JPH07224351A - High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the same - Google Patents
High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the sameInfo
- Publication number
- JPH07224351A JPH07224351A JP3755994A JP3755994A JPH07224351A JP H07224351 A JPH07224351 A JP H07224351A JP 3755994 A JP3755994 A JP 3755994A JP 3755994 A JP3755994 A JP 3755994A JP H07224351 A JPH07224351 A JP H07224351A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- steel sheet
- rolled steel
- weight
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 105
- 239000010959 steel Substances 0.000 title claims abstract description 102
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000005482 strain hardening Methods 0.000 title claims description 11
- 229910001562 pearlite Inorganic materials 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 11
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 9
- 238000005096 rolling process Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000009466 transformation Effects 0.000 claims abstract description 7
- 238000004804 winding Methods 0.000 claims abstract description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052720 vanadium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims description 2
- 230000001105 regulatory effect Effects 0.000 claims 1
- 239000011159 matrix material Substances 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 6
- 239000002245 particle Substances 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000002436 steel type Substances 0.000 description 8
- 238000005098 hot rolling Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910000746 Structural steel Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910011208 Ti—N Inorganic materials 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
(57)【要約】
【目的】 本発明は、丸形および角形鋼管、形鋼やシー
トパイルなどに生産性を低下させない通常の冷間成形し
た後でも、一様伸びの優れている引張強さ34〜62 k
gf/mm2 を有する熱延鋼板およびその製造方法を提供す
ることを目的とする。
【構成】 C:0.04〜0.25%,N:0.005
0〜0.0150%,Ti:0.003〜0.050%
を含有し、母地中に粒径が1〜30μmのTiNが0.
0008〜0.015%の割合で分散すると共に、Ce
q.(WES)を0.10〜0.45%としたこと、お
よび前記成分を含む鋼片を、1000〜1300℃に加
熱後圧延し、Ar3 変態点以上の温度で圧延を終了し、
500℃以上の温度から空冷するか、あるいは500℃
以上で巻取り空冷して、鋼組織中のパーライト相を面積
分率で5〜20%とする。
(57) [Abstract] [Purpose] The present invention is to provide a tensile strength excellent in uniform elongation even after ordinary cold forming which does not reduce productivity in round and square steel pipes, shaped steels and sheet piles. 34-62 k
An object is to provide a hot-rolled steel sheet having gf / mm 2 and a method for manufacturing the hot-rolled steel sheet. [Structure] C: 0.04 to 0.25%, N: 0.005
0 to 0.0150%, Ti: 0.003 to 0.050%
TiN having a particle size of 1 to 30 μm is contained in the matrix.
While being dispersed at a ratio of 0008 to 0.015%, Ce
q. (WES) was set to 0.10 to 0.45%, and a steel slab containing the above components was heated to 1000 to 1300 ° C. and then rolled, and rolling was completed at a temperature of Ar 3 transformation point or higher,
Air-cool from a temperature of 500 ℃ or more, or 500 ℃
As described above, the pearlite phase in the steel structure is made to have an area fraction of 5 to 20% by winding and air cooling.
Description
【0001】[0001]
【産業上の利用分野】本発明は冷間加工後の一様伸びが
優れ、かつ引張強度が高い一般および溶接構造用の熱延
鋼板およびその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet for general and welded structures having excellent uniform elongation after cold working and high tensile strength, and a method for producing the same.
【0002】[0002]
【従来の技術】近年、構造用熱延鋼板の品質および製造
技術が著しく進展するとともに、特に建築および土木分
野において耐震設計の観点から塑性変形能の優れた鋼材
に対する需要が増大し、鋼板に対して高強度、低降伏
比、高い一様伸びが要求されている。2. Description of the Related Art In recent years, the quality and manufacturing technology of structural hot rolled steel sheets have been remarkably advanced, and in particular in the fields of construction and civil engineering, the demand for steel materials having excellent plastic deformability has increased from the viewpoint of seismic design. Therefore, high strength, low yield ratio and high uniform elongation are required.
【0003】これに対してたとえば特開昭57−161
18号公報にはC量を0.26〜0.48%まで高めた
低降伏比油井用電縫鋼管の製造方法、特開昭57−16
119号公報にはC量を0.10〜0.20%とした低
降伏比高張力電縫鋼管の製造方法が開示されているが、
これらはいずれも低降伏比の熱延鋼板を製造し、次に冷
間成形において加工硬化量が大きくならないように歪み
量を制限して加工する熱処理不要な電縫鋼管の製造方法
であり、さらに、特開平4−176818号公報には歪
みのないフェライトとパーライト二相組織を熱間加工後
の冷却速度規制と熱処理とによって得る耐震特性に優れ
た鋼管または角管の製造方法などが提案されている。し
かしながら、いずれも生産性を著しく低下させるうえ
に、前者は溶接性を著しく損ねるなど産業界の要望に必
ずしも応えているとは言えないのが現状である。On the other hand, for example, Japanese Patent Laid-Open No. 57-161.
No. 18 discloses a method for producing an electric resistance welded steel pipe for a low yield ratio oil well in which the amount of C is increased to 0.26 to 0.48%, and Japanese Patent Laid-Open No. 57-16.
Japanese Patent No. 119 discloses a method for producing a low-yield ratio high-strength electric resistance welded steel pipe having a C content of 0.10 to 0.20%.
