[go: up one dir, main page]

JPH07218469A - Hydrogen gas measurement method - Google Patents

Hydrogen gas measurement method

Info

Publication number
JPH07218469A
JPH07218469A JP6027607A JP2760794A JPH07218469A JP H07218469 A JPH07218469 A JP H07218469A JP 6027607 A JP6027607 A JP 6027607A JP 2760794 A JP2760794 A JP 2760794A JP H07218469 A JPH07218469 A JP H07218469A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
bacterium
hydrogen gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6027607A
Other languages
Japanese (ja)
Inventor
Susumu Sato
佐藤  進
Yoshitaka Togo
芳孝 東郷
Masahiro Tatara
昌浩 多田羅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP6027607A priority Critical patent/JPH07218469A/en
Publication of JPH07218469A publication Critical patent/JPH07218469A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

(57)【要約】 【構成】 微生物によって生産された水素ガスを、燃料
電池を利用して測定することを特徴とする水素ガスの計
測法。 【効果】 高価な装置を用いることなく、水素ガスを迅
速且つ簡便にしかも正確に計測することができるのみで
なく、本法を利用することにより水素産生菌のスクリー
ニングも可能である。
(57) [Summary] [Structure] A hydrogen gas measuring method characterized in that hydrogen gas produced by microorganisms is measured using a fuel cell. [Effect] Not only can hydrogen gas be measured quickly, simply and accurately without using an expensive device, but also by using this method, screening of hydrogen-producing bacteria is possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水素の計測法に関し、
更に詳細には微生物による水素生産における水素生産速
度及び水素生産量の計測に関するものである。また、本
発明は、水素計測法を利用した水素産生菌のスクリーニ
ング法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for measuring hydrogen,
More specifically, it relates to measurement of hydrogen production rate and hydrogen production amount in hydrogen production by microorganisms. The present invention also relates to a screening method for hydrogen-producing bacteria using a hydrogen measurement method.

【0002】[0002]

【従来の技術】従来、ガスの瞬間流量(速度)、積算流
量の測定にはガスメーター等の計量法に準じた機器が使
用されている。ガスメーターには湿式ガスメーターと乾
式ガスメーターとがあり、測定ガスによって使い分けら
れている。しかし、湿式では水蒸気圧の影響やガスの可
溶化、乾式では水分を含むガスの測定が困難であったり
する。また、ガスメーターによる測定では測定ガスの流
量がある一定以上の大きさが必要であり、微小流量のも
のに関しては大きな誤差を生じる。
2. Description of the Related Art Conventionally, an apparatus conforming to a measuring method such as a gas meter has been used for measuring an instantaneous flow rate (speed) of gas and an integrated flow rate. Gas meters include a wet gas meter and a dry gas meter, which are used properly depending on the measurement gas. However, the influence of water vapor pressure and solubilization of gas in the wet method and the measurement of gas containing water in the dry method are difficult. Further, in the measurement by the gas meter, the flow rate of the measurement gas needs to be a certain value or more, and a large error occurs when the flow rate is very small.

【0003】一方、微生物を利用した水素生産法では、
生産ガスの速度、生産量は微生物の活性に支配され、そ
の量は微小で一定でなく、測定が困難である。また、水
素以外に炭酸ガスやメタンなどのガス生成があり、水素
のみの生産速度や流量を測定するためには、ガスクロマ
トグラフィーを用いてガスの組成分析を更に行う必要が
ある。
On the other hand, in the hydrogen production method using microorganisms,
The rate of production gas and the amount of production are controlled by the activity of microorganisms, and the amount is minute and not constant, making it difficult to measure. In addition to hydrogen, carbon dioxide, methane, and other gases are also generated, and in order to measure the production rate and flow rate of only hydrogen, it is necessary to further analyze the composition of the gas using gas chromatography.

