JPH07217689A - Energy absorption member - Google Patents
Energy absorption memberInfo
- Publication number
- JPH07217689A JPH07217689A JP3195794A JP3195794A JPH07217689A JP H07217689 A JPH07217689 A JP H07217689A JP 3195794 A JP3195794 A JP 3195794A JP 3195794 A JP3195794 A JP 3195794A JP H07217689 A JPH07217689 A JP H07217689A
- Authority
- JP
- Japan
- Prior art keywords
- absorbing member
- layers
- reinforcing fiber
- energy absorbing
- energy absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010521 absorption reaction Methods 0.000 title abstract description 10
- 239000012783 reinforcing fiber Substances 0.000 claims abstract description 36
- 239000000835 fiber Substances 0.000 claims abstract description 10
- 239000002759 woven fabric Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 6
- 239000003365 glass fiber Substances 0.000 claims description 4
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 3
- 229920006231 aramid fiber Polymers 0.000 claims description 3
- 239000004917 carbon fiber Substances 0.000 claims description 3
- 239000004760 aramid Substances 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 239000010410 layer Substances 0.000 abstract description 66
- 230000006378 damage Effects 0.000 abstract description 10
- 238000005452 bending Methods 0.000 abstract description 6
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 239000011229 interlayer Substances 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 abstract 4
- 230000035939 shock Effects 0.000 abstract 1
- 230000032798 delamination Effects 0.000 description 15
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000000463 material Substances 0.000 description 6
- -1 polytetrafluoroethylene Polymers 0.000 description 5
- 229920001971 elastomer Polymers 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000005060 rubber Substances 0.000 description 3
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- VZXTWGWHSMCWGA-UHFFFAOYSA-N 1,3,5-triazine-2,4-diamine Chemical compound NC1=NC=NC(N)=N1 VZXTWGWHSMCWGA-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000011151 fibre-reinforced plastic Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920001290 polyvinyl ester Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
Landscapes
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、繊維強化プラスチック
(以下、FRPという)からなるエネルギー吸収部材の
構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of an energy absorbing member made of fiber reinforced plastic (hereinafter referred to as FRP).
【0002】[0002]
【従来の技術】たとえば、航空機の座席周り等や、自動
車の座席周り、バンパー周り、ハンドル周り、各種構造
部材に、衝撃エネルギーを吸収するエネルギー吸収部材
が用いられる(特開昭60−109630号公報、特開
昭62−17438号公報等)。このエネルギー吸収部
材には、衝撃エネルギーを良好に吸収できる性能の他、
一般に軽量、高剛性であることが要求されることから、
樹脂と強化繊維との複合材料、いわゆるFRP、中でも
炭素繊維強化プラスチック(以下、CFRPと言うこと
もある)が適している。2. Description of the Related Art For example, an energy absorbing member that absorbs impact energy is used around an aircraft seat, around an automobile seat, around a bumper, around a steering wheel, and in various structural members (Japanese Patent Laid-Open No. 60-109630). , JP-A-62-17438). This energy absorbing member has the ability to absorb impact energy well,
Generally, lightweight and high rigidity are required,
A composite material of a resin and a reinforcing fiber, so-called FRP, especially carbon fiber reinforced plastic (hereinafter sometimes referred to as CFRP) is suitable.
【0003】このようなエネルギー吸収部材において衝
撃エネルギーはエネルギー吸収部材自身の破壊により吸
収されるが、円滑かつ効果的にエネルギーを吸収するた
めには、エネルギー吸収部材が逐次破壊を起こすことが
望ましい。逐次破壊は、通常、エネルギー吸収部材を構
成するFRPの層間剥離と、圧縮(曲げ)破壊がバラン
スして生じると考えられている。この層間剥離を伴う破
壊を誘導するトリガとして、エネルギー吸収部材の先端
部を断面形状に関して、先細り状にテーパ形状とするこ
とが知られている。In such an energy absorbing member, the impact energy is absorbed by the destruction of the energy absorbing member itself, but in order to absorb the energy smoothly and effectively, it is desirable that the energy absorbing member successively breaks down. It is generally considered that the sequential fracture occurs in balance between delamination of the FRP forming the energy absorbing member and compression (bending) fracture. As a trigger for inducing the destruction accompanying the delamination, it is known that the tip end portion of the energy absorbing member has a tapered cross-sectional shape.
