a magnetic core.

【0098】図15(A)において、CoHfTaPd
非晶質合金単層膜をコア形状にパターニングし、その磁
区観察を行うと、その表面に磁壁が現れ、当該単層膜が
還流磁区構造をとる。これに対して、図15(B)に示
すようにCoHfTaPd非晶質合金単層膜と非磁性薄
膜SiNとを8周期積層した積層薄膜や、CoHfTa
Pd非晶質合金単層膜と非磁性薄膜SiAlONとを8
周期積層した積層薄膜では、コア周辺部にエッジカーリ
ング効果により生じた磁壁が現れ、当該積層薄膜が単磁
区構造となる。これは、図16(A)に示すように、単
層膜200ではその膜表面に磁化が発生するのに対し、
積層薄膜201では図16(B)に示すように、各薄膜
層間で環状路が形成され、その磁化が還流し、表面に現
れる磁化が減少するためである。
In FIG. 15 (A), CoHfTaPd
When the amorphous alloy single-layer film is patterned into a core shape and its magnetic domain is observed, a domain wall appears on the surface thereof, and the single-layer film has a reflux magnetic domain structure. On the other hand, as shown in FIG. 15B, a CoHfTaPd amorphous alloy single-layer film and a nonmagnetic thin film SiN are laminated for eight periods, or CoHfTaPd is used.
Pd amorphous alloy single layer film and non-magnetic thin film SiAlON 8
In the laminated thin films that are periodically laminated, domain walls generated by the edge curling effect appear in the peripheral portion of the core, and the laminated thin films have a single domain structure. This is because, as shown in FIG. 16A, in the single layer film 200, magnetization is generated on the film surface,
This is because, in the laminated thin film 201, as shown in FIG. 16 (B), an annular path is formed between the thin film layers, the magnetization thereof returns, and the magnetization appearing on the surface decreases.

【0099】また、図16(C)に示すように、軟磁性
薄膜96Aと非磁性薄膜96Bとの積層周期を奇数にし
た積層薄膜202の場合、図16(A)と同様にコア表
面に磁壁が現れる。しかし、磁性層の総膜厚が一定の場
合、その層数の増加に従い磁壁数は減少する。これは、
各薄膜間の環状路数が増加したために、表面に現れる磁
化が少なくなったことによる。
Further, as shown in FIG. 16C, in the case of the laminated thin film 202 in which the lamination period of the soft magnetic thin film 96A and the nonmagnetic thin film 96B is odd, the domain wall is formed on the core surface as in FIG. 16A. Appears. However, when the total thickness of the magnetic layers is constant, the number of domain walls decreases as the number of layers increases. this is,
This is due to the fact that the number of annular paths between the thin films is increased and the magnetization appearing on the surface is reduced.

【0100】さらに、図16(B)に示すように、両薄
膜96A,96Bを偶数層にした場合には、膜厚間の磁
化が全体的に相殺され、その表面に磁壁が現れ難くな
る。ただ、軟磁性薄膜96Aの1層の膜厚が厚い場合に
は、その最表面をまわる磁化量が増加し、磁壁が若干現
れ易くなる。
Further, as shown in FIG. 16B, when both thin films 96A and 96B are formed into an even number of layers, the magnetization between the film thicknesses is canceled out as a whole, so that the domain wall is hard to appear on the surface. However, when the thickness of one layer of the soft magnetic thin film 96A is thick, the amount of magnetization around the outermost surface thereof increases, and the domain wall becomes slightly likely to appear.

【0101】次に、各組成膜の1層の膜厚と磁壁出現率
との関係について説明をする。図17(A)は、CoH
fTaPd非結晶合金単層膜の1層の膜厚に対する磁壁
の出現率を示している。図17(A)において、縦軸は
磁壁出現率であり、横軸はCoHfTaPd,1層の膜
厚をそれぞれ示している。ここに磁壁出現率とは、ウエ
ハに形成した磁極のうち、その中央部分の約50個の磁
極について、コロイド法により磁区観察を行い、その結
果出現する磁壁の確率をいうものとする。例えば、非磁
性薄膜SiAlONの一層の膜厚を100 〔Å〕一定と
し、その積層数を8層とし、CoHfTaPd非結晶合
金単層膜の一層の膜厚を変化させた場合、図17(A)
において、膜厚3000〔Å〕付近までは、磁壁出現率はほ
ぼ0%となるが、それ以上の膜厚では、徐々に当該出現
率が増加する。これは、当該単層膜の膜厚が厚くなる
と、各薄膜間の磁気的結合が弱まり、単層膜と同様に、
磁壁が出現するためである。
Next, the relationship between the film thickness of one layer of each composition film and the magnetic domain wall appearance rate will be described. FIG. 17A shows CoH.
The appearance rate of the domain wall with respect to the film thickness of one layer of the fTaPd amorphous alloy single layer film is shown. In FIG. 17A, the vertical axis represents the domain wall appearance rate, and the horizontal axis represents CoHfTaPd and the film thickness of one layer. Here, the magnetic domain wall appearance rate means the probability of magnetic domain walls appearing as a result of magnetic domain observation of about 50 magnetic poles in the central portion of the magnetic poles formed on the wafer by colloidal method. For example, when the thickness of one layer of the non-magnetic thin film SiAlON is constant at 100 [Å], the number of layers is eight, and the thickness of one layer of the CoHfTaPd non-crystalline alloy single layer film is changed, FIG.
In the above, in the vicinity of the film thickness of 3000 [Å], the appearance rate of the domain wall is almost 0%, but in the case of the film thickness beyond that, the appearance rate gradually increases. This is because when the thickness of the monolayer film is increased, the magnetic coupling between the thin films is weakened, and like the monolayer film,
This is because the domain wall appears.