【0004】[0004]

【発明が解決しようとする課題】本発明は、このような
技術の現状のもとでなされたものであって、本発明の目
的は、微生物生産法によって生産された水素を、迅速か
つ簡便にしかも正確に測定できる新規な計測法を提供す
るにある。
The present invention has been made under the present circumstances of such a technology, and an object of the present invention is to rapidly and simply produce hydrogen produced by a microbial production method. Moreover, it is to provide a new measuring method that can accurately measure.

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するためになされたものであって、各方面から検討し
た結果、燃料電池にはじめて着目した。すなわち、本発
明者らは、燃料電池の中で特に、水素−酸素型燃料電池
が、次式(下記化1)で水素の酸化反応過程における自
由エネルギー変化を直接電流に変換することに注目し
た。
Means for Solving the Problems The present invention has been made in order to achieve the above-mentioned object, and as a result of study from various aspects, the first attention was paid to the fuel cell. That is, the present inventors have paid attention to the fact that the hydrogen-oxygen fuel cell, among other fuel cells, converts the free energy change in the hydrogen oxidation reaction process directly into a current according to the following formula (Formula 1 below). .

【0006】[0006]

【化1】 [Chemical 1]

【0007】上式より、分極がない(電流を取り出さな
い)ときの端子電圧E0は1.23Vになる。そこで、
一定の抵抗を与えることで微生物が生産する水素量に従
って電流値が変化することに注目した。
From the above equation, the terminal voltage E 0 when there is no polarization (no current is taken out) is 1.23V. Therefore,
We paid attention to the fact that the current value changes according to the amount of hydrogen produced by microorganisms by giving a constant resistance.

【0008】本発明は、これらの点にはじめて注目し、
そして更に研究、検討を重ねた結果、遂に完成されたも
のであって、微生物を利用した水素生産リアクターから
生成するガスを、水素−酸素型燃料電池と組み合わせる
ことで、簡便かつ迅速に水素生産速度および水素生産量
を電流値の変化から計測するものである。
The present invention focuses on these points for the first time,
As a result of further research and study, it was finally completed.By combining the gas generated from the hydrogen production reactor utilizing microorganisms with the hydrogen-oxygen fuel cell, the hydrogen production rate can be easily and rapidly increased. And the amount of hydrogen production is measured from the change in current value.

【0009】本発明によれば、微量しか生成されずしか
も生成量が一定しない微生物由来の水素ガスをきわめて
効率よく計測することができ、すべてのタイプの水素産
生微生物を産生する水素ガスを計測することができる。
According to the present invention, it is possible to extremely efficiently measure hydrogen gas derived from a microorganism that produces only a trace amount and does not produce a constant amount, and to measure hydrogen gas that produces all types of hydrogen-producing microorganisms. be able to.

【0010】水素産生微生物としては、嫌気性菌、光合
成細菌その他水素産生菌であればすべてのタイプのもの
が挙げられる。例えば嫌気性菌としては、クロストリジ
ウム(Clostridium)属菌、光合成細菌とし
ては、ロドスピリウム(Rhodospirillu
m)属菌、ロドシュードモナス(Rhodopseud
omonas)属菌等が挙げられる。
The hydrogen-producing microorganisms include all types of anaerobic bacteria, photosynthetic bacteria and other hydrogen-producing bacteria. For example, an anaerobic bacterium is a genus Clostridium, and a photosynthetic bacterium is Rhodospirillu.
m) genus, Rhodopseud
Omonas) and the like.

【0011】更に具体的には次のものが例示される。C
lostridium butyricum、C.ac
etobutylicum等Clostridium属
菌;Rhodospirillum rubrum等R
hodospirillum属菌;Rhodopseu
domonas spheroides等Rhodop
seudomonas属菌その他。
More specifically, the following are exemplified. C
lostridium butyricum, C.I. ac
Clostridium spp. such as Etobutylicum; Rhodospirillum rubrum etc. R
Rhodopseu;
domonas spheroides, etc. Rhodop
Other bacterium of the genus seudomonas.