【0004】[0004]
【発明が解決しようとする課題】ところが、上記のよう
な構造を有するエネルギー吸収部材においては、トリガ
としての先端部テーパ形状を、エネルギー吸収部材を構
成するFRPの仕様に応じて最適化する必要があり、ト
リガ形状によっては、必ずしも目標とする逐次破壊が得
られないことがある。However, in the energy absorbing member having the above-mentioned structure, the tip tapered shape as a trigger needs to be optimized according to the specifications of the FRP constituting the energy absorbing member. However, depending on the shape of the trigger, the target sequential destruction may not always be obtained.
【0005】本発明は、エネルギー吸収部材自身、ある
いはその先端部の形状に拘らず、所望部位に確実にかつ
円滑に逐次破壊を生じさせることが可能なエネルギー吸
収部材の構造を提供することを目的とする。An object of the present invention is to provide a structure of an energy absorbing member which can surely and smoothly cause a sequential destruction at a desired portion regardless of the shape of the energy absorbing member itself or its tip. And
【0006】[0006]
【課題を解決するための手段】この目的に沿う本発明の
エネルギー吸収部材は、複数の強化繊維層を有するFR
Pからなるエネルギー吸収部材であって、長手方向の一
端部の強化繊維層間に、該層間の接着を阻害する剥離助
層が埋設されていることを特徴とするものから成る。The energy absorbing member of the present invention for this purpose has an FR having a plurality of reinforcing fiber layers.
An energy-absorbing member made of P, characterized in that a peeling auxiliary layer that inhibits adhesion between the reinforcing fiber layers is embedded between the reinforcing fiber layers at one end in the longitudinal direction.
【0007】この剥離助層は、単層でもよいが、より円
滑な逐次破壊を生じさせるためには、複数層設けられる
ことが好ましい。また、剥離助層の材質は、エネルギー
吸収部材を構成するFRPの強化繊維層間の接着を阻害
し、強化繊維層間に比較的容易に層間剥離を生じさせる
ことのできるものであれば特に限定されず、例えばフッ
素系樹脂であるポリテトラフルオロエチレン(PTF
E、商品名テフロン)、ポリ弗化アルコキシエチレン樹
脂(PFA)、弗化エチレンプロピレンエーテル共重合
体樹脂(FEP)などのフイルム、シリコーン系樹脂の
フイルム、ポリイミドフイルム、その他離型処理を施し
たフイルム等の離型フイルムを用いることができる。た
だし、この剥離助層は、離型フイルムに限らず、金属薄
板、金属網、有機繊維の織物、ガラス繊維織物、アラミ
ド繊維の織物などからも選ぶことができる。The peeling auxiliary layer may be a single layer, but it is preferable to provide a plurality of layers in order to cause smoother successive breakage. Further, the material of the peeling auxiliary layer is not particularly limited as long as it can inhibit the adhesion between the reinforcing fiber layers of the FRP constituting the energy absorbing member and cause the interlayer peeling between the reinforcing fiber layers relatively easily. , For example, polytetrafluoroethylene (PTF), which is a fluororesin
E, trade name Teflon), polyfluorinated alkoxyethylene resin (PFA), fluoroethylene propylene ether copolymer resin (FEP), silicone resin film, polyimide film, and other release-treated film Release films such as However, the peeling auxiliary layer is not limited to the release film, and can be selected from metal thin plates, metal nets, organic fiber woven fabrics, glass fiber woven fabrics, aramid fiber woven fabrics, and the like.