These are manufacturing methods of electric resistance welded steel pipes that produce hot-rolled steel sheets with a low yield ratio and then process by limiting the strain amount so that the work hardening amount does not increase in cold forming, and Japanese Patent Laid-Open No. 4-176818 proposes a method for producing a steel pipe or a square pipe having excellent seismic resistance obtained by subjecting a strain-free ferrite and pearlite two-phase structure to cooling rate regulation and heat treatment after hot working. There is. However, in the present circumstances, it cannot be said that the former does not necessarily meet the demands of the industry, such as the productivity being remarkably lowered and the weldability being significantly impaired.
【0004】その他、特開平4−48048号公報には
鋼の母地中に0.5μm以下の(Ti,Nb)(O,
N)複合結晶相を有した酸化物系介在物を、特開平4−
99248号公報には鋼の母地中に1μm以下のTi
(O,N)複合結晶相を有した酸化物系介在物を、それ
ぞれ分散させて溶接熱影響部の靱性の改善を図る技術が
開示されているが、分散相も、その目的も本発明とは本
質的に別異なる技術である。In addition, in Japanese Patent Laid-Open No. 4-48048, (Ti, Nb) (O,
N) An oxide-based inclusion having a composite crystal phase is disclosed in
Japanese Patent No. 99248 discloses that Ti of 1 μm or less is contained in the base metal of steel.
A technique for improving the toughness of a weld heat affected zone by dispersing oxide-based inclusions having a (O, N) composite crystal phase, respectively, is disclosed. Are essentially different technologies.
【0005】[0005]
【発明が解決しようとする課題】一般に、高強度鋼にな
るほど降伏比は高く延性は低下し、したがって一様伸び
も低下する。特に、丸および角形鋼管、形鋼、シートパ
イルなどに冷間成形した後では加工歪みによる加工硬化
の影響により一様伸びが著しく低下してしまう。本発明
は、このような問題を解決するものであって、丸形およ
び角形鋼管、形鋼やシートパイルなどに生産性を低下さ
せない通常の冷間成形した後でも、一様伸びが優れ、か
つ引張強度が高い(34 kgf/mm2 以上)熱延鋼板およ
びその製造方法を提供することを目的とする。Generally, the higher the strength of the steel, the higher the yield ratio and the lower the ductility, and the lower the uniform elongation. In particular, after cold forming into round and square steel pipes, shaped steels, sheet piles, etc., the uniform elongation is remarkably reduced due to the effect of work hardening due to work strain. The present invention is to solve such problems, round and square steel pipe, even after ordinary cold forming does not reduce productivity into shaped steel or sheet pile, uniform elongation is excellent, and An object of the present invention is to provide a hot-rolled steel sheet having high tensile strength (34 kgf / mm 2 or more) and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上記目的
を達成すべく、鋼の化学成分、結晶組織と得られる機械
的性質との関係、さらに冷間成形後の機械的性質と素材
のそれとの関係などを詳細に調査研究した。その結果、
一般および溶接構造用鋼、特に建築土木用に最も多く使
用されている引張強度34〜62 kgf/mm2 級の熱延鋼
板では、熱延ままの引張強度と一様伸びとの間の相関関
係(引張強度が上昇すると一様伸びが低下する)と冷間
成形後のそれらの相関関係とがほぼ一致し同じ曲線で近
似できること、鋼中のNを増加していくと素材も冷間加
工後の材料も強度が上昇し一様伸びが低下するが、さら
にTiを添加すると一様伸びが回復するとともに上記相
関関係から外れ、高強度であっても高い一様伸びが得ら
れることを知見した。In order to achieve the above-mentioned object, the present inventors have studied the relationship between the chemical composition and crystal structure of steel and the mechanical properties obtained, and the mechanical properties and materials after cold forming. I investigated and studied the relationship with that in detail. as a result,
Correlation between tensile strength as hot rolled and uniform elongation in hot-rolled steel sheet with tensile strength of 34 to 62 kgf / mm 2 which is most commonly used for general and welded structural steel, especially for construction civil engineering. (The uniform elongation decreases as the tensile strength increases) and their correlations after cold forming are almost the same and can be approximated by the same curve. As N in steel increases, the material also becomes cold-worked. It was found that the strength of the material of No. 1 also increases and the uniform elongation decreases, but when Ti is further added, the uniform elongation recovers and deviates from the above correlation, and high uniform elongation can be obtained even with high strength. .
【0007】かゝる知見を図2に基づいてさらに説明す
る。図2は表1に示した鋼種S−1(比較例)、S−2
(比較例)およびT−1,T−2(本発明例)を用い、
鋼種S−1およびT−1,T−2は表2で示す製造工程
B、S−2は製造工程Cによって製造した熱延ままの鋼
材と角形鋼管に冷間加工した鋼材のTS( kgf/mm2 )
(引張強度)とElu(%)(一様伸び)との関係を示
した図である。鋼種S−1はTi,Nとも本発明の下限
未満であり、鋼種S−2はNが本発明の範囲内であるが
Tiが低く本発明の下限未満である。製造工程Cは圧延
終了温度がAr3 変態点未満の低い温度の場合の例であ
る。The above findings will be further described with reference to FIG. FIG. 2 shows the steel types S-1 (comparative example) and S-2 shown in Table 1.
(Comparative Example) and T-1, T-2 (Invention Example),
Steel types S-1 and T-1, T-2 are the manufacturing steps B and S-2 shown in Table 2, and TS is the as-hot-rolled steel material manufactured by the manufacturing step C and the steel material TS (kgf / mm 2 )
It is the figure which showed the relationship between (tensile strength) and Elu (%) (uniform elongation). In the steel type S-1, both Ti and N are less than the lower limit of the present invention, and in the steel type S-2, N is within the range of the present invention, but Ti is low and less than the lower limit of the present invention. Manufacturing process C is an example in which the rolling end temperature is a low temperature below the Ar 3 transformation point.