【0102】なお、CoHfTaPd非結晶合金単層膜
の一層の膜厚を1500〔Å〕一定とし、積層数を8層と
し、非磁性薄膜SiAlONの一層の膜厚を変化させた
場合には、当該薄膜SiAlONの膜厚が50Å以下の
場合は薄い島状になる。これにより、CoHfTaPd
非結晶合金単層膜を完全に分離することができず、磁壁
が出現する。
When the thickness of one layer of the CoHfTaPd amorphous alloy single layer film is fixed at 1500 [Å], the number of layers is eight, and the thickness of one layer of the nonmagnetic thin film SiAlON is changed, When the film thickness of the thin film SiAlON is 50 Å or less, it becomes a thin island shape. Thereby, CoHfTaPd
The amorphous alloy single layer film cannot be completely separated, and a domain wall appears.

【0103】しかし、図17(B)において、非磁性薄
膜SiAlONの一層の膜厚が50〔Å〕以上では磁壁
出現率がほぼ0%となる。なお、縦軸は磁壁出現率であ
り、横軸はSiAlONの一層の膜厚をそれぞれ示して
いる。このことから、CoHfTaPd非晶質合金単層
膜の一層の膜厚を1500〔Å〕〜3000〔Å〕とし、非磁性
薄膜SiAlONの一層の膜厚を50〜 150〔Å〕とする
ことが望ましい。この膜厚は、非磁性薄膜96Bが軟磁
性薄膜96Aを分断する厚みである。
However, in FIG. 17B, when the thickness of one layer of the nonmagnetic thin film SiAlON is 50 [Å] or more, the domain wall appearance rate becomes almost 0%. The vertical axis represents the magnetic domain wall appearance rate, and the horizontal axis represents the thickness of one layer of SiAlON. From this, it is desirable to set the thickness of one layer of the CoHfTaPd amorphous alloy single layer film to 1500 [Å] to 3000 [Å] and the thickness of one layer of the non-magnetic thin film SiAlON to 50 to 150 [Å]. . This film thickness is the thickness at which the nonmagnetic thin film 96B divides the soft magnetic thin film 96A.

【0104】このようにして、磁気コア91A,91B
を、膜厚1500〜3000〔Å〕程度の軟磁性薄膜96Aと、
膜厚50〜150 〔Å〕程度の非磁性薄膜96Bとを順次
積み重ねた積層構造とし、その軟磁性薄膜96AがCo
(1-X-Y-Z) HfX TaY PdZ の4元素非晶質合金で、
その組成比を 3.0≦X≦4.0 at%,4.5 ≦Y≦5.5a
t%,1.3 ≦Z≦2.3 at%とすると共に、また非磁性
薄膜11BをSi,Al,O,Nから構成すると、磁気コ
ア96A,96Bの安定した単磁区化を図ることがで
き、磁壁移動を極力抑制することが可能となる。従っ
て、その透磁率μの低下を極力抑制でき、データ処理の
高速化,高密度化に対応可能な磁気誘導素子を実現でき
る。
In this way, the magnetic cores 91A and 91B are
A soft magnetic thin film 96A having a film thickness of about 1500 to 3000 [Å],
A nonmagnetic thin film 96B having a film thickness of about 50 to 150 [Å] is sequentially stacked to form a laminated structure, and the soft magnetic thin film 96A is made of Co.
(1-XYZ) Hf X Ta Y Pd Z 4-element amorphous alloy,
The composition ratio is 3.0 ≦ X ≦ 4.0 at%, 4.5 ≦ Y ≦ 5.5a
If t%, 1.3 ≤ Z ≤ 2.3 at% and the non-magnetic thin film 11B is made of Si, Al, O, N, the magnetic cores 96A, 96B can be stably made into a single magnetic domain, and the domain wall motion can be achieved. Can be suppressed as much as possible. Therefore, it is possible to suppress the decrease in the magnetic permeability μ as much as possible, and it is possible to realize a magnetic induction element that can cope with high speed and high density data processing.

【0105】また、Ar中のスパッタにより非磁性薄膜
96Bを成膜することができることから、連続成膜が可
能で、磁気誘導素子の低コスト化を図ることができる。
Further, since the nonmagnetic thin film 96B can be formed by sputtering in Ar, continuous film formation is possible and the cost of the magnetic induction element can be reduced.

【0106】[0106]

【発明の効果】 以上説明したように、本発明の第1の手段は、単層
の磁気抵抗効果膜を有する磁気抵抗素子において、磁性
膜に隣接する交換結合膜が、50at. %MnFeにC
u,Ni,PdまたはCoが25at. %以下の添加物総
濃度で含まれる合金からなることに特徴を有する。従っ
て、交換結合膜の電気抵抗値が高いため、磁気抵抗効果
膜に印加されたセンス電流が交換結合膜の方に分流しに
くいので、出力電圧変化量が増大し、再生感度が高くな
る。また本発明の第2の手段は、人工格子膜の磁気抵抗
効果膜を有する磁気抵抗素子において、磁性膜に隣接す
る交換結合膜がMnにCu,Ni、Pd又はCoが25
at. %以下の添加物総濃度で含まれる合金からなること
に特徴と有する。この人工格子膜型の磁気抵抗素子にお
いては、磁気抵抗効果膜全体の電気的抵抗値ρを小さく
なり、相対的に磁気抵抗変化率が増大し、再生感度が向
上する。いずれのタイプにおいても再生感度の向上によ
って高密度記録の再生に有意義となり、高密度記録再生
に対応した薄膜磁気ヘッドを提供できる。
As described above, according to the first means of the present invention, in a magnetoresistive element having a single-layer magnetoresistive effect film, the exchange coupling film adjacent to the magnetic film contains C at 50 at.% MnFe.
The alloy is characterized in that u, Ni, Pd or Co is contained at a total additive concentration of 25 at.% or less. Therefore, since the electric resistance value of the exchange coupling film is high, it is difficult for the sense current applied to the magnetoresistive film to be shunted to the exchange coupling film, so that the output voltage change amount increases and the reproduction sensitivity increases. The second means of the present invention is a magnetoresistive element having a magnetoresistive effect film of an artificial lattice film, wherein the exchange coupling film adjacent to the magnetic film has Mn of Cu, Ni, Pd or Co of 25.
It is characterized by being composed of an alloy contained at a total additive concentration of at.% or less. In this artificial lattice film type magnetoresistive element, the electric resistance value ρ of the entire magnetoresistive effect film is decreased, the magnetoresistance change rate is relatively increased, and the reproduction sensitivity is improved. In any of the types, the improvement in reproduction sensitivity makes sense for reproduction of high density recording, and a thin film magnetic head compatible with high density recording / reproduction can be provided.