【0008】なお、本発明のFRP製エネルギー吸収部
材を構成するマトリクス樹脂としては、特に限定され
ず、エポキシ樹脂、不飽和ポリエステル樹脂、ポリビニ
ルエステル樹脂、フェノール樹脂、グアナミン樹脂、ま
たビスマレイミド・トリアジン樹脂等のポリイミド樹
脂、フラン樹脂、ポリウレタン樹脂、ポリジアリルフタ
レート樹脂、さらにメラニン樹脂やユリア樹脂等のアミ
ノ樹脂等の熱硬化性樹脂が挙げられる。また、ナイロン
6、ナイロン66、ナイロン11、ナイロン610、ナ
イロン612などのポリアミド、またはこれらポリアミ
ドの共重合ポリアミド、また、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレートなどのポリエステ
ル、またはこれらポリエステルの共重合ポリエステル、
さらに、ポリカーボネート、ポリアミドイミド、ポリフ
ェニレンスルファイド、ポリフェニレンオキシド、ポリ
スルホン、ポリエーテルスルホン、ポリエーテルエーテ
ルケトン、ポリエーテルイミド、ポリオレフィンなど、
さらにまた、ポリエステルエラストマー、ポリアミドエ
ラストマーなどに代表される熱可塑性エラストマー、等
が使用できる。さらには、上述の範囲を満たす樹脂とし
て、アクリルゴム、アクリロニトリルブタジエンゴム、
ウレタンゴム、シリコーンゴム、スチレンブタジエンゴ
ム、フッ素系ゴム等のゴムを用いることもできる。さら
には、上記の熱硬化性樹脂、熱可塑性樹脂、ゴムから選
ばれた複雑なブレンドした樹脂を用いることもできる。The matrix resin that constitutes the FRP energy absorbing member of the present invention is not particularly limited, and epoxy resin, unsaturated polyester resin, polyvinyl ester resin, phenol resin, guanamine resin, or bismaleimide triazine resin. Examples thereof include polyimide resins, furan resins, polyurethane resins, polydiallyl phthalate resins, and thermosetting resins such as amino resins such as melanin resins and urea resins. Also, polyamides such as nylon 6, nylon 66, nylon 11, nylon 610, nylon 612, or copolyamides of these polyamides, polyesters such as polyethylene terephthalate and polybutylene terephthalate, or copolyesters of these polyesters,
Furthermore, polycarbonate, polyamide imide, polyphenylene sulfide, polyphenylene oxide, polysulfone, polyether sulfone, polyether ether ketone, polyether imide, polyolefin, etc.,
Furthermore, thermoplastic elastomers represented by polyester elastomers and polyamide elastomers can be used. Furthermore, as the resin satisfying the above range, acrylic rubber, acrylonitrile butadiene rubber,
Rubber such as urethane rubber, silicone rubber, styrene-butadiene rubber, and fluorine-based rubber can also be used. Further, a complicated blended resin selected from the above-mentioned thermosetting resin, thermoplastic resin and rubber can be used.
【0009】また、強化繊維についても、炭素繊維に限
らず、ガラス繊維、芳香族ポリアミド繊維、アルミナ繊
維、炭化珪素繊維、ボロン繊維などを使用することが可
能であり、これらを併用することも可能である。The reinforcing fiber is not limited to carbon fiber, but glass fiber, aromatic polyamide fiber, alumina fiber, silicon carbide fiber, boron fiber, or the like can be used, and they can be used in combination. Is.
【0010】[0010]
【作用】このようなエネルギー吸収部材においては、エ
ネルギー吸収部材の端部(先端部)の、FRPの強化繊
維層間に剥離助層が埋設されているので、剥離助層両側
の強化繊維層は剥離助層を境界に層間剥離し易くなる。
剥離助層が複数層設けられている場合には、各剥離助層
部分において層間剥離が生じ易くなる。In such an energy absorbing member, since the peeling auxiliary layer is embedded between the reinforcing fiber layers of the FRP at the end portion (tip portion) of the energy absorbing member, the reinforcing fiber layers on both sides of the peeling auxiliary layer are peeled off. Delamination becomes easier with the auxiliary layer as a boundary.
When a plurality of peeling auxiliary layers are provided, interlayer peeling easily occurs in each peeling auxiliary layer portion.