【0008】図2において、鋼種S−1の場合のTSと
Eluとの関係は熱延ままの鋼板の場合には高いTSと
Eluを示すが、角形鋼管の場合はTSが高くなるにつ
れEluが急激に低下している。鋼種S−2の場合はさ
らに顕著で、熱延ままの鋼板の場合、TSが低いときに
はEluが高い例もあるがTSが高くなるとEluは1
0%以下に落ち、これを角形鋼管に冷間加工したときは
ほとんどが10%以下となり、TSが高くなるにつれE
luがさらに低下する。In FIG. 2, the relationship between TS and Elu in the case of the steel type S-1 shows high TS and Elu in the case of the as-hot-rolled steel sheet, but in the case of the rectangular steel pipe, Elu increases as TS increases. It is dropping sharply. In the case of the steel type S-2, it is more remarkable, and in the case of as-hot-rolled steel sheet, there are some cases where Elu is high when TS is low, but Elu is 1 when TS is high.
It fell to 0% or less, and when it was cold-worked into a square steel pipe, most of it fell to 10% or less, and as TS increased, E
lu is further reduced.
【0009】すなわち、鋼種S−1,S−2の場合、冷
間加工後のEluはTSが高くなるにつれ急激に低下す
る傾向を示している。一方、鋼種T−1,T−2の場合
には、熱延ままの鋼板のEluはTSが高くなってもほ
とんど低下せず、これに冷間加工を施してもEluはや
ゝ低下する程度でTSの増加の影響をほとんど受けな
い。That is, in the case of the steel types S-1 and S-2, Elu after cold working tends to decrease sharply as TS increases. On the other hand, in the case of the steel types T-1 and T-2, the Elu of the as-hot-rolled steel sheet hardly decreases even when the TS becomes high, and even if cold working is performed on the Elu, the Elu slightly decreases. Is almost unaffected by the increase in TS.
【0010】すなわち、NとTiを適当量添加した本発
明鋼は冷間加工を施した後でも、引張強度が増加しても
一様伸びはほとんど低下しない。特にTSが略47 kgf
/mm2 以上の場合に本発明の効果を顕著に発揮すること
ができる。このように本発明鋼は一般および溶接構造用
鋼として優れた特性を有するのである。本発明はこれら
の知見に基づいて構成したもので、その要旨は、C:
0.040〜0.25%,N:0.0050〜0.01
50%、Ti:0.003〜0.050%を含有し、母
地中に粒径が1〜30μmのTiNが0.0008〜
0.015%の割合で分散すると共に、Ceq.(WE
S)を0.10〜0.45%としたこと、および前記成
分を含む鋼片を熱間圧延のため1000〜1300℃に
加熱し圧延し、Ar3 変態点以上の温度で圧延を終了
し、500℃以上の温度から空冷するか、あるいは巻取
り温度500℃以上で巻取ったあと空冷して、鋼組織中
のパーライト相を面積分率で5〜20%とすることを特
徴とする冷間成形後の一様伸びの優れた引張強度34〜
62 kgf/mm2 の高強度熱延鋼板およびその製造方法に
ある。That is, in the steel of the present invention to which N and Ti are added in appropriate amounts, the uniform elongation hardly decreases even after the cold working, even if the tensile strength is increased. Especially TS is about 47 kgf
When it is / mm 2 or more, the effect of the present invention can be remarkably exhibited. Thus, the steel of the present invention has excellent properties as general and welded structural steel. The present invention is constructed based on these findings, and the gist thereof is C:
0.040-0.25%, N: 0.0050-0.01
50%, Ti: 0.003 to 0.050%, and TiN having a particle size of 1 to 30 μm in the matrix is 0.0008 to
While being dispersed at a rate of 0.015%, Ceq. (WE
S) was set to 0.10 to 0.45%, and a billet containing the above components was heated to 1000 to 1300 ° C. for hot rolling and rolled, and the rolling was completed at a temperature of Ar 3 transformation point or higher. Cooling by air cooling from a temperature of 500 ° C. or higher, or by winding at a winding temperature of 500 ° C. or higher and then air cooling so that the pearlite phase in the steel structure has an area fraction of 5 to 20%. Excellent tensile strength with uniform elongation after cold forming 34 ~
A high-strength hot-rolled steel sheet of 62 kgf / mm 2 and a method for manufacturing the same.
【0011】[0011]
【作用】以下、本発明について詳細に説明する。本発明
においては先ず、転炉、電気炉などの溶解炉で溶製され
た溶鋼を、連続鋳造または造塊・分塊工程を経て鋼片に
製造する通常の鋼片製造工程により、C:0.040〜
0.25%,N:0.0050〜0.0150%,T
i:0.003〜0.050%を含み、かつ炭素当量
(Ceq.)が0.10〜0.45%の範囲にあり、残
部Feおよび不可避的不純物からなる低合金鋼片を製造
する。The present invention will be described in detail below. In the present invention, first, C: 0 is applied by an ordinary billet manufacturing process in which molten steel manufactured by a melting furnace such as a converter or an electric furnace is manufactured into a steel piece through continuous casting or an ingot / slumping step. .040-
0.25%, N: 0.0050 to 0.0150%, T
i: 0.003 to 0.050% is included, the carbon equivalent (Ceq.) is in the range of 0.10 to 0.45%, and a low alloy steel slab composed of the balance Fe and inevitable impurities is produced.
