JPH07225202A - Glass element concentration distribution measurement method - Google Patents
Glass element concentration distribution measurement methodInfo
- Publication number
- JPH07225202A JPH07225202A JP6016195A JP1619594A JPH07225202A JP H07225202 A JPH07225202 A JP H07225202A JP 6016195 A JP6016195 A JP 6016195A JP 1619594 A JP1619594 A JP 1619594A JP H07225202 A JPH07225202 A JP H07225202A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- concentration distribution
- hydrogen
- thickness direction
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ガラスの元素の濃度分
布測定方法に関し、特にガラス中のアルカリ金属および
水素の厚み方向の濃度分布の測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the concentration distribution of glass elements, and more particularly to a method for measuring the concentration distribution of alkali metals and hydrogen in glass in the thickness direction.
【0002】[0002]
【従来の技術】ガラスの厚み方向の元素の濃度分布を測
定することは、ガラスの化学耐久性や電気的・光学的性
質を考察するうえで必要不可欠である。これにはX線マ
イクロアナライザー,ラザフォード後方散乱、二次イオ
ン質量分析法などが一般に用いられている。特に、二次
イオン質量分析法は厚み方向、面方向の位置分解能に優
れ、水素および微量元素の検出が可能なことから、ガラ
スの精密分析に適した特徴を有している。しかし、ガラ
スなどの絶縁物を二次イオン質量分析法で分析する際に
は帯電によって誘起される現象によって、アルカリ金属
元素や水素を正確に測定することが困難であった。2. Description of the Related Art Measuring the concentration distribution of elements in the thickness direction of glass is essential for considering the chemical durability and electrical / optical properties of glass. X-ray microanalyzer, Rutherford backscattering, secondary ion mass spectrometry, etc. are generally used for this. In particular, secondary ion mass spectrometry has excellent positional resolution in the thickness direction and the plane direction and can detect hydrogen and trace elements, and thus has characteristics suitable for precision analysis of glass. However, when an insulator such as glass is analyzed by secondary ion mass spectrometry, it is difficult to accurately measure alkali metal elements and hydrogen due to a phenomenon induced by charging.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は、従来
技術が有していた前述の課題を解決し、ガラスの厚み方
向のアルカリ金属および水素等の元素の濃度分布を精密
に測定する方法を提供しようとするものである。The object of the present invention is to solve the above-mentioned problems of the prior art and to accurately measure the concentration distribution of alkali metals and elements such as hydrogen in the thickness direction of glass. Is to provide.
【0004】[0004]
【課題を解決するための手段】本発明は、前述の課題を
解決すべくなされたものであり、ガラスの厚み方向の元
素の濃度分布を二次イオン質量分析法により測定するに
あたり、ガラスを低温度に保持しつつ測定することを特
徴とするガラスの元素濃度分布測定方法を提供するもの
である。The present invention has been made to solve the above-mentioned problems, and in measuring the concentration distribution of elements in the thickness direction of glass by secondary ion mass spectrometry, The present invention provides a method for measuring the element concentration distribution of glass, which is characterized in that the measurement is carried out while maintaining the temperature.
【0005】本発明において、測定時のガラスの温度が
高すぎると測定対象の元素が移動し、測定精度が低下す
る。すなわち、二次イオン質量分析法により分析する
際、ガラスなどの絶縁物の表面にO2 +やCs+ など一次
イオンが入射すると、その表面が正に帯電する。この帯
電を補正するために電子線の照射が行なわれるが、一次
イオンと電子では注入深さが異なるため、厚み方向に電
場が形成される。この電場の形成によって、アルカリ金
属等の元素は、深部への移動が生ずるものと思われる。
一方、電子線の照射は試料の表面を加熱するため、水素
は熱拡散を生ずるものと思われる。In the present invention, if the temperature of the glass at the time of measurement is too high, the element to be measured moves and the measurement accuracy decreases. That is, when secondary ions are analyzed by mass spectrometry, when primary ions such as O 2 + and Cs + are incident on the surface of an insulator such as glass, the surface is positively charged. Electron beam irradiation is performed to correct this charging, but primary ions and electrons have different implantation depths, so an electric field is formed in the thickness direction. It is considered that the formation of this electric field causes the elements such as the alkali metal to move to the deep part.