【0011】このように、エネルギー吸収部材の端部に
おいて層間剥離が生じるということは、その部分が衝撃
エネルギー吸収時に確実にトリガとして機能するという
ことになる。層間剥離が円滑に起こると、剥離した剥離
助層両側の強化繊維層にも円滑に曲げ破壊が生じ、層間
剥離と曲げ(圧縮)破壊がうまくバランスされて、望ま
しい形態で逐次破壊が進行していく。この逐次破壊を介
して、衝撃エネルギーが効率よくかつ効果的に吸収さ
れ、目標とするエネルギー吸収部材の衝撃エネルギー吸
収能力が発揮される。As described above, the delamination at the end of the energy absorbing member means that the part surely functions as a trigger when the impact energy is absorbed. When delamination occurs smoothly, flexural fracture also occurs in the reinforced fiber layers on both sides of the exfoliation aid layer, and the delamination and flexural (compression) fracture are well balanced, and the sequential fracture progresses in a desired form. Go. Through this sequential destruction, the impact energy is efficiently and effectively absorbed, and the target impact energy absorption capability of the energy absorbing member is exerted.
【0012】[0012]
【実施例】以下に、本発明のエネルギー吸収部材の望ま
しい実施例を、図面を参照して説明する。図1ないし図
3は、本発明の一実施例に係るエネルギー吸収部材を示
している。図において、1は、円筒形状のFRPからな
るエネルギー吸収部材を示しており、エネルギー吸収部
材1を構成するFRPは、複数の強化繊維層2を有して
いる。強化繊維としては、炭素繊維が好ましいが、前述
の如き他の強化繊維としてもよい。また、強化繊維層2
に含浸されているマトリクス樹脂も、前述の如き各種樹
脂を使用でき、特に限定されない。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the energy absorbing member of the present invention will be described below with reference to the drawings. 1 to 3 show an energy absorbing member according to an embodiment of the present invention. In the figure, 1 indicates an energy absorbing member made of a cylindrical FRP, and the FRP forming the energy absorbing member 1 has a plurality of reinforcing fiber layers 2. Carbon fibers are preferable as the reinforcing fibers, but other reinforcing fibers as described above may be used. In addition, the reinforcing fiber layer 2
As the matrix resin impregnated in the above, various resins as described above can be used and are not particularly limited.
【0013】強化繊維層2は、強化繊維を一方向に引き
揃えた、いわゆる一方向層、強化繊維を交差配置した
層、さらには強化繊維の織物からなる層のいずれでもよ
く、該強化繊維層2がFRPの板厚内において複数層積
層されている。The reinforcing fiber layer 2 may be a so-called unidirectional layer in which reinforcing fibers are aligned in one direction, a layer in which reinforcing fibers are arranged in a crossed manner, or a layer made of a woven fabric of reinforcing fibers. 2 is laminated in multiple layers within the thickness of the FRP.
【0014】エネルギー吸収部材1の長手方向の少なく
とも一端部には(本実施例では一端部であるが、両端部
でもよい)、強化繊維層2間に、層間の接着を阻害する
剥離助層3が埋設されている。剥離助層3は、図2に示
すように、複数層埋設されている。この複数層の剥離助
層3は、隣接する強化繊維層毎に埋設されてもよく、複
数層の強化繊維層毎に埋設されてもよい。At least one end portion in the longitudinal direction of the energy absorbing member 1 (in this embodiment, it is one end portion, but it may be both end portions), between the reinforcing fiber layers 2, a peeling assisting layer 3 which inhibits adhesion between layers. Is buried. As shown in FIG. 2, the peeling auxiliary layer 3 is embedded in a plurality of layers. The plurality of peeling auxiliary layers 3 may be embedded in each of the adjacent reinforcing fiber layers, or may be embedded in each of the plurality of reinforcing fiber layers.
【0015】剥離助層3は、円筒形状のエネルギー吸収
部材1の円周方向に、実質的に全長にわたって延びてお
り、エネルギー吸収部材1の筒軸方向に沿う方向に、エ
ネルギー吸収部材1の先端面1aからエネルギー吸収部
材1の板厚内に向かって適当な長さだけ延びている。こ
の長さは、剥離助層3両側の層に、エネルギー吸収時に
所定の層間剥離を生じせしめるだけの長さであればよ
く、繰り返し実験を通して、FRPの構成、エネルギー
吸収部材の形状、吸収しようとする衝撃エネルギーの大
きさ等に応じて決めればよい。The peeling assisting layer 3 extends in the circumferential direction of the cylindrical energy absorbing member 1 over substantially the entire length thereof, and the tip of the energy absorbing member 1 extends in the direction along the cylinder axis direction of the energy absorbing member 1. It extends from the surface 1a into the plate thickness of the energy absorbing member 1 by an appropriate length. This length may be a length that causes the layers on both sides of the peeling auxiliary layer 3 to cause predetermined delamination at the time of absorbing energy, and through repeated experiments, the configuration of the FRP, the shape of the energy absorbing member, and the absorption It may be determined according to the magnitude of impact energy to be applied.
