JPH07218645A - Metal detection method - Google Patents
Metal detection methodInfo
- Publication number
- JPH07218645A JPH07218645A JP2498194A JP2498194A JPH07218645A JP H07218645 A JPH07218645 A JP H07218645A JP 2498194 A JP2498194 A JP 2498194A JP 2498194 A JP2498194 A JP 2498194A JP H07218645 A JPH07218645 A JP H07218645A
- Authority
- JP
- Japan
- Prior art keywords
- coil
- detection
- exciting
- exciting coil
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
(57)【要約】
【目的】 金属などの導電体を非接触で検出する金属探
知方法。
【構成】 パルス発生器に接続された励磁コイルと、受
信コイル、スイッチ回路をもった受信コイルの電圧増幅
器によって構成され、励磁コイルにパルス電流を流し、
誘導によって探知導電体に渦電流を流し、励磁コイルに
残留するエネルギーが充分に減衰した時点に動作するス
イッチを持った受信機で検出コイルの端子電圧を検出
し、探知導体に流れる渦電流だけを選択的に検出する金
属探知装置による金属探知方法(57) [Abstract] [Purpose] A metal detection method for non-contact detection of conductors such as metals. [Structure] An exciting coil connected to a pulse generator, a receiving coil, and a receiving coil voltage amplifier having a switch circuit. A pulse current is passed through the exciting coil.
An eddy current is caused to flow through the detection conductor by induction, and the terminal voltage of the detection coil is detected by the receiver that has a switch that operates when the energy remaining in the excitation coil is sufficiently attenuated, and only the eddy current flowing in the detection conductor is detected. Metal detection method using a metal detection device for selectively detecting
Description
【0001】[0001]
【産業上の利用分野】本発明は、高感度の金属探知装置
であり、近接スイッチや不可視部分にある金属の位置を
探知したり、検知金属の種別を判定する場合に利用され
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a highly sensitive metal detecting device and is used for detecting the position of a metal in a proximity switch or an invisible portion, and for determining the type of a detected metal.
【0002】[0002]
【従来の技術】金属を探知する方法として磁界の変化、
電磁波、超音波、X線などを利用したものがありそれぞ
れ特徴がある。電磁波を利用したものはレーダ方式と渦
電流や透磁率の変化による検出コイルの等価インピダン
スの変化を利用したものがあった。レーダ方式は装置の
コストが高く、埋設物を探知する場合は地質や含水量に
よって影響を受ける欠点があった。渦電流や透磁率の変
化を検出する方法は検出用の信号周波数を下げると比較
的地質の影響を受けない特徴がある。検出コイルの等価
インピーダンスの変化を利用する方法は2個のコイルを
差動に接続したり、ブリッジ回路によって感度を上げる
方法が一般的であり、感度と指向性が充分ではなかっ
た。これらの欠点を除く方法として、特開平5−232
245のように磁界発生コイルの電流を遮断したとき
の、励磁コイルと探知導体との相互作用による過渡現象
の変化を利用する方法は、励磁コイルと受信コイルを共
用することもでき、比較的に指向性や感度も改善するこ
とが可能となった。しかし、この検出方法は検出信号に
多くの周波数成分を含み情報が多い特徴もあるが、FF
Tなどの周波数分析器と併用しないとこの情報の完全な
利用は困難であった。また、励磁コイルと検出導体との
複合的な過渡現象によるコイル電圧変化をコンパレータ
によって検出すると、ノイズの影響を非常に受けやすく
なる欠点もあった。また特開平5−232245の特許
明細書にある反射波形とは探知導体からの反射波ではな
く、励磁コイルと探知導体との複合した過渡現象を観測
しているので、励磁コイルに残留したエネルギーによる
電圧が受信時に加わり、検出距離が大きい場合は、コイ
ル電圧をダイオードでクランプしても受信信号と比べる
と桁違いに大きく、受信機の感度を上げるにも限界があ
ったり、励磁コイルの定数変化の影響を受ける問題もあ
った。2. Description of the Related Art As a method for detecting metal, a change in magnetic field,
Some of them utilize electromagnetic waves, ultrasonic waves, X-rays, etc., and each has its own characteristics. The one using the electromagnetic wave is the one using the radar method and the change in the equivalent impedance of the detection coil due to the change in the eddy current and the magnetic permeability. The radar system has a drawback in that the cost of the device is high and that when detecting a buried object, it is affected by geology and water content. The method of detecting changes in eddy current and magnetic permeability is characterized by being relatively unaffected by geology when the signal frequency for detection is lowered. The method of utilizing the change of the equivalent impedance of the detection coil is generally a method of connecting two coils differentially or increasing the sensitivity by a bridge circuit, and the sensitivity and directivity were not sufficient. As a method for eliminating these drawbacks, Japanese Patent Laid-Open No. 5-232
The method of utilizing the change of the transient phenomenon due to the interaction between the exciting coil and the detecting conductor when the current of the magnetic field generating coil is cut off as in 245 can also use the exciting coil and the receiving coil relatively, It has become possible to improve directivity and sensitivity. However, this detection method has a feature that the detection signal contains many frequency components and contains a lot of information.