【0012】本発明において、鋼中の成分を上記のよう
に特定するのは、以下の理由による。Cは、鋼の強度お
よび鋼組織中のパーライト相の量を決定する上で重要な
成分である。引張強度が34 kgf/mm2 以上の熱延鋼板
で鋼組織中のパーライト相が面積分率で5%よりも少な
いと冷間成形後の一様伸びが著しく低下する。これはパ
ーライトが強度を負担しフェライトの転位密度の上昇を
防いでその塑性変形能を保つからである。また、パーラ
イト相の面積分率が20%を越えると鋼の硬化性が増
し、塑性変形能そのものが低下するのでその上限を20
%とする。このような鋼組織を得るためにはC量を0.
04%以上にする必要がある。しかし、0.25%を超
えると溶接性を損なうので上限を0.25%とした。In the present invention, the components in the steel are specified as described above for the following reasons. C is an important component in determining the strength of steel and the amount of pearlite phase in the steel structure. In a hot rolled steel sheet having a tensile strength of 34 kgf / mm 2 or more, if the pearlite phase in the steel structure is less than 5% in area fraction, the uniform elongation after cold forming remarkably decreases. This is because pearlite bears the strength, prevents the dislocation density of ferrite from increasing, and maintains its plastic deformability. If the area fraction of the pearlite phase exceeds 20%, the hardenability of steel increases and the plastic deformability itself decreases, so the upper limit is 20%.
%. In order to obtain such a steel structure, the amount of C is set to 0.
It is necessary to make it 04% or more. However, if it exceeds 0.25%, the weldability is impaired, so the upper limit was made 0.25%.
【0013】Nは、鋼中に添加されフェライト地中に固
溶して鋼の強度を上昇させ塑性変形能を低下させるが、
Tiとともに添加するとTiNを形成し、鋼中の固溶N
を低減して塑性変形能を回復させるだけでなく、分散強
化に働き高強度で一様伸びの大きい特性を鋼に付与する
重要な元素である。それには粒径の平均が1〜30μm
の範囲にあるTiNを重量で0.0008〜0.015
%の割合で母地中に分散させることが必要である。Ti
Nの粒径の平均が1μm未満では分散強化が十分に行わ
れず、30μmを越えると加工時に粗大なTiNと母地
との間に乖離が生じ、それが塑性変形がすゝむにつれて
微視的な割れとなって鋼全体の塑性変形能を低下させる
ので、TiNの上限を30μmとする。このようなTi
Nを得るためにはTiの量は0.003〜0.050%
の範囲が有効である。N is added to steel and forms a solid solution in the ferrite ground to increase the strength of the steel and reduce the plastic deformability.
When added together with Ti, TiN is formed and solid solution N in steel is formed.
Is an important element that not only reduces the plasticity and recovers the plastic deformability but also contributes to dispersion strengthening and imparts to the steel the characteristics of high strength and large uniform elongation. The average particle size is 1 to 30 μm.
TiN in the range of 0.0008 to 0.015 by weight
It is necessary to disperse it in the matrix at a ratio of%. Ti
If the average particle size of N is less than 1 μm, the dispersion strengthening is not sufficiently performed, and if it exceeds 30 μm, a divergence occurs between the coarse TiN and the matrix during processing, which is microscopic as plastic deformation progresses. The upper limit of TiN is set to 30 μm because it becomes a crack and reduces the plastic deformability of the entire steel. Such Ti
To obtain N, the amount of Ti is 0.003 to 0.050%
The range is valid.
【0014】また、Nは少なくても0.0050%、好
ましくは0.0080%以上は必要であるが、0.01
50%を超えると強化が過ぎてかえって一様伸びを低下
させるので上限を0.0150%とした。尚、上記Ti
Nを鋼中に有効に形成させるためには、Ti添加前にあ
らかじめAlを添加して脱酸しておくことが好ましい。N is required to be at least 0.0050%, preferably 0.0080% or more, but 0.01
If it exceeds 50%, the strengthening will be excessive and the uniform elongation will be rather lowered, so the upper limit was made 0.0150%. The above Ti
In order to effectively form N in steel, it is preferable to add Al in advance and deoxidize it before adding Ti.
【0015】Tiは上記の理由で本発明鋼に添加される
が、好ましい範囲を0.01〜0.03%とする。炭素
当量(Ceq.)は下記式(WES式に基づく)によっ
て求める。 Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+
V/14 このCeq.の量は強度や溶接性に関連して特定するも
ので、0.10%未満では強度が確保できず、また0.
45%超では高い強度は得られるものの溶接性を損う。
したがってCeq.を0.10〜0.45%の範囲に限
定する。Although Ti is added to the steel of the present invention for the above reason, the preferable range is 0.01 to 0.03%. The carbon equivalent (Ceq.) Is calculated by the following formula (based on the WES formula). Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 +
V / 14 This Ceq. The amount is specified in relation to the strength and weldability. If it is less than 0.10%, the strength cannot be secured, and
If it exceeds 45%, high strength is obtained but the weldability is impaired.
Therefore, Ceq. Is limited to the range of 0.10 to 0.45%.
【0016】強度や靱性を向上させる有効な成分とし
て、Si:0.01〜0.7%,Mn:0.1〜2.0
%,Ni:0.05〜1.0%,Cr:0.05〜1.
0%,Mo:0.02〜0.5%およびV:0.005
〜0.2%のグループから選ばれた少くとも1種を含有
することができる。この他、鋼片中に含まれるPおよび
Sは、靱性、溶接性などを低下させる有害な不純物成分
であるので、それぞれ0.025%以下、P+S≦0.