【0016】また、剥離助層3の材質は、前述の如く、
FEP系のフイルム、ポリイミドフイルム、その他離型
処理(例えば離型剤を塗布)を施したフイルム等が好ま
しい。但し、前述の如く、離型フイルムの他にも、金属
薄板、金属網、有機繊維の織物状物、ガラス繊維の織物
状物、アラミド繊維の織物状物等から選ばれた各種シー
ト状物を用いてもよい。The material of the peeling auxiliary layer 3 is, as described above,
An FEP film, a polyimide film, and a film subjected to a release treatment (for example, applying a release agent) are preferable. However, as described above, in addition to the release film, various sheet materials selected from metal thin plates, metal nets, organic fiber woven materials, glass fiber woven materials, aramid fiber woven materials, etc. You may use.
【0017】このように構成されたエネルギー吸収部材
1においては、衝撃エネルギーPが加わったとき、該エ
ネルギーは次のように吸収される。図2および図3にお
いて、4はエネルギー吸収部材1の先端部に当接される
押圧部材を示しており、押圧部材4を介して衝撃エネル
ギーPがエネルギー吸収部材1に加えられる。In the energy absorbing member 1 thus constructed, when the impact energy P is applied, the energy is absorbed as follows. 2 and 3, reference numeral 4 denotes a pressing member that is brought into contact with the tip of the energy absorbing member 1, and impact energy P is applied to the energy absorbing member 1 via the pressing member 4.
【0018】エネルギー吸収部材1の先端部には、剥離
助層3が複数層埋設されているので、各剥離助層3両側
の強化繊維層間は層間剥離を生じ易くなっている。この
ような状態において衝撃エネルギーPが加わると、図3
に示すように、エネルギー吸収部材1の先端部FRPの
各強化繊維層は容易に層間剥離を起こし、確実にこの部
分から破壊が進行する。層間剥離を起こした各強化繊維
層は、図に示すようにFRP板厚方向に内外に拡開し、
拡開しようとする層に圧縮とともに曲げ荷重が作用す
る。この荷重が限界値を超えると、層内の強化繊維が破
断し、いわゆる逐次破壊が進行する。層間剥離が円滑に
開始されることにより、逐次破壊も円滑に進行する。Since a plurality of peeling auxiliary layers 3 are embedded in the tip portion of the energy absorbing member 1, delamination easily occurs between the reinforcing fiber layers on both sides of each peeling auxiliary layer 3. When impact energy P is applied in such a state, as shown in FIG.
As shown in FIG. 5, the reinforcing fiber layers of the tip portion FRP of the energy absorbing member 1 easily cause delamination, and the destruction surely proceeds from this portion. As shown in the figure, each reinforced fiber layer that has undergone delamination spreads in and out in the FRP plate thickness direction,
Bending load acts on the layer to be expanded together with compression. When this load exceeds the limit value, the reinforcing fibers in the layer break, and so-called sequential breakage progresses. Since the delamination is started smoothly, the sequential fracture also progresses smoothly.
【0019】各層内の強化繊維が破断に至るということ
は、その破断のためにエネルギーが消費されたというこ
とであり、それだけ効率よく衝撃エネルギーが吸収され
たことになる。したがって、このような、層間剥離と曲
げ破壊とがうまくバランスされた逐次破壊を生じさせる
ことにより、衝撃エネルギーが効率よく吸収され、大き
なエネルギー吸収能力が発揮される。The fact that the reinforcing fibers in each layer lead to breakage means that energy is consumed for the breakage, which means that the impact energy is absorbed more efficiently. Therefore, by causing such sequential fracture in which delamination and bending fracture are well balanced, impact energy is efficiently absorbed, and a large energy absorption capability is exhibited.
【0020】上記実施例においては、エネルギー吸収部
材1を円筒形状に構成したが、これに限定されるもので
はなく、各種形状を採り得る。In the above-mentioned embodiment, the energy absorbing member 1 has a cylindrical shape, but the present invention is not limited to this, and various shapes can be adopted.