【0012】また、本発明は、上記したように各種微生
物が生産する水素ガスをきわめて簡便、効率的に、定量
/定性分析することができる。したがって、本発明によ
れば、微生物の水素生産能を簡便且つ迅速に確認するこ
とができるので、水素産生菌のスクリーニングも簡便に
行うことができ、したがって本発明は、水素産生菌のス
クリーニング方法も提供するものである。よって、本発
明は、水素産生菌の分離、選択のほか、同定に利用でき
るだけでなく、新規水素産生菌を新たに探索するのにも
利用することができるので、本発明を利用することによ
り、従来未知のすぐれた水素産生菌を発見する機会が更
に広がり、エネルギーの面のみならず、微生物学の面等
においても本発明は大いに期待されるものである。
In addition, the present invention enables very simple and efficient quantitative / qualitative analysis of hydrogen gas produced by various microorganisms as described above. Therefore, according to the present invention, it is possible to easily and quickly confirm the hydrogen-producing ability of a microorganism, and thus it is possible to easily screen for hydrogen-producing bacteria. Therefore, the present invention also provides a method for screening hydrogen-producing bacteria. It is provided. Therefore, the present invention, in addition to separation and selection of hydrogen-producing bacteria, can be used not only for identification, but also for newly searching for new hydrogen-producing bacteria, by using the present invention, The chances of discovering an excellent hydrogen-producing bacterium that has not been heretofore known have further expanded, and the present invention is highly expected not only in terms of energy but also in terms of microbiology.

【0013】本発明を実施するには、燃料電池を利用す
る必要があるが、燃料電池としては各種のタイプのもの
が適宜使用され、例えば水素−酸素型燃料電池が有利に
使用できる。水素ガスを測定するには、培養槽、リアク
ター等水素ガス源と燃料電池とを接続し、その電流値を
測定し、組成や水蒸気圧を考慮に入れたスタンダードカ
ーブにより水素生産速度及び/又は水素生産量を測定
し、もって水素ガスアッセイを行えばよい。
In order to carry out the present invention, it is necessary to utilize a fuel cell, but various types of fuel cells are appropriately used, and for example, a hydrogen-oxygen type fuel cell can be advantageously used. To measure hydrogen gas, connect a hydrogen gas source such as a culture tank or reactor to a fuel cell, measure the current value, and measure the hydrogen production rate and / or hydrogen with a standard curve that takes into account the composition and water vapor pressure. The hydrogen gas assay may be performed by measuring the production amount.

【0014】水素ガスの測定を行うためには、例えば図
1に示すような測定システムを利用することができる。
図中(a)は燃料電池、(b)は本システムの概要を示
すものである。燃料電池は、水素−酸素型燃料電池であ
って、1は白金電極(アノード)網、2はアノード液出
口、3は白金電極(カソード)、4はイオン交換膜、5
はカソード室の電解液(例えば0.01M K3Fe
(CN)6)、6はアノード液入口を、それぞれ示す。
In order to measure hydrogen gas, for example, a measuring system as shown in FIG. 1 can be used.
In the figure, (a) shows a fuel cell and (b) shows an outline of this system. The fuel cell is a hydrogen-oxygen fuel cell, 1 is a platinum electrode (anode) network, 2 is an anode liquid outlet, 3 is a platinum electrode (cathode), 4 is an ion exchange membrane, 5
Is an electrolyte in the cathode chamber (eg 0.01 M K 3 Fe
(CN) 6 ) and 6 show the anode liquid inlets, respectively.