04%とする。As effective components for improving strength and toughness, Si: 0.01 to 0.7%, Mn: 0.1 to 2.0.
%, Ni: 0.05 to 1.0%, Cr: 0.05 to 1.
0%, Mo: 0.02-0.5% and V: 0.005
It can contain at least one selected from the group of 0.2%. In addition, since P and S contained in the steel slab are harmful impurity components that reduce toughness, weldability, etc., respectively, 0.025% or less and P + S ≦ 0.
04%.
【0017】さらに、強度や靱性を向上させる有効な成
分として、Cu:0.05〜1.0%,Nb:0.00
5〜0.05%,Al:0.001〜0.1%,B:
0.0005〜0.0020%,Ca:0.0005〜
0.0070%,REM(Yを含むランタニド系列の希
土類):0.001〜0.050%のグループから選ば
れた少くとも1種を含有させることができる。Further, as effective components for improving strength and toughness, Cu: 0.05 to 1.0%, Nb: 0.00
5 to 0.05%, Al: 0.001 to 0.1%, B:
0.0005 to 0.0020%, Ca: 0.0005 to
0.0070%, REM (lanthanide series rare earth containing Y): At least one selected from the group of 0.001 to 0.050% can be contained.
【0018】上記のような成分範囲に調整された低合金
鋼の鋼片を、熱間圧延のため1000〜1300℃に加
熱し圧延し、Ar3 変態点以上の温度で圧延を終了し、
500℃以上の温度から空冷して厚板を得るか、あるい
は巻取り温度500℃以上で巻取り空冷して熱延鋼帯を
得る。熱間圧延のための加熱温度の下限を1000℃と
したのは、鋼板の板厚によっては圧延終了温度がAr3
変態点以下になってフェライトが強加工され、母地中の
転位密度が高くなって強度が上昇し塑性変形能が損なわ
れるのを防止するためであるが、1300℃を超えると
鋼片の酸化による製品歩留の低下が著しくなるので13
00℃を上限とする。圧延終了温度をAr3 変態点以上
とするのも上記理由による。また、圧延後の空冷の開始
温度や巻取り温度についても鋼板の強度の不要な上昇を
避けるためで500℃以上の高温とする。The billet of the low alloy steel adjusted to the above composition range is heated to 1000 to 1300 ° C. for hot rolling and rolled, and the rolling is finished at a temperature of Ar 3 transformation point or higher,
A thick plate is obtained by air-cooling from a temperature of 500 ° C or higher, or a hot-rolled steel strip is obtained by wind-cooling at a winding temperature of 500 ° C or higher. The lower limit of the heating temperature for hot rolling is set to 1000 ° C. because the rolling end temperature is Ar 3 depending on the plate thickness of the steel sheet.
This is to prevent the ferrite from being severely worked below the transformation point, increasing the dislocation density in the matrix and increasing the strength to impair the plastic deformability. The product yield will decrease significantly due to
The upper limit is 00 ° C. The reason why the rolling end temperature is set to the Ar 3 transformation point or higher is also for the above reason. Further, the start temperature of air cooling after rolling and the winding temperature are also set to a high temperature of 500 ° C. or higher in order to avoid unnecessary increase in the strength of the steel sheet.
【0019】本発明にしたがって製造された鋼板は、粒
径の平均値が1μm超のTiNが0.0008〜0.0
15%の割合で母地中に微細分散析出し、図1(A)に
示すように面積分率で5〜20%のパーライト相を含む
細粒フェライト−パーライト(一部ペイナイトを含む)
組織を呈する。このような鋼組織を有するので、本発明
の鋼板は冷間加工後の一様伸びが優れているとともに引
張強度が34〜62 kgf/mm2 の高強度を得ることがで
きる。The steel sheet produced according to the present invention contains 0.0008 to 0.00 of TiN having an average grain size of more than 1 μm.
Fine-grained ferrite-pearlite containing a pearlite phase in an area fraction of 5 to 20% finely dispersed and precipitated in the matrix at a ratio of 15% (partially including paynite) as shown in FIG. 1 (A).
Present an organization. Because of having such a steel structure, the steel sheet of the present invention is excellent in uniform elongation after cold working and can have high tensile strength of 34 to 62 kgf / mm 2 .
【0020】[0020]
【実施例】次に本発明の実施例を説明する。表1に示す
化学成分組成のTi−N含有鋼片を比較鋼とともに板厚
3.0mm〜22.2mmに熱延し、鋼板の機械的性質を調
査した。表2に製造工程を、表3は熱延ままおよび10
%歪み加工後のそれぞれの特性を、表4および表5には
熱延ままおよび角形鋼管成形後の各部位における特性を
調査した結果を示す。また、図1(A)は本発明鋼T−
2の角形鋼管平面部(MID)の、また図1(B)は比
較鋼S−2の金属組織の光学顕微鏡写真(400倍)を
示す。図1(A)の本発明鋼においては、パーライト相
はほぼ15.2%(面積率)であるに対して、図1
(B)の比較鋼では4%程度と極めて少ないことがわか
る。図2には表4の結果を中心に本発明鋼と比較鋼の引
張強度と一様伸びの関係を比較して示す。EXAMPLES Examples of the present invention will be described below. Ti-N-containing steel slabs having the chemical composition shown in Table 1 were hot-rolled together with comparative steel to a plate thickness of 3.0 mm to 22.2 mm, and the mechanical properties of the steel plates were investigated. Table 2 shows the manufacturing process, Table 3 shows as hot rolled and 10
The respective characteristics after the% strain processing are shown in Tables 4 and 5, and the results of examining the characteristics in the respective portions after the hot rolling and after the rectangular steel pipe forming are shown. Further, FIG. 1 (A) shows the steel T- of the present invention.