It was difficult to make full use of this information without using it with a frequency analyzer such as T. Further, if the comparator detects a coil voltage change due to a composite transient phenomenon of the exciting coil and the detection conductor, it has a drawback that it is very susceptible to noise. Further, the reflected waveform in the patent specification of JP-A-5-232245 is not a reflected wave from the detection conductor, but a transient phenomenon which is a combination of the excitation coil and the detection conductor is observed, and therefore it depends on the energy remaining in the excitation coil. When the voltage is applied during reception and the detection distance is large, even if the coil voltage is clamped with a diode, it is orders of magnitude greater than the received signal, and there is a limit to increasing the sensitivity of the receiver, or the constant change of the excitation coil. There was also a problem affected by.
【0003】[0003]
【発明が解決しようとする課題】このように、従来の検
知方法は励磁コイルや検出コイルの定数による影響が免
れず、検出感度を上げる場合の大きなな障害になってい
た。本発明は励磁コイルの時定数と探知導体の時定数の
差を利用して、探知導体から伝搬してくる信号だけを高
感度で検出して励磁コイルの定数の影響を少なくし、同
時に探知距離を大幅に改善しようとするものである。As described above, the conventional detection method is unavoidably affected by the constants of the exciting coil and the detecting coil, which has been a major obstacle in increasing the detection sensitivity. The present invention utilizes the difference between the time constant of the exciting coil and the time constant of the detecting conductor to detect only the signal propagating from the detecting conductor with high sensitivity and reduce the influence of the constant of the exciting coil, and at the same time, the detecting distance. Is intended to be significantly improved.
【0004】[0004]
【作用】励磁コイルに励磁電流を流してパルス磁界を発
生させると、この磁界の中にある検出導体にも誘導によ
って電流が流れる。励磁コイルに電流が流れている期間
は検出導体にも励磁コイルに流れた電流にほぼ比例した
渦電流と呼ばれる電流が流れる。励磁コイルに流れてい
る電流を急速に遮断すると、検出導体に流れていた電流
は検出導体に流れた電流ループの等価インダクタンスを
Le、等価抵抗をReとするとTe=Le/Reとなる
時定数Teで減衰する。したがって、励磁コイルの電流
遮断時間をTeに比べて充分に短い立ち下がり時間で遮
断し、励磁コイルに蓄積されたエネルギーが充分に減衰
してから検出コイルで受信すると検出導体に流れている
電流によって発生した磁界だけを選択的に検出して検出
導体の存在を検出することが可能となる。ここで、励磁
コイルにエネルギーが蓄積されている期間は受信機の動
作をスイッチ回路で遮断して信号を受けないようにする
と、受信機に入る信号は検出導体からの弱い信号だけに
なり、高感度の受信機でも飽和することなく受信でき
る。この場合、励磁コイルと検出コイルを共用した場合
の受信機の入力電圧は、励磁コイルに流した電流方向と
同一方向のピークを持ち、等価時定数に応じて指数関数
的に減衰する波形となり、特開平5−232245の特
許明細書にある受信機の入力電圧とは異なり、極性が逆
になるだけでなく基本的に励磁コイルの定数の影響を全
く受けない波形となる。When the exciting current is passed through the exciting coil to generate the pulse magnetic field, the current also flows through the detection conductor in the magnetic field by induction. During the period when the current is flowing in the exciting coil, a current called eddy current which is substantially proportional to the current flowing in the exciting coil also flows in the detection conductor. When the current flowing in the exciting coil is rapidly cut off, the current flowing in the detecting conductor is Te, where the equivalent inductance of the current loop flowing in the detecting conductor is Le and the equivalent resistance is Re, Te = Le / Re. Decays at. Therefore, if the current cutoff time of the exciting coil is cut off with a fall time sufficiently shorter than Te, and the energy accumulated in the exciting coil is sufficiently attenuated and then received by the detecting