On the other hand, the electron beam irradiation heats the surface of the sample, and it is considered that hydrogen causes thermal diffusion.
【0006】このガラスの温度としては、測定対象の元
素がナトリウムや水素の場合には、−100℃以下が好
ましく、特に−150℃以下が望ましい。ガラスをこの
ような低温度に保持する方法としては、液体チッ素を用
いガラスの支持台に直結した配管内を循環させる方法
が、好ましい。When the element to be measured is sodium or hydrogen, the temperature of this glass is preferably −100 ° C. or lower, particularly −150 ° C. or lower. As a method of maintaining the glass at such a low temperature, a method of circulating liquid nitrogen in a pipe directly connected to a glass support is preferable.
【0007】測定対象の元素としては、特に限定される
ものではないが、特に制度の高い測定が行える点で、ナ
トリウム、リシウムおよびカリウムのアルカリ金属なら
びに水素が、好ましい。The element to be measured is not particularly limited, but alkali metals such as sodium, lithium and potassium, and hydrogen are preferable in that particularly accurate measurement can be performed.
【0008】[0008]
【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.
【0009】[実施例1]石英ガラスに30keV,
3.3×1014cm-2の条件でナトリウムを注入し、ナ
トリウムの厚み方向の濃度分布が既知のガラスを作製し
た。このガラスのナトリウムの厚み方向の分布は、LS
S理論により、表面から50nmの深さにピークトップ
を有するガウス分布である。[Example 1] 30 keV on quartz glass
Sodium was injected under the condition of 3.3 × 10 14 cm −2 to prepare glass having a known concentration distribution of sodium in the thickness direction. The distribution of sodium in the thickness direction of this glass is LS
According to S theory, it is a Gaussian distribution having a peak top at a depth of 50 nm from the surface.
【0010】このガラスについて、厚み方向のナトリウ
ムの濃度分布を二次イオン質量分析法で測定した。その
結果を図1に点線で示した。測定の際、ガラスは−15
0℃の温度に保持された。また、二次イオン質量分析方
法の測定条件は、4keVの1次セシウムイオンビーム
をサンプル面の法線に対し60度で入射させ、正の2次
イオン強度を検出した。測定は、ガラス表面からの各深
さにおいて行った。図は、かくして測定した結果を 横
軸にガラス表面からの深さ(nm)、縦軸に2次イオン
強度(cps)をとり、示したものである。なお、帯電
補正のための電子ビームのエネルギーは1keVで行っ
た。With respect to this glass, the concentration distribution of sodium in the thickness direction was measured by secondary ion mass spectrometry. The result is shown by the dotted line in FIG. When measuring, the glass is -15
The temperature was kept at 0 ° C. Further, the measurement conditions of the secondary ion mass spectrometry method were that a primary cesium ion beam of 4 keV was made incident at 60 degrees with respect to the normal line of the sample surface, and the positive secondary ion intensity was detected. The measurement was performed at each depth from the glass surface. The figure shows the thus-measured results, with the horizontal axis representing the depth (nm) from the glass surface and the vertical axis representing the secondary ion intensity (cps). The electron beam energy for charging correction was 1 keV.
【0011】[比較例1]測定の際に試料を冷却しない
以外は、実施例1と同じ試料、同じ条件で測定を行っ
た。図1の実線は、その結果を示したものである。[Comparative Example 1] The measurement was performed under the same conditions and conditions as in Example 1, except that the sample was not cooled during the measurement. The solid line in FIG. 1 shows the result.
【0012】図1より明らかなように、本発明によれ
ば、正確なナトリウムの厚み方向分布を二次イオン質量
分析法で測定することができた。As is clear from FIG. 1, according to the present invention, the accurate distribution of sodium in the thickness direction can be measured by the secondary ion mass spectrometry.