2 shows an optical micrograph (400 times) of the metal structure of the rectangular steel pipe flat portion (MID), and FIG. 1 (B) shows the metal structure of the comparative steel S-2. In the steel of the present invention shown in FIG. 1 (A), the pearlite phase is approximately 15.2% (area ratio), while in FIG.
It can be seen that the comparative steel of (B) is extremely small, about 4%. FIG. 2 mainly shows the results of Table 4 to compare the relationship between the tensile strength and the uniform elongation of the steel of the present invention and the comparative steel.
【0021】これらの結果から明らかなように本発明鋼
(C−4,C−6,T−1,T−2,T−3,T−4 )
はそれぞれの比較鋼と比べて、強度が高いにもかかわら
ず特に冷間加工後も大きな一様伸びを保持している。こ
のことは、本発明鋼および比較鋼の熱延鋼板とその鋼板
を素材として実際の生産ラインで角形鋼管に冷間成形し
た後の一様伸びと強度との関係をみた図2によってよく
理解される。As is clear from these results, the steels of the present invention (C-4, C-6, T-1, T-2, T-3, T-4)
Despite having a high strength, each of the comparative steels retains a large uniform elongation, especially after cold working. This is well understood by referring to FIG. 2 which shows the relationship between the uniform elongation and the strength after cold forming a rectangular steel pipe in an actual production line using the hot rolled steel sheets of the present invention steel and the comparative steel and the steel sheet as a raw material. It
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【表3】 [Table 3]
【0025】[0025]
【表4】 [Table 4]
【0026】[0026]
【表5】 [Table 5]
【0027】[0027]
【発明の効果】以上のように、本発明は、鋼中の成分を
特定し、比較的大きなTiNを形成させて分散強化能を
もたせ、鋼中に有効なパーライト相を生成させることに
より、通常の生産性を低下させない冷間成形を行った後
でも、一様伸びが極めて優れている引張強さ34〜62
kgf/mm2 を有する高強度熱延鋼板を製造できる。この
高強度熱延鋼板は、一般および溶接構造用鋼材として、
特に土木建築用の丸形、角形の鋼管、形鋼あるいはシー
トパイルなどの素材として極めて有用である。As described above, according to the present invention, the components in the steel are specified, a relatively large TiN is formed to have the dispersion strengthening ability, and an effective pearlite phase is generated in the steel. Even after cold-forming without lowering the productivity of, the uniform elongation is extremely excellent and the tensile strength is 34 to 62.
A high strength hot rolled steel sheet having a kgf / mm 2 can be manufactured. This high-strength hot-rolled steel sheet, as a general and welded structural steel material,
In particular, it is extremely useful as a material for round and square steel pipes, shaped steel or sheet pile for civil engineering and construction.
【図1】図1(A)は本発明鋼(表4No. T−2(MI
D部)の鋼でパーライト相を15.2%含む)の角形鋼
管平面部の金属組織を示す400倍拡大顕微鏡写真であ
る。図1(B)は比較鋼(表4No. S−2(厚さ(t)
=3.2mm)の鋼でパーライト相を4%含む)の角形鋼
管平面部の金属組織を示す400倍拡大顕微鏡写真であ
る。FIG. 1 (A) shows the steel of the present invention (Table 4 No. T-2 (MI
It is a 400 times magnification micrograph which shows the metallographic structure of the square steel tube plane part of the steel of D part) containing 15.2% of a pearlite phase). FIG. 1 (B) shows a comparative steel (Table 4 No. S-2 (thickness (t)
= 3.2 mm) steel containing 4% of pearlite phase)), and is a 400 times magnified micrograph showing the metallographic structure of the flat portion of the rectangular steel tube.
【図2】表4の各種熱延鋼板および角形鋼管における引
張強度と一様伸びの関係を示す図である。FIG. 2 is a diagram showing the relationship between tensile strength and uniform elongation in various hot-rolled steel sheets and rectangular steel tubes shown in Table 4.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 原渕 孝司 福岡県北九州市戸畑区大字中原先の浜46− 59 日本鋳鍛鋼株式会社内 (72)発明者 中野 義一 福岡県北九州市戸畑区大字中原先の浜46− 59 日本鋳鍛鋼株式会社内 (72)発明者 持木 宏 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 (72)発明者 長田 君応 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Harabuchi 46-59 Nakahara-Sonohama, Tobata-ku, Kitakyushu City, Fukuoka Prefecture, Japan Nihon Cast Forging Steel Co., Ltd. (72) Inventor Yoshikazu Nakano, Tobata-ku, Kitakyushu, Fukuoka Prefecture Harajinohama 46-59 In Japan Cast and Forged Steel Co., Ltd. (72) Inventor Hiroshi Mochiki 1-1, Toibata-cho, Tobata-ku, Kitakyushu, Kitakyushu, Fukuoka In-house of Nippon Steel Co., Ltd. Yawata Works (72) Inventor Nagata Kimio Fukuoka 1-1 Hibata-cho, Tobata-ku, Kitakyushu, Japan Inside the Yawata Works, Nippon Steel Corporation
Claims (10)
0.0050〜0.0150%およびTi:0.003
〜0.050%を含有し、かつ下記式で求められる炭素
当量(Ceq.)が0.10〜0.45%の鋼であっ
て、かつパーライト相が面積分率で5〜20%の範囲に
あり、さらに鋼中に粒径の平均が1〜30μmのTiN
が重量で0.0008〜0.015%の割合で分散して
いることを特徴とする冷間加工後の一様伸びの優れた高
強度熱延鋼板。 Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+
V/141. C: 0.04 to 0.25% by weight, N:
0.0050 to 0.0150% and Ti: 0.003
To 0.050%, and the carbon equivalent (Ceq.) Calculated by the following formula is 0.10 to 0.45%, and the pearlite phase is in the range of 5 to 20% in area fraction. And TiN with an average grain size of 1 to 30 μm in steel.