【0107】 本発明の第3の手段は、交換結合膜と
してMnCo合金薄膜を主として用いた点に特徴と有す
るものであるので、磁気抵抗効果膜が単層の磁性膜であ
る場合においては、磁性膜に対する良好な磁化制御が可
能である。また、人工格子膜中にMnCoを用いた場合
は磁気抵抗変化率が大で再生信号の出力を高くできると
共に、磁気感度も高い磁気抵抗素子を得ることができ
る。またFeMn系合金ではないので耐食性も高い。ま
た、そのMnCo合金薄膜にRu,Re,Ir,Pd,
Fe,Ni,Cu,Sc,Y,Ti,Zr,Hf,T
h,V,Nb,Ta,Pa,Cr,Mo,W,Tc,N
p,Zn,Al,Si,Au,Pt,Agの添加元素を
1種以上添加することによって、耐熱性等の一層の向上
を図ることができる。他方、磁気抵抗効果膜が人工格子
膜である場合においては、隔層の磁性膜の磁気異方性を
制御可能であり、磁気抵抗変化率の増大により高い磁気
感度を得ることができる。また酸化工程も不要であるの
で、低製造コストを実現できる。
The third means of the present invention is characterized in that the MnCo alloy thin film is mainly used as the exchange coupling film. Therefore, when the magnetoresistive effect film is a single-layer magnetic film, Good control of the magnetization of the film is possible. Further, when MnCo is used in the artificial lattice film, the magnetoresistance change rate is large, the output of the reproduction signal can be increased, and the magnetoresistive element having high magnetic sensitivity can be obtained. Also, since it is not a FeMn-based alloy, it has high corrosion resistance. In addition, Ru, Re, Ir, Pd,
Fe, Ni, Cu, Sc, Y, Ti, Zr, Hf, T
h, V, Nb, Ta, Pa, Cr, Mo, W, Tc, N
By adding at least one additive element of p, Zn, Al, Si, Au, Pt, and Ag, heat resistance and the like can be further improved. On the other hand, when the magnetoresistive film is an artificial lattice film, the magnetic anisotropy of the magnetic film in the barrier layer can be controlled, and high magnetic sensitivity can be obtained by increasing the magnetoresistance change rate. Further, since an oxidation step is unnecessary, low manufacturing cost can be realized.

【0108】また同様に、MnCoに上述の添加元素を
含む3元以上の合金薄膜を交換結合膜に用いたときに
は、耐熱性を向上させることができる。
Similarly, when an ternary or more alloy thin film containing the above-mentioned additional elements in MnCo is used as the exchange coupling film, heat resistance can be improved.

【0109】 本発明の第4の手段は、Fe1-B-C
B CoC 合金磁性薄膜から成る磁性膜、FeD Al
1-D 合金磁性膜から成る磁性膜、NiE Co1-E 合金磁
性膜から成る磁性膜又はFeF Co1-F 合金磁性膜から
成る磁性膜と、Cu,CrあるいはCuCrから成る非
磁性伝導膜とが交互に2周期以上積層された人工格子膜
であり、Fe1-B-C CrB CoC 合金磁性薄膜の組成範
囲を0.05<B<0.15及び0.50<C<0.60、FeD Al
1-D 合金磁性膜の組成範囲を0.75<D<0.95、NiE
1-E 合金磁性膜の組成範囲を0.70<E<0.85、FeF
Co1-F 合金磁性膜の組成範囲を0.65<F<0.95とした
点に特徴を有する。これによって磁気抵抗変化率が改善
される。さらに、上記の各種合金磁性膜に総濃度で10
at%以下のTi,Ta及び/又はRu(ルテニウム)
が添加されている場合には、耐食性の向上を図ることが
できる。
A fourth means of the present invention is Fe 1-BC C
Magnetic film composed of r B Co C alloy magnetic thin film, Fe D Al
Magnetic film composed of 1-D alloy magnetic film, magnetic film composed of Ni E Co 1-E alloy magnetic film or magnetic film composed of Fe F Co 1-F alloy magnetic film, and non-magnetic conduction composed of Cu, Cr or CuCr It is an artificial lattice film in which two or more layers are alternately laminated, and the composition range of the Fe 1-BC Cr B Co C alloy magnetic thin film is 0.05 <B <0.15 and 0.50 <C <0.60, Fe D Al
The composition range of the 1-D alloy magnetic film is 0.75 <D <0.95, Ni E C
o 1-E alloy magnetic film composition range is 0.70 <E <0.85, Fe F
It is characterized in that the composition range of the Co 1 -F alloy magnetic film is set to 0.65 <F <0.95. This improves the rate of change in magnetic resistance. Furthermore, the total concentration of the above-mentioned various alloy magnetic films is 10
Ti, Ta and / or Ru (ruthenium) of at% or less
When is added, the corrosion resistance can be improved.