【0013】[実施例2]石英ガラスに40keV,
3.3×1014cm-2の条件で水素イオンを注入し、水
素の厚み方向の濃度分布が既知のガラス試料を作製し
た。この試料の水素の厚み方向の分布は、LSS理論に
より、表面から500nmにピークトップを有するガウ
スの分布である。[Example 2] 40 keV on quartz glass
Hydrogen ions were implanted under the condition of 3.3 × 10 14 cm −2 to prepare a glass sample having a known concentration distribution of hydrogen in the thickness direction. The distribution of hydrogen in the thickness direction of this sample is a Gaussian distribution having a peak top at 500 nm from the surface according to the LSS theory.
【0014】このガラスの厚み方向の水素の濃度分布
を、二次イオン質量分析法で測定した。その結果を図2
に点線で示した。測定の際、ガラスは、実施例1と同じ
−150℃の温度に保持された。一方、二次イオン質量
分析法測定条件は、8keVの1次セシウムイオンビー
ムをガラス面の法線に対し20度で入射させ、負の2次
イオンを検出した。ここで、帯電補正のための電子ビー
ムのエネルギーは1keVで行った。図2において試料
を冷却して測定すると、正確な水素濃度の厚み方向の分
布を二次イオン質量分析法で測定することができた。The concentration distribution of hydrogen in the thickness direction of this glass was measured by secondary ion mass spectrometry. The result is shown in Figure 2.
Is indicated by a dotted line. During the measurement, the glass was kept at the same temperature of -150 ° C as in Example 1. On the other hand, as the secondary ion mass spectrometry measurement condition, a primary cesium ion beam of 8 keV was made incident at 20 degrees with respect to the normal to the glass surface, and negative secondary ions were detected. Here, the electron beam energy for charge correction was 1 keV. When the sample was cooled and measured in FIG. 2, the accurate hydrogen concentration distribution in the thickness direction could be measured by secondary ion mass spectrometry.
【0015】[比較例2]測定の際に試料を冷却しない
以外は、実施例2と同じ試料、同じ条件で測定を行っ
た。その結果を図2に実線で示した。この場合、水素の
分布がピークトップの深部側にだれており、正確に測定
できていない。[Comparative Example 2] The measurement was performed under the same conditions and conditions as in Example 2, except that the sample was not cooled during the measurement. The result is shown by the solid line in FIG. In this case, the hydrogen distribution is sloping to the deep side of the peak top, and accurate measurement cannot be performed.
【0016】図2により明らかなように、本発明によれ
ば、正確な水素濃度の厚み方向の分布を二次イオン質量
分析法で測定することができた。As is clear from FIG. 2, according to the present invention, the accurate distribution of hydrogen concentration in the thickness direction could be measured by the secondary ion mass spectrometry.
【0017】[0017]
【発明の効果】本発明は、ガラスの厚み方向の元素濃度
分布を、正確に測定することができる。また、測定時に
ガラスを低温度に保持することにより、測定チャンバー
等も冷却され、測定チャンバーの真空度が向上する。そ
の結果、水素の検出限界が低濃度側へ移行し、水素の高
感度分析を可能にする効果も認められる。According to the present invention, the element concentration distribution in the glass thickness direction can be accurately measured. Further, by holding the glass at a low temperature during measurement, the measurement chamber and the like are also cooled, and the degree of vacuum in the measurement chamber is improved. As a result, the detection limit of hydrogen shifts to the low concentration side, and the effect of enabling highly sensitive analysis of hydrogen is also recognized.
【図1】本発明および従来の方法で測定した二次イオン
質量分析法によるナトリウムの厚み方向の濃度分布を示
すグラフFIG. 1 is a graph showing the concentration distribution of sodium in the thickness direction by secondary ion mass spectrometry measured by the present invention and a conventional method.
【図2】本発明および従来の方法で測定した二次イオン
質量分析法による水素の深さ方向の濃度分布を示すグラ
フFIG. 2 is a graph showing the concentration distribution of hydrogen in the depth direction measured by the present invention and the conventional method by secondary ion mass spectrometry.
Claims (3)
イオン質量分析法により測定するにあたり、ガラスを低
温度に保持しつつ測定することを特徴とするガラスの元
素濃度分布測定方法。1. A method for measuring the element concentration distribution of glass, which comprises measuring the element concentration distribution in the thickness direction of the glass by secondary ion mass spectrometry while maintaining the glass at a low temperature.
0℃以下の温度に保持されることを特徴とする請求項1
記載のガラスの元素濃度分布測定方法。2. The glass is made of liquid nitrogen and is -10.