coil, the current flowing in the detecting conductor is caused. The presence of the detection conductor can be detected by selectively detecting only the generated magnetic field. Here, if the operation of the receiver is cut off by the switch circuit so that no signal is received while energy is being accumulated in the exciting coil, the only signal that enters the receiver is the weak signal from the detection conductor, Even a receiver with high sensitivity can receive without saturation. In this case, the input voltage of the receiver when the excitation coil and the detection coil are shared has a peak in the same direction as the direction of the current flowing in the excitation coil, and has a waveform that exponentially decays according to the equivalent time constant, Unlike the input voltage of the receiver described in the specification of Japanese Patent Laid-Open No. 5-232245, the waveform is not only reversed in polarity but is basically not affected by the constant of the exciting coil at all.
【0005】[0005]
【実施例】励磁コイルは、巻線の表面に流れる渦電流を
少なくするように細い線を使用するか、通電する電流の
大きい場合は細線を束ねたより線を使用してコイルを作
成する。巻線の回数が多い場合は分布容量によって不要
な共振を避けるようにハネカム捲きなどの巻線方法をと
る。この巻線に半導体スイッチなどのスイッチによって
パルス電圧を加える。パルス幅は希望する励磁電流と電
圧源によって異なり電圧源の電圧が高ければパルス幅は
狭くて良い。励磁コイルには励磁電圧を加えるスイッチ
が解放した場合に、励磁コイルに蓄積されたエネルギー
を急速に放出するための抵抗を並列に接続する。この並
列抵抗と励磁コイルの時定数は短いほど良く、検出導体
の等価時定数Teは、検出導体の種類によって異なるが
百μsecのオーダーであるので、実用的にはμsec
から10μsecが望ましい。この並列抵抗に流れる電
流は指数関数的に減少するが非線形部品を使用して、励
磁電流をさらに急速に減衰させるとさらに良い結果が得
られる。スイッチによってパルス電圧を加える代わり
に、半導体などを利用した電流スイッチを利用すると励
磁コイルの並列抵抗は不要となり、理想的な電流減衰特
性を持つ励磁電流波形を得ることができ、励磁コイルの
内部抵抗の変化に影響されない正確な励磁電流を流すこ
とができる。また、受信コイルと受信機の間にスイッチ
回路を入れ、励磁コイルに電流が流れている期間だけス
イッチを解放するか受信機の入力を短絡する。もちろ
ん、受信コイルからスイッチに接続される間にバッフア
ーや増幅器を入れたり、スイッチ機能のある増幅器を使
用しても本発明を実施でき、スイッチングによって発生
するスイッチングノイズの量によってはスイッチの前段
に増幅器を入れると良い結果を生む場合もある。このス
イッチは半導体スイッチが都合が良く、コイル電圧の高
い場合は適当な保護回路も必要である。受信機の入力イ
ンピーダンスは、励磁コイルの電流の減衰を妨げないよ
うに高い値に設定する。半導体スイッチなどを使用した
場合、スイッチにリークなどがあり、解放が充分でない
場合は、スイッチが解放されている期間だけ受信機の入
力を短絡したり、同様回路をカスケードに接続して励磁
コイルに電流の流れている期間の信号を完全に遮断する
ことがポイントとなる。このような方法によって不要な
信号をマスクすると、受信機は高い利得の増幅器を利用
することができる。この増幅器の出力をそのまま直接オ
シロスコープなどで監視しても探知導体を検出でき、検
出電圧の減衰特性から探知導体の材質も知ることも可能
となる。また、励磁コイルに流す電流を繰り返し発生さ
せ、この励磁コイルの信号に同期した同期整流方式によ
って探知距離に応じた直流出力を得ることも可能であ
る。増幅器は普通の増幅器で増幅しても良いが対数特性
などの増幅器を使用すると、近距離から長距離までの距
離に対して増幅器を飽和させずに計測することも可能と
なる。また励磁コイルと受信コイルを共用することもで
きるが、受信コイルを独立に設けたりアレイ状に複数個
設けそれぞれに同様な受信機を接続して検出導体の位置
や寸法を推定することも可能となる。励磁コイルや受信
コイルには、損失の少ない鉄芯やフェライトコアを使用
すると指向性が鋭く感度の高い検出器を得ることができ
る。EXAMPLE An exciting coil is formed by using a thin wire so as to reduce the eddy current flowing on the surface of the winding, or by using a stranded wire in which thin wires are bundled when the energized current is large. When the number of windings is large, a winding method such as honeycomb winding is used to avoid unnecessary resonance due to the distributed capacitance. A pulse voltage is applied to this winding by a switch such as a semiconductor switch. The pulse width depends on the desired exciting current and voltage source, and the pulse width may be narrow if the voltage of the voltage source is high. A resistor for rapidly releasing the energy accumulated in the exciting coil when the switch for applying the exciting voltage is released is connected in parallel to the exciting coil. The shorter the time constant of the parallel resistance and the exciting coil is, the better, and the equivalent time constant Te of the detection conductor is on the order of 100 μsec, although it varies depending on the type of the detection conductor, so in practice μsec