【0110】 本発明の第5の手段は、磁気誘導素子
が軟磁性薄膜と非磁性薄膜とを順次積み重ねた積層構造
の磁気コアを有しており、軟磁性薄膜を、コバルト(C
o),ハフニウム(Hf),タンタル(Ta),パラジ
ウム(Pd)の4元素非晶質合金から形成し、また非磁
性薄膜を、シリコン(Si),アルミニウム(Al),
酸素(O)及び窒素(N)から形成した点に特徴を有す
る。従って、軟磁性薄膜と非磁性薄膜とを偶数回積み重
ねた磁気コアにより、安定した単磁区構造をとることが
でき、また、磁壁移動を極力抑制することが可能とな
る。これは、データ処理の高速化,高密度化に伴い書込
み動作周波数が高くなった場合であっても、高周波数帯
域での透磁率を十分確保することが可能となる。また、
SiAlONを用いたので、Ar中のスパッタにより非
磁性薄膜を成膜することができる。これにより、非磁性
薄膜と軟磁性薄膜を同雰囲気中でスパッタ成膜できるの
で、量産性に優れ、かつ、記録・再生特性に優れた薄膜
磁気ヘッドの提供に寄与するところが大きい。
In a fifth aspect of the present invention, the magnetic induction element has a magnetic core having a laminated structure in which a soft magnetic thin film and a nonmagnetic thin film are sequentially stacked.
o), hafnium (Hf), tantalum (Ta), palladium (Pd), a non-magnetic thin film formed of a four-element amorphous alloy, and a nonmagnetic thin film made of silicon (Si), aluminum (Al),
It is characterized in that it is formed from oxygen (O) and nitrogen (N). Therefore, the magnetic core in which the soft magnetic thin film and the non-magnetic thin film are stacked an even number of times can have a stable single domain structure and can suppress the domain wall movement as much as possible. This makes it possible to sufficiently secure the magnetic permeability in the high frequency band even when the write operation frequency becomes higher as the data processing becomes faster and the density becomes higher. Also,
Since SiAlON is used, the nonmagnetic thin film can be formed by sputtering in Ar. As a result, the non-magnetic thin film and the soft magnetic thin film can be formed by sputtering in the same atmosphere, which greatly contributes to the provision of a thin film magnetic head having excellent mass productivity and excellent recording / reproducing characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例1に係る磁気抵抗素子
の構造を模式的に示す断面図、(b)はその変形例の層
構成を模式的に示す断面図、(c)は更に別の変形例の
層構成を模式的に示す断面図である。
1A is a cross-sectional view schematically showing the structure of a magnetoresistive element according to a first embodiment of the present invention, FIG. 1B is a cross-sectional view schematically showing a layer structure of a modification thereof, and FIG. FIG. 8 is a cross-sectional view schematically showing a layer structure of still another modified example.

【図2】本発明の実施例2に係る磁気抵抗素子の構造を
模式的に示す断面図である。
FIG. 2 is a sectional view schematically showing the structure of a magnetoresistive element according to Example 2 of the present invention.

【図3】図2に示す磁気抵抗素子における人工格子膜の
磁気抵抗効果膜の構造を模式的に示す断面図である。
3 is a sectional view schematically showing the structure of a magnetoresistive effect film of an artificial lattice film in the magnetoresistive element shown in FIG.

【図4】(a)は図2に示す層構成の変形例を模式的に
示す断面図で、(b)は図2に示す層構成の更に別の変
形例を模式的に示す断面図である。
4A is a sectional view schematically showing a modified example of the layer structure shown in FIG. 2, and FIG. 4B is a sectional view schematically showing another modified example of the layer structure shown in FIG. is there.

【図5】本発明の実施例3に係る磁気抵抗素子の層構成
を模式的に示す断面図である。
FIG. 5 is a sectional view schematically showing the layer structure of a magnetoresistive element according to Example 3 of the present invention.

【図6】(a)は実施例3における交換結合膜のMn組
成比(A)に対する交換結合磁界(He1 )の変化を示
すグラフであり、(b)は実施例3において交換結合膜
にMnCo膜を用いた場合とMnFe膜を用いた場合の
恒温恒湿下での交換結合磁界He1 の保持時間依存性を
示すグラフである。
6A is a graph showing changes in the exchange coupling magnetic field (He 1 ) with respect to the Mn composition ratio (A) of the exchange coupling film in Example 3, and FIG. 6 is a graph showing the holding time dependence of the exchange coupling magnetic field He 1 under constant temperature and humidity, using a MnCo film and using a MnFe film.

【図7】本発明の実施例4に係る磁気抵抗素子におい
て、交換結合膜にFeMn,MnCo,MnCoRuの
薄膜を用いた場合の耐熱試験結果を示すグラフである。
FIG. 7 is a graph showing heat resistance test results when a thin film of FeMn, MnCo, or MnCoRu is used as the exchange coupling film in the magnetoresistive element according to Example 4 of the present invention.

【図8】本発明の実施例5に係る磁気抵抗素子における
磁気抵抗効果膜の構造を模式的に示す断面図である。
FIG. 8 is a sectional view schematically showing the structure of a magnetoresistive effect film in a magnetoresistive element according to Example 5 of the present invention.

【図9】本発明の実施例6に係る磁気抵抗素子における
人工格子膜の磁気抵抗効果膜を模式的に示す断面図であ
る。
FIG. 9 is a sectional view schematically showing a magnetoresistive effect film of an artificial lattice film in a magnetoresistive element according to Example 6 of the present invention.