Is dispersed at a rate of 0.0008 to 0.015% by weight, and a high strength hot rolled steel sheet having excellent uniform elongation after cold working. Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 +
V / 14
にある請求項1項記載の高強度熱延鋼板。2. The high-strength hot-rolled steel sheet according to claim 1, having a tensile strength in the range of 34 to 62 kgf / mm 2 .
%,Mn:0.1〜2.0%,Ni:0.05〜1.0
%,Cr:0.05〜1.0%,Mo:0.02〜0.
5%およびV:0.005〜0.2%のグループから選
ばれた成分の少くとも1種を含有する請求項1項記載の
高強度熱延鋼板。3. Further, Si: 0.01 to 0.7 by weight.
%, Mn: 0.1 to 2.0%, Ni: 0.05 to 1.0
%, Cr: 0.05 to 1.0%, Mo: 0.02 to 0.
The high-strength hot-rolled steel sheet according to claim 1, containing at least one component selected from the group consisting of 5% and V: 0.005-0.2%.
%,Nb:0.005〜0.05%,Al:0.001
〜0.1%,B:0.0005〜0.0020%,C
a:0.0005〜0.0070%およびREM:0.
001〜0.050%のグループから選ばれた成分の少
くとも1種を含有する請求項1項又は3項記載の高強度
熱延鋼板。4. By weight, Cu: 0.05 to 1.0
%, Nb: 0.005 to 0.05%, Al: 0.001
~ 0.1%, B: 0.0005 to 0.0020%, C
a: 0.0005 to 0.0070% and REM: 0.
The high-strength hot-rolled steel sheet according to claim 1 or 3, containing at least one component selected from the group of 001 to 0.050%.
5重量%以下に規制するとともにP+S≦0.04%と
する請求項1項記載の高強度熱延鋼板。5. P and S in the steel sheet are each 0.02
The high-strength hot-rolled steel sheet according to claim 1, wherein the content is regulated to 5% by weight or less and P + S ≦ 0.04%.
0.0050〜0.0150およびTi:0.003〜
0.050%を含有し、かつ下記式で求められる炭素当
量(Ceq.)が0.10〜0.45%の範囲にある鋼
片を1000〜1300℃の温度範囲に加熱し、該加熱
鋼片を圧延してAr3 変態点以上の温度で圧延を終了
し、次いで500℃以上の温度から空冷することを特徴
とする冷間加工後の一様伸びの優れた高強度熱延鋼板の
製造方法。 Ceq.=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+
V/146. C: 0.04 to 0.25% by weight, N:
0.0050 to 0.0150 and Ti: 0.003 to
A steel slab containing 0.050% and having a carbon equivalent (Ceq.) Determined by the following formula in the range of 0.10 to 0.45% is heated to a temperature range of 1000 to 1300 ° C. Manufacture of a high-strength hot-rolled steel sheet excellent in uniform elongation after cold working, which comprises rolling a piece, finishing rolling at a temperature of Ar 3 transformation point or higher, and then air cooling from a temperature of 500 ° C. or higher. Method. Ceq. = C + Si / 24 + Mn / 6 + Ni / 40 + Cr / 5 + Mo / 4 +
V / 14
製造する請求項6項記載の製造方法。7. The manufacturing method according to claim 6, wherein the thick plate is manufactured by air cooling from a temperature of 500 ° C. or higher.
て鋼帯を製造する請求項6項記載の製造方法。8. The production method according to claim 6, wherein the steel strip is produced by winding at a temperature of 500 ° C. or higher and air cooling.
%,Mn:0.1〜2.0%,Ni:0.05〜1.0
%,Cr:0.05〜1.0%,Mo:0.02〜0.
5%およびV:0.005〜0.2%のグループから選
ばれた成分の少くとも1種を含有する請求項6項記載の
製造方法。9. Further, Si: 0.01 to 0.7 by weight.
%, Mn: 0.1 to 2.0%, Ni: 0.05 to 1.0
%, Cr: 0.05 to 1.0%, Mo: 0.02 to 0.
7. The method according to claim 6, which contains at least one component selected from the group consisting of 5% and V: 0.005-0.2%.
0%,Nb:0.005〜0.05%,Al:0.00
1〜0.1%,B:0.0005〜0.0020%,C
a:0.0005〜0.0070%およびREM:0.
001〜0.050%のグループから選ばれた成分の少
くとも1種を含有する請求項6項又は9項記載の製造方
法。10. Further, by weight, Cu: 0.05-1.
0%, Nb: 0.005 to 0.05%, Al: 0.00
1 to 0.1%, B: 0.0005 to 0.0020%, C
a: 0.0005 to 0.0070% and REM: 0.