【0021】例えば図4ないし図7に、他の各種形状に
係るエネルギー吸収部材を示す。図4は、フランジ部1
1を備えた円筒形状のエネルギー吸収部材12を示して
おり、図5は、リブ21を備えた横断面T字形のエネル
ギー吸収部材22を示しており、図6は、両端部にフラ
ンジ部31を備えた横断面コ字状のエネルギー吸収部材
32を示しており、34はエネルギー吸収部材32に付
設可能な蓋部材を示しており、図7は、横断面十字状の
エネルギー吸収部材42を示している。For example, FIGS. 4 to 7 show energy absorbing members having various other shapes. FIG. 4 shows the flange portion 1.
1 shows a cylindrical energy-absorbing member 12 provided with 1 and FIG. 5 shows an energy-absorbing member 22 having a T-shaped cross section provided with ribs 21, and FIG. 6 shows flange portions 31 at both ends. The energy absorbing member 32 having a U-shaped cross section is shown, 34 is a lid member that can be attached to the energy absorbing member 32, and FIG. There is.
【0022】上記のような各種形状のエネルギー吸収部
材12、22、32、42においても、その長手方向の
少なくとも一端部に、前述したと同様の剥離助層13、
23、33、43が埋設される。剥離助層埋設による作
用、効果は、図1ないし図3に示した実施例に準じる。Also in the energy absorbing members 12, 22, 32, 42 having various shapes as described above, the peeling assisting layer 13, similar to that described above, is provided at least at one end portion in the longitudinal direction thereof.
23, 33, 43 are buried. The operation and effect of embedding the peeling auxiliary layer are the same as those of the embodiment shown in FIGS.
【0023】[0023]
【発明の効果】以上説明したように、本発明のエネルギ
ー吸収部材によるときは、FRP製エネルギー吸収部材
の端部に、強化繊維層間の接着を阻害する剥離助層を埋
設し、衝撃エネルギーが加わった際、この部分で容易に
層間剥離が生じるようにしたので、層間剥離と、剥離助
層両側で拡開する層の曲げ破壊とをうまくバランスさせ
て、確実にかつ円滑に所望の逐次破壊を進行させること
ができ、エネルギー吸収性能の高いエネルギー吸収部材
を実現できる。As described above, according to the energy absorbing member of the present invention, a peeling assisting layer that hinders the adhesion between the reinforcing fiber layers is embedded in the end portion of the FRP energy absorbing member, and impact energy is applied. At this time, since delamination was made to occur easily at this part, delamination and the bending fracture of the layer expanding on both sides of the delamination aid layer were well balanced to ensure the desired sequential fractures reliably and smoothly. An energy absorbing member that can be advanced and has high energy absorbing performance can be realized.
【図1】本発明の一実施例に係るエネルギー吸収部材の
斜視図である。FIG. 1 is a perspective view of an energy absorbing member according to an embodiment of the present invention.
【図2】図1のエネルギー吸収部材の一端部の拡大部分
縦断面図である。FIG. 2 is an enlarged partial vertical sectional view of one end of the energy absorbing member of FIG.
【図3】図2のエネルギー吸収部材端部の破壊の様子を
示す縦断面図である。3 is a vertical cross-sectional view showing a state of destruction of an end portion of the energy absorbing member of FIG.
【図4】本発明の変形例に係るエネルギー吸収部材の斜
視図である。FIG. 4 is a perspective view of an energy absorbing member according to a modified example of the present invention.
【図5】本発明の別の変形例に係るエネルギー吸収部材
の斜視図である。FIG. 5 is a perspective view of an energy absorbing member according to another modification of the present invention.
【図6】本発明のさらに別の変形例に係るエネルギー吸
収部材の斜視図である。FIG. 6 is a perspective view of an energy absorbing member according to still another modification of the present invention.
【図7】本発明のさらに別の変形例に係るエネルギー吸
収部材の斜視図である。FIG. 7 is a perspective view of an energy absorbing member according to still another modification of the present invention.