【図10】本発明の実施例7に係る磁気抵抗素子におけ
る人工格子膜の磁気抵抗効果膜を模式的に示す断面図で
ある。
FIG. 10 is a sectional view schematically showing a magnetoresistive effect film of an artificial lattice film in a magnetoresistive element according to Example 7 of the present invention.

【図11】(A)は本発明の実施例8に係る磁気誘導素
子を模式的に示す平面図、(B)はその磁気誘導素子を
模式的に示す断面図である。
FIG. 11A is a plan view schematically showing a magnetic induction element according to Example 8 of the present invention, and FIG. 11B is a sectional view schematically showing the magnetic induction element.

【図12】実施例8に係る磁気誘導素子における磁気コ
アの層構造を模式的に示す断面図である。
FIG. 12 is a cross-sectional view schematically showing a layer structure of a magnetic core in a magnetic induction element according to Example 8.

【図13】実施例8におけるCoHfTaPd合金膜の
組成に対する特性図である。
13 is a characteristic diagram for the composition of the CoHfTaPd alloy film in Example 8. FIG.

【図14】実施例8における磁気コアの各組成膜の透磁
率と書込み周波数との関係を示すグラフ特性図である。
FIG. 14 is a graph characteristic diagram showing the relationship between the magnetic permeability of each composition film of the magnetic core and the writing frequency in Example 8.

【図15】(A),(B)のそれぞれは、実施例8にお
ける磁気コアの磁区の構造を説明する模式図である。
15A and 15B are schematic diagrams illustrating the structure of magnetic domains of the magnetic core in Example 8. FIG.

【図16】(A)〜(C)は、実施例8における磁気コ
アの積層構造に伴う磁区の構造を説明する斜視図であ
る。
16A to 16C are perspective views illustrating a magnetic domain structure associated with a laminated structure of a magnetic core according to an eighth embodiment.

【図17】(A),(B)は、実施例8における磁気コ
アの各組成膜の1層膜厚と磁壁出現率との関係を示すグ
ラフである。
17 (A) and 17 (B) are graphs showing the relationship between the one-layer film thickness of each composition film of the magnetic core and the domain wall appearance rate in Example 8. FIG.

【図18】(a)は薄膜磁気ヘッドの概略構成を示す断
面図、(b)はその磁気抵抗素子の平面図、(c)はそ
の磁気誘導素子の平面図である。
18A is a sectional view showing a schematic configuration of a thin film magnetic head, FIG. 18B is a plan view of the magnetoresistive element, and FIG. 18C is a plan view of the magnetic induction element.

【図19】(a),(b),(c)はそれぞれ磁気抵抗
素子の層構造を模式的に示す断面図である。
19 (a), (b) and (c) are cross-sectional views schematically showing the layer structure of the magnetoresistive element.

【図20】磁気抵抗素子の磁気抵抗膜が非磁性伝導膜と
磁性膜との人工格子膜である場合の層構造を模式的に示
す断面図である。
FIG. 20 is a cross-sectional view schematically showing a layer structure when the magnetoresistive film of the magnetoresistive element is an artificial lattice film of a nonmagnetic conductive film and a magnetic film.

【図21】(a),(b)は磁気抵抗素子の磁気抵抗膜
が非磁性伝導膜と磁性膜との人工格子膜である場合の別
の層構造をそれぞれ模式的に示す断面図である。
21A and 21B are cross-sectional views each schematically showing another layer structure in the case where the magnetoresistive film of the magnetoresistive element is an artificial lattice film of a nonmagnetic conductive film and a magnetic film. .

【図22】磁気抵抗素子の磁気抵抗膜が交換結合膜を持
つ人工格子膜である場合の層構造を模式的に示す断面図
である。
FIG. 22 is a cross-sectional view schematically showing the layer structure when the magnetoresistive film of the magnetoresistive element is an artificial lattice film having an exchange coupling film.

【図23】(a),(b)は磁気抵抗膜が人工格子膜で
ある場合の磁気抵抗効果を説明する模式的断面図であ
る。
23 (a) and 23 (b) are schematic cross-sectional views illustrating the magnetoresistive effect when the magnetoresistive film is an artificial lattice film.

【図24】磁気抵抗素子の横バイアス膜の意義を説明す
る模式図である。
FIG. 24 is a schematic diagram illustrating the meaning of a lateral bias film of a magnetoresistive element.

【図25】(A)は磁気誘導素子を示す断面図、(B)
はその磁気コアの磁区の構造を説明する模式図である。
25A is a cross-sectional view showing a magnetic induction element, FIG.
FIG. 4 is a schematic diagram illustrating the structure of magnetic domains of the magnetic core.

【符号の説明】[Explanation of symbols]

1,61,71…基板 20,21,22,23,24,25,26…磁気抵抗
素子 31,62…補助膜 32,43,52,63,83…交換結合膜 27,28,33,40,51,65,67…磁気抵抗
効果膜 34,45,73,81…非磁性伝導膜 35…横バイアス膜 44,46,64,66,74,82,85…磁性膜 90…磁気誘導素子 91…磁気コア 96A…軟磁性薄膜 96B…非磁性薄膜 g…磁気ギャップ。
1, 61, 71 ... Substrate 20, 21, 22, 23, 24, 25, 26 ... Magnetoresistive element 31, 62 ... Auxiliary film 32, 43, 52, 63, 83 ... Exchange coupling film 27, 28, 33, 40 , 51, 65, 67 ... Magnetoresistive effect film 34, 45, 73, 81 ... Non-magnetic conductive film 35 ... Transverse bias film 44, 46, 64, 66, 74, 82, 85 ... Magnetic film 90 ... Magnetic induction element 91 ... magnetic core 96A ... soft magnetic thin film 96B ... non-magnetic thin film g ... magnetic gap.