To 10 μsec is desirable. The current flowing in this parallel resistor decreases exponentially, but better results are obtained by using non-linear components to decay the exciting current more rapidly. If a current switch that uses a semiconductor is used instead of applying a pulse voltage with a switch, the parallel resistance of the exciting coil is unnecessary, and an exciting current waveform with ideal current attenuation characteristics can be obtained, and the internal resistance of the exciting coil can be obtained. It is possible to flow an accurate exciting current that is not affected by the change of. Also, a switch circuit is inserted between the receiving coil and the receiver, and the switch is released or the input of the receiver is short-circuited only while the current is flowing in the exciting coil. Of course, the present invention can be implemented by inserting a buffer or an amplifier while the receiving coil is connected to the switch, or by using an amplifier having a switch function. Depending on the amount of switching noise generated by the switching, the amplifier may be provided in the preceding stage of the switch. May also produce good results. This switch is conveniently a semiconductor switch, and if the coil voltage is high, an appropriate protection circuit is also required. The input impedance of the receiver is set to a high value so as not to interfere with the attenuation of the exciting coil current. When using a semiconductor switch, etc., if there is leakage in the switch and the release is not sufficient, short the input of the receiver only while the switch is released, or connect a circuit in cascade to the exciting coil. The point is to completely cut off the signal during the current flow. Masking unwanted signals in this manner allows the receiver to utilize high gain amplifiers. The detection conductor can be detected by directly monitoring the output of the amplifier directly with an oscilloscope or the like, and the material of the detection conductor can be known from the attenuation characteristic of the detected voltage. It is also possible to repeatedly generate a current flowing through the exciting coil and obtain a DC output according to the detection distance by a synchronous rectification method synchronized with the signal of the exciting coil. The amplifier may be amplified by an ordinary amplifier, but if an amplifier having a logarithmic characteristic is used, it is possible to perform measurement for a distance from a short distance to a long distance without saturating the amplifier. It is also possible to share the excitation coil and the receiving coil, but it is also possible to estimate the position and size of the detection conductor by providing the receiving coil independently or by providing multiple receiving coils in an array and connecting similar receivers to each. Become. When an iron core or a ferrite core with little loss is used for the exciting coil and the receiving coil, it is possible to obtain a detector having sharp directivity and high sensitivity.