1、12、22、32、42 エネルギー吸収部材 2 強化繊維層 3、13、23、33、43 剥離助層 1, 12, 22, 32, 42 Energy absorbing member 2 Reinforcing fiber layer 3, 13, 23, 33, 43 Peeling aid layer
Claims (5)
るエネルギー吸収部材であって、長手方向の一端部の強
化繊維層間に、該層間の接着を阻害する剥離助層が埋設
されていることを特徴とするエネルギー吸収部材。1. An energy absorbing member made of FRP having a plurality of reinforcing fiber layers, wherein a peeling auxiliary layer for hindering adhesion between the reinforcing fiber layers is embedded between reinforcing fiber layers at one end in the longitudinal direction. Characteristic energy absorbing member.
請求項1のエネルギー吸収部材。2. A plurality of the peeling auxiliary layers are provided,
The energy absorbing member according to claim 1.
請求項1又は2のエネルギー吸収部材。3. The release aid layer is composed of a release film.
The energy absorbing member according to claim 1 or 2.
機繊維の織物、ガラス繊維の織物、アラミド繊維の織物
から選ばれた1種である、請求項1又は2のエネルギー
吸収部材。4. The energy absorbing member according to claim 1, wherein the peeling auxiliary layer is one kind selected from a thin metal plate, a metal net, a woven fabric of organic fibers, a woven fabric of glass fibers, and a woven fabric of aramid fibers.
れている、請求項1ないし4のいずれかに記載のエネル
ギー吸収部材。5. The energy absorbing member according to claim 1, wherein the reinforcing fiber layer is formed of carbon fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3195794A JPH07217689A (en) | 1994-02-02 | 1994-02-02 | Energy absorption member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3195794A JPH07217689A (en) | 1994-02-02 | 1994-02-02 | Energy absorption member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07217689A true JPH07217689A (en) | 1995-08-15 |
Family
ID=12345448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3195794A Pending JPH07217689A (en) | 1994-02-02 | 1994-02-02 | Energy absorption member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07217689A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007168122A (en) * | 2005-12-19 | 2007-07-05 | Toyota Motor Corp | Fiber reinforced plastic structure |
EP1818561A1 (en) * | 2004-08-03 | 2007-08-15 | Mitsubishi Heavy Industries, Ltd. | Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure |
WO2009048005A1 (en) * | 2007-10-09 | 2009-04-16 | Mitsubishi Heavy Industries, Ltd. | Shock absorbing member |
JP2010247789A (en) * | 2009-04-20 | 2010-11-04 | Mitsubishi Heavy Ind Ltd | Impact-absorbing structure and method for producing the same |
US7842378B2 (en) | 2004-01-06 | 2010-11-30 | Kabushiki Kaisha Toyota Jidoshokki | Energy absorber and method for manufacturing the same |
WO2016035694A1 (en) * | 2014-09-04 | 2016-03-10 | 株式会社 豊田自動織機 | Energy-absorbing member |
US9434392B2 (en) | 2012-06-13 | 2016-09-06 | Kawasaki Jukogyo Kabushiki Kaisha | Collision energy absorption column and railroad vehicle provided with the collision energy absorption column |
JP2017002998A (en) * | 2015-06-10 | 2017-01-05 | マツダ株式会社 | Shock absorption carbon fiber resin structure |
CN107922006A (en) * | 2015-11-20 | 2018-04-17 | 马自达汽车株式会社 | The impact absorbing structure of vehicle |
JP2020142569A (en) * | 2019-03-04 | 2020-09-10 | トヨタ自動車株式会社 | Load absorption member for vehicle |
WO2023182397A1 (en) * | 2022-03-24 | 2023-09-28 | 三井化学株式会社 | Shock-absorbing material and method for manufacturing same |
-
1994
- 1994-02-02 JP JP3195794A patent/JPH07217689A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7842378B2 (en) | 2004-01-06 | 2010-11-30 | Kabushiki Kaisha Toyota Jidoshokki | Energy absorber and method for manufacturing the same |
EP1818561A1 (en) * | 2004-08-03 | 2007-08-15 | Mitsubishi Heavy Industries, Ltd. | Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure |