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願平5−136296 (32)優先日 平5(1993)6月8日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−175780 (32)優先日 平5(1993)7月16日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−247645 (32)優先日 平5(1993)10月4日 (33)優先権主張国 日本(JP) (31)優先権主張番号 特願平5−313875 (32)優先日 平5(1993)12月15日 (33)優先権主張国 日本(JP) (72)発明者 斎藤 修 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 岡村 祐子 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 長野 恵 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (31) Priority claim number Japanese Patent Application No. 5-136296 (32) Priority date Hei 5 (1993) June 8 (33) Priority claim country Japan (JP) (31) Priority Claim No. Japanese Patent Application No. 5-175780 (32) Priority Day No. 5 (1993) July 16 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 5-247645 (32) Priority Hihei 5 (1993) October 4 (33) Priority claiming country Japan (JP) (31) Priority claim number Japanese Patent Application No. 5-313875 (32) Priority Sun 5 (1993) December 15 (33) (72) Inventor Osamu Saito 1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Fuji Electric Co., Ltd. (72) Yuko Okamura, Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa No. 1 within Fuji Electric Co., Ltd. (72) Inventor Megumi Nagano 1-1 Tanabe Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Wealth Electric Co., Ltd. in

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 基体表面側に、交換結合膜に隣接した単
層構造の磁気抵抗効果膜を有する磁気抵抗素子におい
て、 前記交換結合膜は、Mn50at. %のMnFeに対して
Cu,Ni,PdおよびCoからなる群から選ばれた少
なくとも1種の添加物が25at. %以下の添加物総濃度
で添加された合金膜であることを特徴とする磁気抵抗素
子。
1. A magnetoresistive element having a single-layered magnetoresistive film adjacent to an exchange coupling film on a substrate surface side, wherein the exchange coupling film is Cu, Ni, Pd with respect to MnFe of 50 at.% Mn. A magnetoresistive element comprising an alloy film in which at least one additive selected from the group consisting of and Co is added at a total additive concentration of 25 at.% Or less.
【請求項2】 基体表面側に、交換結合膜に隣接した第
1の磁性膜,非磁性伝導膜及び第2の磁性膜を少なくと
も含む積層構造を1積層周期として2周期以上積層した
人工格子膜からなる磁気抵抗効果膜を有する磁気抵抗素
子において、 前記交換結合膜は、Mnに対してCu,Ni,Pdおよ
びCoからなる群から選ばれた少なくとも1種の添加物
が25at. %以下の添加物総濃度で添加された合金膜で
あることを特徴とする磁気抵抗素子。
2. An artificial lattice film in which a laminated structure including at least a first magnetic film, a non-magnetic conductive film and a second magnetic film adjacent to an exchange coupling film is laminated on the surface side of a substrate for two or more cycles with one laminated cycle. In the magnetoresistive element having a magnetoresistive effect film made of, the exchange coupling film contains at least one additive selected from the group consisting of Cu, Ni, Pd and Co in an amount of 25 at. A magnetoresistive element, which is an alloy film added in a total concentration.
【請求項3】 基体表面側に、交換結合膜に隣接した単
層構造の磁気抵抗効果膜を有する磁気抵抗素子におい
て、 前記交換結合膜は、MnA Co1-A 合金磁性薄膜を主と
する反強磁性膜又はフェリ磁性膜から成り、前記MnA
Co1-A 合金磁性薄膜の組成範囲が0.5<A<0.9
を満たすことを特徴とする磁気抵抗素子。
3. A magnetoresistive element having a magnetoresistive film having a single-layer structure adjacent to an exchange coupling film on the surface side of a substrate, wherein the exchange coupling film is mainly a Mn A Co 1-A alloy magnetic thin film. consists antiferromagnetic film or ferrimagnetic films, the Mn A
The composition range of the Co 1-A alloy magnetic thin film is 0.5 <A <0.9.
A magnetoresistive element characterized by satisfying:
【請求項4】 請求項3に記載の磁気抵抗素子におい
て、前記交換結合膜は、前記MnA Co1-A 合金磁性薄
膜に、30at.%以下の次の合金元素Xを添加してな
ることを特徴とする磁気抵抗素子:Ru,Re,Ir,
Pd,Fe,Ni,Cu,Sc,Y,Ti,Zr,H
f,Th,V,Nb,Ta,Pa,Cr,Mo,W,T
c,Np,Zn,Al,Si,Au,Pt及びAgから
成る群から選ばれた少なくとも1種の元素よりなる合金
元素X。
4. The magnetoresistive element according to claim 3, wherein the exchange coupling film is formed on the Mn A Co 1-A alloy magnetic thin film at 30 at. % Or less of the following alloying element X is added: a magnetoresistive element: Ru, Re, Ir,
Pd, Fe, Ni, Cu, Sc, Y, Ti, Zr, H
f, Th, V, Nb, Ta, Pa, Cr, Mo, W, T
An alloying element X consisting of at least one element selected from the group consisting of c, Np, Zn, Al, Si, Au, Pt and Ag.
【請求項5】 基体表面側に、交換結合膜に隣接した第
1の磁性膜,非磁性伝導膜及び第2の磁性膜を少なくと
も含む積層構造を1積層周期として2周期以上積層した
人工格子膜からなる磁気抵抗効果膜を有する磁気抵抗素
子において、 前記交換結合膜は、MnCo合金磁性薄膜を主とする反
強磁性膜又はフェリ磁性膜であることを特徴とする磁気
抵抗素子。
5. An artificial lattice film in which a laminated structure including at least a first magnetic film, a non-magnetic conductive film and a second magnetic film adjacent to an exchange coupling film is laminated on the surface side of a substrate for two or more cycles with one laminated cycle. In the magnetoresistive element having a magnetoresistive effect film made of, the exchange coupling film is an antiferromagnetic film or a ferrimagnetic film mainly composed of an MnCo alloy magnetic thin film.
【請求項6】 請求項5に記載の磁気抵抗素子におい
て、前記交換結合膜は、前記MnCo合金磁性薄膜に次
の合金元素Xを添加してなることを特徴とする磁気抵抗
素子:Ru,Re,Ir,Pd,Fe,Ni,Cu,S
c,Y,Ti,Zr,Hf,Th,V,Nb,Ta,P
a,Cr,Mo,W,Tc,Np,Zn,Al,Si,
Au,Pt及びAgから成る群から選ばれた少なくとも
1種の元素よりなる合金元素X。
6. The magnetoresistive element according to claim 5, wherein the exchange coupling film is formed by adding the following alloying element X to the MnCo alloy magnetic thin film: Ru, Re. , Ir, Pd, Fe, Ni, Cu, S