【0015】(b)は、本発明を実施するための測定シ
ステムの1例を図示したものであって、燃料電池7と培
養槽10とをポンプ8を介して結合している。Aは電流
計を示し、9はマグネチックスターラーを示している。
図1に示した測定システムにおいては、図示したとお
り、培養液を循環させて燃料電池と接続しているが、他
の態様として、水素生産培養槽から生産ガスのみを捕集
して燃料電池に導入するシステムを採用しても何ら差し
支えない。
FIG. 1B shows an example of a measuring system for carrying out the present invention, in which a fuel cell 7 and a culture tank 10 are connected via a pump 8. A indicates an ammeter and 9 indicates a magnetic stirrer.
In the measurement system shown in FIG. 1, as shown in the figure, the culture solution is circulated and connected to the fuel cell. However, as another embodiment, only the produced gas is collected from the hydrogen production culture tank to be used in the fuel cell. It does not matter if you adopt the system to be introduced.

【0016】以下、本発明の実施例について述べる。Examples of the present invention will be described below.

【0017】[0017]

【実施例1】図1に示した測定システムを用いて水素の
測定を行った。先ず、培養槽において、水素産生菌とし
てClostridium butyricumを用い
て、グルコースを栄養源とした1Lの培養液で水素生産
を行った。
Example 1 Hydrogen was measured using the measuring system shown in FIG. First, in a culture tank, Clostridium butyricum was used as a hydrogen-producing bacterium, and hydrogen was produced in 1 L of a culture solution containing glucose as a nutrient.

【0018】水上置換法(HCl水溶液、pH<3)で
測定した生産ガスの測定を行い、組成分析、水蒸気圧等
を考慮に入れ水素生産速度および水素生産量を算出し
た。
The production gas measured by the water displacement method (HCl aqueous solution, pH <3) was measured, and the hydrogen production rate and the hydrogen production amount were calculated in consideration of composition analysis, water vapor pressure and the like.

【0019】経時変化に対する水素生成速度と得られた
電流値のピーク曲線の一致性は非常に良好な結果であっ
た(図2)。
The agreement between the hydrogen generation rate and the peak curve of the obtained current value with respect to aging was a very good result (FIG. 2).

【0020】[0020]

【実施例2】培養液にClostridium but
yricumを加えないで、水素ガスのみを導入して水
素導入速度と電流値の関係を測定した。結果を図3に示
す。
Example 2 Clostridium butter was added to the culture solution.
Only the hydrogen gas was introduced without adding yricum, and the relationship between the hydrogen introduction rate and the current value was measured. The results are shown in Fig. 3.

【0021】水素導入速度の増加に比例して電流値も増
加する傾向を示した。
The current value tended to increase in proportion to the increase in the hydrogen introduction rate.

【0022】この結果から、実施例1でのClostr
idium butyricumの水素生成速度と電流
値を換算して得られる水素生成速度は非常に良く一致す
ることが示された。
From these results, Clostr in Example 1
It was shown that the hydrogen production rate of the idium butyricum and the hydrogen production rate obtained by converting the current value are in very good agreement.

【0023】また、24時間の培養で生産した水素ガス
は、電流値を換算して得た水素生成速度を積算した結
果、2,450mlであり、実施例1で得られた結果と
良く一致した。
The hydrogen gas produced by 24 hours of culturing was 2,450 ml as a result of integrating the hydrogen generation rate obtained by converting the current value, which was in good agreement with the result obtained in Example 1. .

【0024】[0024]

【発明の効果】以上、詳細に説明した如く、本発明によ
る水素ガスの計測法は微生物生産法で生産された水素を
燃料電池を利用して迅速かつ簡便に計測するので、次の
効果を奏する。
As described above in detail, the method for measuring hydrogen gas according to the present invention has the following effects because hydrogen produced by the microbial production method can be measured quickly and simply by using a fuel cell. .