【0006】[0006]
【発明の効果】この発明の効果で最大の特徴は、作用で
も説明したように、特開平5−232245と異なっ
て、励磁コイルに残留するエネルギーが充分に減衰して
から受信機をスイッチによって動作させるので受信機に
入る信号は検出しようとしている検出導体の渦電流によ
って発生した弱い信号だけとなる。したがって、励磁に
よる信号は完全にマスクされるので、受信機の感度を大
幅に上げることができ、しかも励磁回路の定数の影響を
非常に受けにくくなるので、大幅に検出感度を上げるこ
とが可能である。また、励磁による信号がマスクされ、
受信機の感度と励磁電力を独立に設定できるので、励磁
電力を上げて検出距離を増大することも可能である。励
磁コイルと受信コイルが同一の場合は、受信コイルの検
出電圧のピーク値は、励磁コイルと検出導体の等価結合
係数を平方した値に比例するので、検出導体の材質や形
状が一定の場合は、受信電圧によって励磁コイルから検
出導体の距離も測定することが可能となる。さらに、受
信電圧波形は検出する検出導体の等価時定数によって決
定されるので、検出導体の材質も容易に決定することが
可能となる。この発明によって従来得られなかった極め
て高感度の金属探知機を実現でき、鉄芯なしの直径数セ
ンチの小型励磁コイルでも30cm以上離れた金属を正
確に探知でき、鉄芯入りの励磁コイルと検出コイルを使
用したり、大型の励磁コイルを利用すると、1m以上の
金属探知も可能となり、多くの応用が可能である。The greatest feature of the effect of the present invention is that, as described in the operation, the receiver is operated by the switch after the energy remaining in the exciting coil is sufficiently attenuated, unlike in JP-A-5-232245. As a result, the only signal that enters the receiver is the weak signal generated by the eddy current of the detection conductor that is being detected. Therefore, since the signal due to excitation is completely masked, the sensitivity of the receiver can be greatly increased, and the sensitivity of the excitation circuit is extremely insensitive, so the detection sensitivity can be greatly increased. is there. Also, the signal due to excitation is masked,
Since the sensitivity of the receiver and the exciting power can be set independently, it is possible to increase the exciting power to increase the detection distance. When the exciting coil and the receiving coil are the same, the peak value of the detection voltage of the receiving coil is proportional to the squared value of the equivalent coupling coefficient of the exciting coil and the detecting conductor, so if the material and shape of the detecting conductor are constant, Also, it becomes possible to measure the distance from the exciting coil to the detecting conductor by the received voltage. Furthermore, since the received voltage waveform is determined by the equivalent time constant of the detection conductor to be detected, it is possible to easily determine the material of the detection conductor. The present invention can realize an extremely high-sensitivity metal detector which has not been obtained in the past, and can accurately detect a metal separated by 30 cm or more even with a small exciting coil having a diameter of several centimeters without an iron core. If a coil is used or a large exciting coil is used, metal detection of 1 m or more is possible, and many applications are possible.