US7846540B2 (en) | 2004-08-03 | 2010-12-07 | Mitsubishi Heavy Industries, Ltd. | Impact-absorbing composite structure |
EP1818561A4 (en) * | 2004-08-03 | 2011-03-02 | Mitsubishi Heavy Ind Ltd | Shock absorbing compound material structure, process for producing the structure and traveling body or sailing body employing the structure |
JP2007168122A (en) * | 2005-12-19 | 2007-07-05 | Toyota Motor Corp | Fiber reinforced plastic structure |
WO2009048005A1 (en) * | 2007-10-09 | 2009-04-16 | Mitsubishi Heavy Industries, Ltd. | Shock absorbing member |
JP2009092133A (en) * | 2007-10-09 | 2009-04-30 | Mitsubishi Heavy Ind Ltd | Shock absorbing member |
EP2192322A4 (en) * | 2007-10-09 | 2017-07-05 | Mitsubishi Heavy Industries, Ltd. | Shock absorbing member |
US8813926B2 (en) | 2009-04-20 | 2014-08-26 | Mitsubishi Heavy Industries, Ltd. | Impact-absorbing structure and method for producing the same |
JP2010247789A (en) * | 2009-04-20 | 2010-11-04 | Mitsubishi Heavy Ind Ltd | Impact-absorbing structure and method for producing the same |
US9434392B2 (en) | 2012-06-13 | 2016-09-06 | Kawasaki Jukogyo Kabushiki Kaisha | Collision energy absorption column and railroad vehicle provided with the collision energy absorption column |
WO2016035694A1 (en) * | 2014-09-04 | 2016-03-10 | 株式会社 豊田自動織機 | Energy-absorbing member |
JP2016053405A (en) * | 2014-09-04 | 2016-04-14 | 株式会社豊田自動織機 | Energy absorption member |
JP2017002998A (en) * | 2015-06-10 | 2017-01-05 | マツダ株式会社 | Shock absorption carbon fiber resin structure |
CN107922006A (en) * | 2015-11-20 | 2018-04-17 | 马自达汽车株式会社 | The impact absorbing structure of vehicle |
CN107922006B (en) * | 2015-11-20 | 2020-03-17 | 马自达汽车株式会社 | Impact absorbing structure for vehicle |
JP2020142569A (en) * | 2019-03-04 | 2020-09-10 | トヨタ自動車株式会社 | Load absorption member for vehicle |
WO2023182397A1 (en) * | 2022-03-24 | 2023-09-28 | 三井化学株式会社 | Shock-absorbing material and method for manufacturing same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07217689A (en) | Energy absorption member | |
ES2208694T3 (en) | SYSTEM TO INSERT ELEMENTS IN COMPOSITE MATERIAL STRUCTURE. | |
US6187411B1 (en) | Stitch-reinforced sandwich panel and method of making same | |
GB2045391A (en) | Reinforced tubular structure | |
JP5153226B2 (en) | Energy absorbing structure and energy absorbing method | |
WO2005070747A1 (en) | Frp panel for automobile | |
JP4736795B2 (en) | Fiber reinforced plastic structure | |
US10167583B2 (en) | Honeycomb structure made of a non-woven made of recycled carbon fibers | |
JP2003146252A (en) | Frp automobile panel and its manufacturing method | |
KR20160084684A (en) | Composite material panel for ship and menufacturing method thereof | |
JP2005273872A (en) | Mounting structure of energy absorbing member made of fiber-reinforced plastic | |
JP4981613B2 (en) | Shock absorbing member | |
JP3837818B2 (en) | FRP thick energy absorber | |
JP3360871B2 (en) | Energy absorbing member | |
JP4103801B2 (en) | Energy absorber | |
JPH07224875A (en) | Impact energy absorbing device | |
JP3456589B2 (en) | Energy absorbing member | |
US7846540B2 (en) | Impact-absorbing composite structure | |
JP3362442B2 (en) | Energy absorbing member | |
JP2001146846A (en) | Concrete reinforced structure with tensioned multilayer reinforced fiber sheet | |
JP3360872B2 (en) | Energy absorbing member | |
JPH084280Y2 (en) | Fiber reinforced composite cylindrical shell | |
JP7323402B2 (en) | Fiber-reinforced resin composite and method for producing fiber-reinforced resin composite | |
JP3362445B2 (en) | Energy absorbing member | |
JP2007170328A (en) | Windmill blade for wind power generation and its manufacturing method |