【0025】(イ)微生物によって生産された水素の生
産速度および生産量をリアルタイムに迅速かつ簡便に計
測することができる。 (ロ)簡単な水素−酸素型燃料電池を接続するだけでよ
く、ガスメーター、ガスクロマトグラフィーなど高価な
装置を必要とせず経済的である。 (ハ)水素産生能が簡便に確認でき、水素産生菌のスク
リーニングが容易になる。 (ニ)従来未知の新規な水素産生菌の発見が容易とな
り、エネルギー業界においてそしてまた微生物業界にお
いても大きな寄与をなすものである。
(A) The production rate and production amount of hydrogen produced by the microorganism can be measured in real time quickly and easily. (B) It suffices to connect a simple hydrogen-oxygen type fuel cell, and it is economical without requiring expensive equipment such as a gas meter and gas chromatography. (C) Hydrogen-producing ability can be easily confirmed, and screening of hydrogen-producing bacteria can be facilitated. (D) It becomes easy to discover a novel hydrogen-producing bacterium, which has been unknown until now, and it makes a great contribution to the energy industry and also to the microbial industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】燃料電池及び本発明の測定システムの概念図で
ある。
FIG. 1 is a conceptual diagram of a fuel cell and a measurement system of the present invention.

【図2】実施例1の結果を示すグラフである。2 is a graph showing the results of Example 1. FIG.

【図3】実施例2の結果を示すグラフである。FIG. 3 is a graph showing the results of Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 (C12Q 1/06 C12R 1:01) ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location (C12Q 1/06 C12R 1:01)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 微生物によって生産された水素ガスを、
燃料電池を利用して測定することを特徴とする水素ガス
の計測法。
1. A hydrogen gas produced by a microorganism,
A method for measuring hydrogen gas, which is characterized by using a fuel cell for measurement.
【請求項2】 燃料電池を利用して、水素生産速度及び
/又は水素生産量を電流値の変化から計測し、もって水
素ガスを計測すること、を特徴とする請求項1に記載の
計測法。
2. The measuring method according to claim 1, wherein the fuel cell is used to measure the hydrogen production rate and / or the hydrogen production amount from the change in the current value, and thereby the hydrogen gas. .
【請求項3】 燃料電池が水素−酸素型燃料電池である
こと、を特徴とする請求項1又は請求項2に記載の計測
法。
3. The measuring method according to claim 1, wherein the fuel cell is a hydrogen-oxygen fuel cell.
【請求項4】 請求項1〜請求項3のいずれか1項に記
載の計測法を利用することを特徴とする水素産生菌の分
離、選択方法。
4. A method for separating and selecting a hydrogen-producing bacterium, which comprises utilizing the measurement method according to any one of claims 1 to 3.
【請求項5】 水素産生菌が嫌気性菌及び/又は光合成
細菌であることを特徴とする請求項4に記載の方法。
5. The method according to claim 4, wherein the hydrogen-producing bacteria are anaerobic bacteria and / or photosynthetic bacteria.
【請求項6】 嫌気性菌がクロストリジウム(Clos
tridium)属菌であることを特徴とする請求項5
に記載の方法。
6. The anaerobic bacterium is Clostridium (Clos).
A bacterium belonging to the genus tridium).
The method described in.
【請求項7】 光合成細菌がロドスピリルム(Rhod
ospirillum)属菌及び/又はロドシュードモ
ナス(Rhodopseudomonas)属菌である
ことを特徴とする請求項5に記載の方法。
7. The photosynthetic bacterium is Rhodospirillum (Rhod).
The method according to claim 5, which is a genus bacterium of the genus Ospirillum and / or a bacterium of the genus Rhodopseudomonas.
JP6027607A 1994-02-01 1994-02-01 Hydrogen gas measurement method Pending JPH07218469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6027607A JPH07218469A (en) 1994-02-01 1994-02-01 Hydrogen gas measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6027607A JPH07218469A (en) 1994-02-01 1994-02-01 Hydrogen gas measurement method

Publications (1)

Publication Number Publication Date
JPH07218469A true JPH07218469A (en) 1995-08-18

Family

ID=12225621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6027607A Pending JPH07218469A (en) 1994-02-01 1994-02-01 Hydrogen gas measurement method

Country Status (1)