Claims (1)
状の磁界を発生し、このパルス磁界によって探知する探
知導体との相互インダクタンスを介して探知導体に誘導
電流を流し、この誘導電流を受信コイルによって受信す
る金属探知装置において、検出導体の等価時定数よりも
大幅に少ない立ち下がり時間で励磁電流を遮断する励磁
回路と、励磁コイルに残留するエネルギーが十分に減衰
した期間だけ検出コイルの電圧を検出するスイッチを持
つ受信回路によって、導電体に流れる渦電流による信号
だけを選択的に検出した金属探知方法。1. A pulsed magnetic field is generated by passing a pulsed current through an exciting coil, and an induced current is caused to flow through the detecting conductor through mutual inductance with the detecting conductor to be detected by the pulsed magnetic field, and the induced current is received. In the metal detection device that receives by, the exciting circuit that cuts off the exciting current with a fall time that is significantly smaller than the equivalent time constant of the detecting conductor, and the voltage of the detecting coil is changed only while the energy remaining in the exciting coil is sufficiently attenuated. A metal detection method that selectively detects only signals due to eddy currents flowing in conductors by a receiver circuit that has a switch for detection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2498194A JPH07218645A (en) | 1994-01-28 | 1994-01-28 | Metal detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2498194A JPH07218645A (en) | 1994-01-28 | 1994-01-28 | Metal detection method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07218645A true JPH07218645A (en) | 1995-08-18 |
Family
ID=12153166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2498194A Pending JPH07218645A (en) | 1994-01-28 | 1994-01-28 | Metal detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07218645A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100355575B1 (en) * | 1999-08-12 | 2002-10-12 | 복 순 김 | A gate type metal detctor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3315155A (en) * | 1963-02-18 | 1967-04-18 | Colani Claus | Method and apparatus for investigating a generally homogeneous medium as to regions of anomalous electrical conductivity |
JPH02500215A (en) * | 1986-10-10 | 1990-01-25 | リンデル、ステン | Method and device for non-contact measurement of parameters related to conductive materials |
JPH05232245A (en) * | 1992-02-20 | 1993-09-07 | Kandenko Co Ltd | Method and apparatus for detecting metal |
-
1994
- 1994-01-28 JP JP2498194A patent/JPH07218645A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3315155A (en) * | 1963-02-18 | 1967-04-18 | Colani Claus | Method and apparatus for investigating a generally homogeneous medium as to regions of anomalous electrical conductivity |
JPH02500215A (en) * | 1986-10-10 | 1990-01-25 | リンデル、ステン | Method and device for non-contact measurement of parameters related to conductive materials |
JPH05232245A (en) * | 1992-02-20 | 1993-09-07 | Kandenko Co Ltd | Method and apparatus for detecting metal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100355575B1 (en) * | 1999-08-12 | 2002-10-12 | 복 순 김 | A gate type metal detctor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2208994C (en) | Cable partial discharge location pointer | |
GB2041531A (en) | Detecting inaccessible objects | |
JP3072304B2 (en) | Metal detection method | |
US3430221A (en) | Proximity detector | |
JPH07218645A (en) | Metal detection method | |
DE50013642D1 (en) | METHOD AND DEVICE FOR INITIATING DETERMINATION OF THE CONVERSION RATE OF A NONMAGNETIC PHASE TO A FERROMAGNETIC PHASE OF A METALLIC WORKPIECE | |
JPH07218646A (en) | Metal detection method | |
US4011505A (en) | Current measuring device | |
JPH08160093A (en) | Rare short tester | |
AU632320B2 (en) | Improvements relating to metal detectors | |
JPH0711580B2 (en) | Method and apparatus for detecting metal | |
EP0376095A1 (en) | Magnetic flux measuring method and apparatus for embodying the same | |
US5334935A (en) | Apparatus and method for detecting weak magnetic fields having a saturable core shaped to cancel magnetic fields parallel to the core | |
US11899156B2 (en) | Metal detector | |
SU949600A1 (en) | Pulse eddy-current metal finder | |
JP3353120B2 (en) | Current sensor | |
JPH0429035B2 (en) | ||
SU543868A1 (en) | Electromagnetic transducer | |
JPH0894306A (en) | Metal detection method | |
Hovorka et al. | Comparison of surface H-field measurements using Hall sensors and a novel multiple sense coil approach | |
SU932385A1 (en) | Device for eddy-current checking | |
Riggs et al. | Progress toward an electromagnetic induction mine discrimination system | |
CN119044843A (en) | Magnetic field sensor | |
SU920504A1 (en) | Device for measuring linear dimensions | |
SU815645A1 (en) | Device for measuring pulse currents |