c, Y, Ti, Zr, Hf, Th, V, Nb, Ta, P
a, Cr, Mo, W, Tc, Np, Zn, Al, Si,
An alloying element X consisting of at least one element selected from the group consisting of Au, Pt and Ag.
【請求項7】 基体表面側に、磁性膜と非磁性伝導膜と
を少なくとも含む積層構造を1積層周期として2周期以
上積層した人工格子膜からなる磁気抵抗効果膜を有する
磁気抵抗素子において、 前記磁性膜がFe1-B-C CrB CoC 合金磁性薄膜から
成り、前記非磁性伝導膜がCu,CrあるいはCuCr
から成り、前記Fe1-B-C CrB CoC 合金磁性薄膜の
組成範囲が0.05<B<0.15及び0.50<C<0.60を満足す
ることを特徴とする磁気抵抗素子。
7. A magnetoresistive element having, on the surface side of a substrate, a magnetoresistive effect film made of an artificial lattice film in which a laminated structure containing at least a magnetic film and a non-magnetic conductive film is laminated for two cycles or more, wherein The magnetic film is composed of a Fe 1-BC Cr B Co C alloy magnetic thin film, and the non-magnetic conductive film is Cu, Cr or CuCr.
From made, the Fe 1-BC Cr B Co C alloy magnetoresistive element composition range of the magnetic thin film, characterized by satisfying the 0.05 <B <0.15 and 0.50 <C <0.60.
【請求項8】 請求項7に記載の磁気抵抗素子におい
て、前記磁性膜が、前記Fe1-B-C CrB CoC 合金磁
性薄膜に代えて、FeD Al1-D 合金磁性膜から成り、
前記FeD Al1-D 合金磁性膜の組成範囲が、0.75<D
<0.95を満足することを特徴とする磁気抵抗素子。
8. The magnetoresistive element according to claim 7, wherein the magnetic film is an Fe D Al 1 -D alloy magnetic film in place of the Fe 1 -BC Cr B Co C alloy magnetic thin film.
The composition range of the Fe D Al 1-D alloy magnetic film is 0.75 <D
A magnetoresistive element characterized by satisfying <0.95.
【請求項9】 請求項7に記載の磁気抵抗素子におい
て、前記磁性膜が、前記Fe1-B-C CrB CoC 合金磁
性薄膜に代えて、NiE Co1-E 合金磁性膜から成り、
前記NiE Co1-E 合金磁性膜の組成範囲が、0.70<E
<0.85を満足することを特徴とする磁気抵抗素子。
The magnetoresistance element according to claim 9 according to claim 7, wherein the magnetic film, the place of the Fe 1-BC Cr B Co C alloy magnetic thin film made of Ni E Co 1-E alloy magnetic film,
The composition range of the Ni E Co 1-E alloy magnetic film is 0.70 <E.
A magnetoresistive element characterized by satisfying <0.85.
【請求項10】 請求項7に記載の磁気抵抗素子におい
て、前記磁性膜が、前記Fe1-B-C CrB CoC 合金磁
性薄膜に代えて、FeF Co1-F 合金磁性膜から成り、
前記FeF Co1-F 合金磁性膜の組成範囲が、0.65<F
<0.95を満足することを特徴とする磁気抵抗素子。
10. The magnetoresistive element according to claim 7, wherein the magnetic film is made of an Fe F Co 1-F alloy magnetic film in place of the Fe 1-BC Cr B Co C alloy magnetic thin film,
The composition range of the Fe F Co 1-F alloy magnetic film is 0.65 <F
A magnetoresistive element characterized by satisfying <0.95.
【請求項11】 請求項7乃至請求項10のいずれか一
項に記載の磁気抵抗素子において、前記合金磁性膜にT
i,Ta及び/又はRuを総濃度で10〔at%〕以下
添加してなることを特徴とする磁気抵抗素子。
11. The magnetoresistive element according to claim 7, wherein the alloy magnetic film has a T content.
A magnetoresistive element comprising i, Ta and / or Ru added in a total concentration of 10 [at%] or less.
【請求項12】 磁気ギャップを持つ磁気コアを具備す
る磁気誘導素子において、前記磁気コアが、軟磁性薄膜
と非磁性薄膜とを順次積み重ねた積層構造を有してお
り、 前記軟磁性薄膜が、コバルト(Co),ハフニウム(H
f),タンタル(Ta),パラジウム(Pd)の4元素
非晶質合金から成り、 前記非磁性薄膜が、シリコン(Si),アルミニウム
(Al),酸素(O)及び窒素(N)から成ることを特
徴とする磁気誘導素子。
12. A magnetic induction element comprising a magnetic core having a magnetic gap, wherein the magnetic core has a laminated structure in which a soft magnetic thin film and a nonmagnetic thin film are sequentially stacked, and the soft magnetic thin film comprises: Cobalt (Co), Hafnium (H
f), a tantalum (Ta), and a palladium (Pd) four-element amorphous alloy, and the non-magnetic thin film is composed of silicon (Si), aluminum (Al), oxygen (O), and nitrogen (N). A magnetic induction element characterized by.
【請求項13】 請求項12記載の磁気誘導素子におい
て、前記軟磁性薄膜のコバルト(Co),ハフニウム
(Hf),タンタル(Ta),パラジウム(Pd)の組
成比は、Co(1-X-Y-Z) HfX TaY PdZ とすると、
3.0≦X≦4.0at%,4.5 ≦Y≦5.5 at%,1.3 ≦
Z≦2.3 at%であることを特徴とする磁気誘導素子。
13. The magnetic induction device according to claim 12, wherein the composition ratio of cobalt (Co), hafnium (Hf), tantalum (Ta), and palladium (Pd) of the soft magnetic thin film is Co (1-XYZ). If Hf X Ta Y Pd Z ,
3.0 ≦ X ≦ 4.0at%, 4.5 ≦ Y ≦ 5.5at%, 1.3 ≦
A magnetic induction element, wherein Z ≦ 2.3 at%.
【請求項14】 請求項12又は請求項13に記載の磁
気誘導素子において、前記軟磁性薄膜の一層の膜厚が15
00〜3000〔Å〕であり、前記非磁性薄膜の一層の膜厚が
50〜150 〔Å〕であり、前記軟磁性薄膜と非磁性薄膜
との積層数が偶数であることを特徴とする磁気誘導素
子。
14. The magnetic induction element according to claim 12, wherein the soft magnetic thin film has a thickness of 15 layers.
00-3000 [Å], the thickness of one layer of the non-magnetic thin film is 50-150 [Å], and the number of laminated layers of the soft magnetic thin film and the non-magnetic thin film is an even number. Inductive element.
【請求項15】 請求項1乃至請求項11のいずれか一
項に規定する磁気抵抗素子と、請求項12乃至請求項1
4のいずれか一項に規定する磁気誘導素子とを積層して
なることを特徴とする薄膜磁気ヘッド。
15. A magnetoresistive element as defined in any one of claims 1 to 11, and claims 12 to 1.
4. A thin-film magnetic head, characterized by being laminated with the magnetic induction element defined in any one of 4 above.
JP6004320A 1993-01-20 1994-01-20 Magnetoresistive element, magnetic induction element and thin film magnetic head Pending JPH07225924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6004320A JPH07225924A (en) 1993-01-20 1994-01-20 Magnetoresistive element, magnetic induction element and thin film magnetic head

