JPH07216553A - Production of copper-coated polyimide substrate - Google Patents
Production of copper-coated polyimide substrateInfo
- Publication number
- JPH07216553A JPH07216553A JP853594A JP853594A JPH07216553A JP H07216553 A JPH07216553 A JP H07216553A JP 853594 A JP853594 A JP 853594A JP 853594 A JP853594 A JP 853594A JP H07216553 A JPH07216553 A JP H07216553A
- Authority
- JP
- Japan
- Prior art keywords
- copper
- polyimide resin
- resin film
- film
- adhesion strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laminated Bodies (AREA)
- Chemically Coating (AREA)
- Electroplating Methods And Accessories (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフレキシブルプリント配
線板(FPC)、テープ自動ボンディング(TAB)テ
ープ等のプリント配線板(PWB)の素材となる銅被覆
ポリイミド基板の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper-clad polyimide substrate which is a material for a printed wiring board (PWB) such as a flexible printed wiring board (FPC) and a tape automatic bonding (TAB) tape.
【0002】[0002]
【従来の技術】近年、電子機器の一層の小型化、高速化
が求められ、これらに用いるプリント配線板などにもよ
り高密度化が求められてきている。このためプリント配
線板などを作製するための基板としても、より優れた耐
熱性、耐燃性、寸法安定性、耐溶剤性及び電気的絶縁
性、機械的強度を持つものが求められるようになってき
ている。2. Description of the Related Art In recent years, further miniaturization and higher speed of electronic equipment have been demanded, and higher density has been demanded for printed wiring boards and the like used therein. For this reason, substrates having better heat resistance, flame resistance, dimensional stability, solvent resistance, electrical insulation, and mechanical strength are required as substrates for producing printed wiring boards and the like. ing.
【0003】この要求を最も満足させるものの一つに銅
被覆ポリイミド基板がある。これは、ポリイミド樹脂フ
ィルムの表面にも銅層を設けたものである。ポリイミド
樹脂フィルムに銅を被覆する方法としては、接着剤を用
いて銅箔を貼り合わせるいわゆるラミネート法や、スパ
ッタリング法、イオンプレーティング法、蒸着法、無電
解めっき法などによって直接金属層をポリイミド層に設
ける方法がある。これらの方法の中で、銅被覆ポリイミ
ド基板を用いて作製されるプリント配線板などの最終製
品の信頼性より、そして低コストでの量産化が可能な点
より無電解めっき法が注目されている。One of those that most satisfy this requirement is a copper-clad polyimide substrate. This is one in which a copper layer is also provided on the surface of a polyimide resin film. As a method for coating copper on a polyimide resin film, a so-called laminating method in which a copper foil is attached using an adhesive, a sputtering method, an ion plating method, a vapor deposition method, an electroless plating method or the like is used to directly form a polyimide layer on a metal layer. There is a method to install it. Among these methods, the electroless plating method is drawing attention because of the reliability of the final product such as a printed wiring board produced by using a copper-clad polyimide substrate and the possibility of mass production at low cost. .
【0004】一般に、無電解めっき法によりポリイミド
樹脂フィルムに直接銅被覆を行う際には、ポリイミド樹
脂フィルム表面をエッチング処理し、無電解めっきのた
めの触媒付与を行い、触媒活性化処理した後無電解銅め
っきを行う。しかし、この方法で得られた銅被覆ポリイ
ミド基板を用いて配線板などを作製すると、特に配線部
が微細になったとき、配線部がポリイミド樹脂フィルム
より剥離するという事態が発生する。Generally, when a polyimide resin film is directly coated with copper by an electroless plating method, the surface of the polyimide resin film is subjected to an etching treatment, a catalyst for electroless plating is applied, and a catalyst activation treatment is performed. Perform electrolytic copper plating. However, when a wiring board or the like is manufactured using the copper-coated polyimide substrate obtained by this method, a situation occurs in which the wiring portion is separated from the polyimide resin film, especially when the wiring portion becomes fine.
【0005】これを解決すべく種々の方法が提案されて
いる。例えば、ポリイミド樹脂に銅層を形成する際に樹
脂と銅層との中間にニッケルなどの金属層を形成する方
法(特開昭63−286580号、米国特許第5246
564号など)や、不活性雰囲気中もしくは真空中にお
いて加熱処理をする方法(特開平4−59351号、特
開平4−236783号、特開平4−254598号な
ど)が提案されている。Various methods have been proposed to solve this problem. For example, when forming a copper layer on a polyimide resin, a method of forming a metal layer of nickel or the like between the resin and the copper layer (Japanese Patent Laid-Open No. 286580/1988, US Pat. No. 5,246,546).
564) and a method of performing heat treatment in an inert atmosphere or in a vacuum (JP-A-4-59351, JP-A-4-236833, JP-A-4-254598, etc.).
【0006】[0006]
【発明が解決しようとする課題】このような方法を用い
て厚さ50μm以上のポリイミド樹脂フィルムに銅被覆
を設ければ、確かに銅被覆とポリイミド樹脂フィルムと
の密着強度は向上し、実用に耐える基板ができる。しか
し、上記高密度化の要求を満たすべく、ポリイミド樹脂
フィルムの厚を25μm程度にすると、銅被覆とポリイ
ミド樹脂フィルムとの密着強度は著しく低下する。そし
て、高温高多湿条件下で使用するための条件である1.
0kgf/cm以上どころか、JISやJPCAの規格
値である0.8kgf/cm以上を安定的に満足させる
ことは困難となる。When a copper coating is provided on a polyimide resin film having a thickness of 50 μm or more by using such a method, the adhesion strength between the copper coating and the polyimide resin film is certainly improved, and it is practically used. A substrate that can withstand is created. However, if the thickness of the polyimide resin film is set to about 25 μm in order to satisfy the demand for higher density, the adhesion strength between the copper coating and the polyimide resin film is significantly reduced. The conditions for use under high temperature and high humidity conditions are 1.