A temperature of 0 ° C. or lower is maintained.
A method for measuring the element concentration distribution of the glass described.
よび水素であることを特徴とする請求項1または2記載
のガラスの元素濃度分布測定方法。3. The method for measuring the element concentration distribution of glass according to claim 1, wherein the elements to be measured are an alkali metal element and hydrogen.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6016195A JPH07225202A (en) | 1994-02-10 | 1994-02-10 | Glass element concentration distribution measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6016195A JPH07225202A (en) | 1994-02-10 | 1994-02-10 | Glass element concentration distribution measurement method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07225202A true JPH07225202A (en) | 1995-08-22 |
Family
ID=11909735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6016195A Pending JPH07225202A (en) | 1994-02-10 | 1994-02-10 | Glass element concentration distribution measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07225202A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006242789A (en) * | 2005-03-04 | 2006-09-14 | Fujitsu Ltd | Surface analysis method and surface analysis apparatus |
CN111410420A (en) * | 2019-01-08 | 2020-07-14 | 肖特股份有限公司 | Element made of glass for reducing static electricity |
-
1994
- 1994-02-10 JP JP6016195A patent/JPH07225202A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006242789A (en) * | 2005-03-04 | 2006-09-14 | Fujitsu Ltd | Surface analysis method and surface analysis apparatus |
CN111410420A (en) * | 2019-01-08 | 2020-07-14 | 肖特股份有限公司 | Element made of glass for reducing static electricity |
JP2020111498A (en) * | 2019-01-08 | 2020-07-27 | ショット アクチエンゲゼルシャフトSchott AG | Element composed of glass displaying reduced electrostatic charging |
US11932573B2 (en) | 2019-01-08 | 2024-03-19 | Schott Ag | Element composed of glass displaying reduced electrostatic charging |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alley et al. | Secondary ion mass spectrometry study of space-charge formation in thermally poled fused silica | |
Gittins et al. | The application of the ion microprobe analyser to the measurement of the distribution of boron ions implanted into silicon crystals | |
Deconninck et al. | High resolution depth profiling of F, Ne and Na in materials | |
Wach et al. | Low energy range distributions of 10B and 11B in amorphous and crystalline silicon | |
JPH07225202A (en) | Glass element concentration distribution measurement method | |
Broudy | Photoelectric emission from silicon | |
Todd et al. | Relative escape depth of Auger and photoelectrons from a solid surface | |
Puglisi et al. | Oxygen depletion in electron beam bombarded glass surfaces studied by XPS | |
Maul et al. | Determination of implantation profiles in solids by secondary ion mass spectrometry | |
Sameshima et al. | Optimization of the depth resolution for profiling SiO2/SiC interfaces by dual‐beam TOF‐SIMS combined with etching | |
JP5904030B2 (en) | Secondary ion mass spectrometry method and standard sample | |
Schwarz et al. | Concentration profiles of implanted boron ions in silicon from measurements with the ion microprobe | |
JP2000206063A (en) | Method for analyzing impurity concentration of interface | |
US4767591A (en) | Resistance probe for energetic particle dosimetry | |
Leitzenberger et al. | Acquisition of artifact free alkali metal distributions in SiO2 by ToF‐SIMS Cs+ depth profiling at low temperatures | |
JP2008215989A (en) | Depth element concentration analysis method | |
Brown et al. | Practical limitations in depth profiling of low energy implants into amorphised and crystalline silicon | |
Wagner | Determination of the radiation damage in arsenic-implanted silicon by profiling the oxide growth rate | |
JP2001141676A (en) | Quantitative analysis method in secondary ion mass spectrometry | |
JPS62113052A (en) | Element analysis | |
JP2001021460A (en) | Preparation of standard sample for determination for secondary ion mass spectrometry | |
Wittmaack | Charge compensation in SIMS analysis of polymer foils using negative secondary ions | |
Likonen et al. | Annealing behaviour of high-dose-implanted nitrogen in InP | |
Primak | The x-ray compaction of vitreous silica | |
Hasenack et al. | The suppresion of residual defects in silicon implanted with arsenic by rapid isothermal annealing |