Applications Claiming Priority (15)

Application Number Priority Date Filing Date Title
JP747093 1993-01-20
JP2414493 1993-02-12
JP8896793 1993-04-16
JP13629693 1993-06-08
JP17578093 1993-07-16
JP24764593 1993-10-04
JP31387593 1993-12-15
JP5-7470 1993-12-15
JP5-175780 1993-12-15
JP5-24144 1993-12-15
JP5-313875 1993-12-15
JP5-88967 1993-12-15
JP5-247645 1993-12-15
JP5-136296 1993-12-15
JP6004320A JPH07225924A (en) 1993-01-20 1994-01-20 Magnetoresistive element, magnetic induction element and thin film magnetic head

Publications (1)

Publication Number Publication Date
JPH07225924A true JPH07225924A (en) 1995-08-22

Family

ID=27571528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6004320A Pending JPH07225924A (en) 1993-01-20 1994-01-20 Magnetoresistive element, magnetic induction element and thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH07225924A (en)

Similar Documents

Publication Publication Date Title
US6313973B1 (en) Laminated magnetorestrictive element of an exchange coupling film, an antiferromagnetic film and a ferromagnetic film and a magnetic disk drive using same
US6819532B2 (en) Magnetoresistance effect device exchange coupling film including a disordered antiferromagnetic layer, an FCC exchange coupling giving layer, and a BCC exchange coupling enhancement layer
JP3735443B2 (en) Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic storage device using the same
KR100372984B1 (en) Magnetoresistive type magnetic head and magnetic recording and reproducing apparatus
JP3557140B2 (en) Magnetoresistive element and magnetic reproducing device
JP3088478B2 (en) Magnetoresistive element
JP3587447B2 (en) Memory element
JP3660927B2 (en) Magnetoresistive effect element, magnetoresistive effect type magnetic head, magnetic recording device and magnetoresistive effect type memory device using the same
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
JP3207477B2 (en) Magnetoresistance effect element
JP5429480B2 (en) Magnetoresistive element, MRAM, and magnetic sensor
CN100419856C (en) Magnetic multilayered films with reduced magnetostriction
JP2005025890A (en) Magnetic film for magnetic head
JPH09326104A (en) Magnetic head
JP3625336B2 (en) Magnetoresistive head
JP3088519B2 (en) Magnetoresistive element
KR20060101139A (en) Magnetoresistive element, magnetic head, and magnetic memory device
JP4387955B2 (en) Magnetoresistive effect element
Tsunekawa et al. Huge magnetoresistance and low junction resistance in magnetic tunnel junctions with crystalline MgO barrier
JP3321615B2 (en) Magnetoresistive element and magnetic transducer
US20080074804A1 (en) TUNNELING MAGNETIC SENSING ELEMENT HAVING FREE LAYER CONTAINING CoFe ALLOY AND METHOD MANUFACTURING THE SAME
JP2011123944A (en) Method of manufacturing tmr read head, and tmr laminated body
US8124253B2 (en) Tunneling magnetic sensing element including MGO film as insulating barrier layer
JP3337732B2 (en) Magnetoresistance effect element
JP3645159B2 (en) Magnetoresistive element, magnetic head, and magnetic reproducing apparatus