The production method according to claim 6 or 9, containing at least one component selected from the group consisting of 001 to 0.050%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3755994A JPH07224351A (en) | 1994-02-14 | 1994-02-14 | High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the same |
TW083101578A TW339363B (en) | 1994-02-14 | 1994-02-24 | Process for production of high strength hot rolled steel plates and sheets having excellent uniform elongation after cold working |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3755994A JPH07224351A (en) | 1994-02-14 | 1994-02-14 | High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07224351A true JPH07224351A (en) | 1995-08-22 |
Family
ID=12500881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3755994A Pending JPH07224351A (en) | 1994-02-14 | 1994-02-14 | High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH07224351A (en) |
TW (1) | TW339363B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008297570A (en) * | 2007-05-29 | 2008-12-11 | Jfe Steel Kk | Low yield ratio steel sheet |
JP2011094214A (en) * | 2009-10-30 | 2011-05-12 | Kobe Steel Ltd | Cold-formed square steel tube having excellent earthquake resistance |
KR101382888B1 (en) * | 2012-03-16 | 2014-04-08 | 주식회사 포스코 | Hot-rolled steel sheets with superior workability and low mechanical property deviation and method for producing the same |
KR20210032497A (en) | 2018-08-23 | 2021-03-24 | 제이에프이 스틸 가부시키가이샤 | Hot rolled steel sheet and its manufacturing method |
KR20240053606A (en) | 2021-09-29 | 2024-04-24 | 제이에프이 스틸 가부시키가이샤 | Rectangular steel pipe and its manufacturing method, hot rolled steel sheet and its manufacturing method, and building structures |
WO2024100939A1 (en) | 2022-11-08 | 2024-05-16 | Jfeスチール株式会社 | Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4767544B2 (en) | 2005-01-11 | 2011-09-07 | 新日本製鐵株式会社 | Steel sheet cooling control method |
TWI635187B (en) * | 2017-03-31 | 2018-09-11 | 新日鐵住金股份有限公司 | Hot rolled steel sheet and steel forged parts and manufacturing method thereof |
-
1994
- 1994-02-14 JP JP3755994A patent/JPH07224351A/en active Pending
- 1994-02-24 TW TW083101578A patent/TW339363B/en active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008297570A (en) * | 2007-05-29 | 2008-12-11 | Jfe Steel Kk | Low yield ratio steel sheet |
JP2011094214A (en) * | 2009-10-30 | 2011-05-12 | Kobe Steel Ltd | Cold-formed square steel tube having excellent earthquake resistance |
KR101382888B1 (en) * | 2012-03-16 | 2014-04-08 | 주식회사 포스코 | Hot-rolled steel sheets with superior workability and low mechanical property deviation and method for producing the same |
KR20210032497A (en) | 2018-08-23 | 2021-03-24 | 제이에프이 스틸 가부시키가이샤 | Hot rolled steel sheet and its manufacturing method |
KR20240053606A (en) | 2021-09-29 | 2024-04-24 | 제이에프이 스틸 가부시키가이샤 | Rectangular steel pipe and its manufacturing method, hot rolled steel sheet and its manufacturing method, and building structures |
WO2024100939A1 (en) | 2022-11-08 | 2024-05-16 | Jfeスチール株式会社 | Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure |
Also Published As
Publication number | Publication date |
---|---|
TW339363B (en) | 1998-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0620289B1 (en) | High-strength hot-rolled steel sheet excellent in uniform elongation after cold working and process for producing the same | |
JPH11140582A (en) | High toughness thick steel plate excellent in toughness in weld heat-affected zone, and its production | |
CN1143393A (en) | Dual phase steel plate having good toughness and welding property | |
JPH08295982A (en) | Steel plate excellent in low temperature toughness and method of manufacturing the same | |
JPH07224351A (en) | High-strength hot-rolled steel sheet with excellent uniform elongation after cold working and method for producing the same | |
JP3290595B2 (en) | Method for manufacturing high-tensile steel plate with excellent toughness and weldability | |
JP3410241B2 (en) | Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability | |
KR970009087B1 (en) | Manufacturing method of tough thick steel sheet | |
JP2004269924A (en) | High-efficiency production method of steel sheet with excellent strength and toughness | |
JPH06136482A (en) | Hot rolled steel sheet having >=34kgf/mm2 tensile strength and excellent in uniform elongation after cold working and its production | |
JP3559455B2 (en) | Low-yield-ratio type refractory steel, steel pipe, and method for producing the same | |
RU2241769C1 (en) | Method for production of candies from low-alloy steel | |
JP2000282167A (en) | Low yield ratio type steel material and steel pipe excellent in toughness, and methods for producing them | |
JP2004143509A (en) | High strength, high toughness, low yield ratio steel tube stock, and production method therefor | |
JPH07150247A (en) | Production of steel tube with high strength and low yield ratio for construction use | |
JP3229107B2 (en) | Manufacturing method of low yield ratio high strength steel sheet with excellent uniform elongation | |
CN1107521A (en) | High strength hot rolled steel plates and sheets excellent in uniform elongation after cold working and process for producing the same | |
JPH07216451A (en) | Production of stainless steel material having high welding softening resistance, high strength, and high ductility | |
JPH0526850B2 (en) | ||
JP2533250B2 (en) | Method for manufacturing thin web H-section steel with low yield ratio and excellent workability | |
JPH07278729A (en) | High tensile steel plate with low yield ratio | |
JPH05287439A (en) | Mo-V super high strength ERW steel pipe with excellent ductility | |
JP2834500B2 (en) | Manufacturing method of high-strength steel sheet with excellent thermal toughness | |
JP3127721B2 (en) | Method for manufacturing low yield ratio steel for fire resistance | |
JP3263348B2 (en) | Method of manufacturing non-heat treated high workability electric resistance welded steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010522 |