Country Link
JP (1) JPH07218469A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726357A1 (en) * 1995-02-07 1996-08-14 Betz Laboratories Inc. Inhibiting anaerobic production of volatile fatty acids and hydrogen by bacteria
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349997A (en) * 1986-08-20 1988-03-02 富士通株式会社 Data transmission method
JPH02115760A (en) * 1988-10-26 1990-04-27 Daihen Corp Method and instrument for measuring dissolved gaseous hydrogen in insulating oil
JPH02307051A (en) * 1989-05-23 1990-12-20 Daihen Corp Method and instrument for measuring dissolved gaseous hydrogene in insulating oil

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349997A (en) * 1986-08-20 1988-03-02 富士通株式会社 Data transmission method
JPH02115760A (en) * 1988-10-26 1990-04-27 Daihen Corp Method and instrument for measuring dissolved gaseous hydrogen in insulating oil
JPH02307051A (en) * 1989-05-23 1990-12-20 Daihen Corp Method and instrument for measuring dissolved gaseous hydrogene in insulating oil

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0726357A1 (en) * 1995-02-07 1996-08-14 Betz Laboratories Inc. Inhibiting anaerobic production of volatile fatty acids and hydrogen by bacteria
US7258938B2 (en) 2001-03-06 2007-08-21 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
US7527883B2 (en) 2001-03-06 2009-05-05 Sharp Kabushiki Kaisha Polymer electrolyte fuel cell
US7432091B2 (en) 2003-02-24 2008-10-07 Research Institute Of Innovative Technology For The Earth Highly efficient hydrogen production method using microorganism
US8846358B2 (en) 2008-05-12 2014-09-30 Sharp Kabushiki Kaisha Method and device for producing hydrogen
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method

Similar Documents

Publication Publication Date Title
Ayyaru et al. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor
Call et al. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells
Dixon et al. The control and measurement of ‘CO2’during fermentations
CN107505369B (en) Bioelectrochemical system and online biochemical oxygen demand monitoring device and method thereof
Wang et al. Computer applications to fermentation processes
Sun et al. Innovative air-cathode bioelectrochemical sensor for monitoring of total volatile fatty acids during anaerobic digestion
Matsunaga et al. Electrochemical determination of cell populations
CN104062345A (en) Device based on microorganism electrolytic tank technique for on-line biochemical oxygen demand measurement
JPH07218469A (en) Hydrogen gas measurement method
CN104330455A (en) Method and device of on-line monitoring nitrate nitrogen through microbial electrolytic tank technology
CN116818866A (en) A method and system for instant detection of biological toxicity in water quality
Hammer et al. Dialysis separation of sewage sludge digestion
CN104391028B (en) Utilize the method and apparatus of microorganism electrolysis cell technology on-line monitoring ammonia nitrogen concentration
Prakasam et al. Role of biocathodes in bioelectrochemical systems
Chynoweth et al. Bacterial populations and end products during anaerobic sludge fermentation of glucose
Ding et al. Control of microbial activity by flow injection analysis during high cell density cultivation of Escherichia coli
Zaeni et al. Performance of microbial fuel cells in generating bioelectricity using clay membranes and leachate substrate from Kendari city waste landfill
Sadoff et al. Electrolysis as a means of aerating submerged cultures of microorganisms
Dissing et al. Monitoring of methanogenic processes with an immobilized mixed culture in combination with a gas-flow meter
Karube Possible developments in microbial and other sensors for fermentation control
Grune et al. Redox Potentials in Waste Treatment: Laboratory Experiences and Applications [with Discussion]
CN113594524A (en) Microbial electrosynthesis reactor for supplying carbon dioxide by using hollow fiber membrane and using method thereof
Oluwaferanmi et al. BIOELECTRICITY PRODUCTION FROM WASTEWATERS USING MICROBIALFUELCELL
Angell et al. A multiple chemostat system for consortia studies on microbially influenced corrosion
CN113252838B (en) In-situ differential ammonia measurement characterization test method for electrocatalysis nitrogen fixation