Far from 0 kgf / cm or more, it is difficult to stably satisfy the JIS or JPCA standard value of 0.8 kgf / cm or more.
【0007】本発明の目的は、ポリイミド樹脂フィルム
の厚さが25μm前後であっても、銅被覆とポリイミド
樹脂フィルムとの密着強度とが1.0kgf/cm以上
の銅被覆ポリイミド樹脂フィルムを安定的に製造する方
法を提供する事である。An object of the present invention is to provide a stable copper-coated polyimide resin film having an adhesion strength between the copper coating and the polyimide resin film of 1.0 kgf / cm or more even when the thickness of the polyimide resin film is about 25 μm. It is to provide a method for manufacturing.
【0008】[0008]
【課題を解決するための手段】上記課題を解決する本発
明の方法は、ポリイミド樹脂フィルムの表面をエッチン
グ処理する工程と、無電解めっきのための触媒を付与す
る工程と、付与した触媒を活性化処理する工程と、ニッ
ケル、コバルトまたはこれら金属の合金のうち何れかを
無電解めっきする工程と、得られた被めっき物を不活性
雰囲気中で熱処理をする工程と、さらに無電解めっき層
の上に電気銅めっきを施す工程とから基本的に構成され
る銅被覆ポリイミド基板の製造方法において、ポリイミ
ド樹脂フィルムの表面をエッチング処理した後、この表
面を濃度0.1〜5モル/リットル、温度10〜50℃
のアルカリ溶液で処理するものである。Means for Solving the Problems The method of the present invention for solving the above problems comprises a step of etching the surface of a polyimide resin film, a step of applying a catalyst for electroless plating, and an activation of the applied catalyst. Of the chemical treatment, nickel, cobalt or a step of electrolessly plating any of these metal alloys, a step of heat-treating the obtained object to be plated in an inert atmosphere, further electroless plating layer In a method for producing a copper-coated polyimide substrate basically composed of a step of electrolytic copper plating on the surface of the polyimide resin film, the surface of the polyimide resin film is subjected to etching treatment, and then the surface has a concentration of 0.1 to 5 mol / liter and a temperature of 10-50 ° C
It is treated with an alkaline solution.
【0009】本発明において用いうるアルカリ溶液とし
ては水酸化ナトリウム溶液または水酸化カリウム溶液が
推奨できる。As the alkaline solution which can be used in the present invention, sodium hydroxide solution or potassium hydroxide solution can be recommended.
【0010】[0010]
【作用】本発明者らは種々の検討を試みた結果、ポリイ
ミド樹脂フィルムの表面をエッチング処理した後、この
表面をさらにアルカリ金属水酸化物溶液で処理すると密
着強度が上昇することを見出した。なぜこのような結果
が得られるのかは明確ではない。本発明者らは以下のよ
うに考えている。As a result of various investigations, the present inventors have found that after the surface of the polyimide resin film is subjected to an etching treatment, the surface is further treated with an alkali metal hydroxide solution to increase the adhesion strength. It is not clear why such a result is obtained. The present inventors consider as follows.
【0011】すなわち、一般に無電解めっき法で金属被
覆ポリイミド樹脂を作製した場合、金属層とポリイミド
樹脂フィルムのと界面には、エッチング処理の際に加水
分解やイミド結合の切断により発生した分解生成物が残
留している。ポリイミド樹脂フィルムの厚さが25μm
前後の場合と50μm以上の場合とでは、理由は定かで
はないが残留する分解生成物の性質が異なるものと思わ
れる。その結果、ポリイミド樹脂フィルムの厚さにより
同じ製造方法を採っても密着強度が異なることとなる。That is, generally, when a metal-coated polyimide resin is produced by an electroless plating method, a decomposition product generated by hydrolysis or cleavage of an imide bond at the interface between the metal layer and the polyimide resin film is generated. Remains. The thickness of the polyimide resin film is 25 μm
Although the reason is not clear, it is considered that the properties of the remaining decomposition products differ between before and after and before and after 50 μm. As a result, the adhesion strength varies depending on the thickness of the polyimide resin film even if the same manufacturing method is adopted.
【0012】本発明の方法でエッチング後のポリイミド
樹脂フィルム表面をアルカリ溶液で処理するのは、アル
カリ溶液がポリイミド樹脂を溶解するからである。すな
わち、ポリイミド樹脂フィルム表面の分解生成物層をポ
リイミド樹脂と共に溶解し、無電解めっきに必要な最小
限の親水層をポリイミド樹脂フィルム表面に残すためで
ある。そして、この親水層に無電解めっき用触媒を吸着
させ、良好な無電解めっき膜を形成させるためである。The surface of the polyimide resin film after etching by the method of the present invention is treated with an alkaline solution because the alkaline solution dissolves the polyimide resin. That is, this is to dissolve the decomposition product layer on the surface of the polyimide resin film together with the polyimide resin and leave the minimum hydrophilic layer necessary for electroless plating on the surface of the polyimide resin film. Then, the catalyst for electroless plating is adsorbed on the hydrophilic layer to form a good electroless plated film.
【0013】アルカリ金属水酸化物としては特に限定さ
れるものではないが、価格や入手の容易性から水酸化ナ
トリウムまたは水酸化カリウムが好ましい。液中のアル
カリ金属水酸化物の濃度が0.1モル/リットルよりも
小さい場合には分解生成物層の溶解が充分行われず、ま
た5モル/リットルよりも大きい場合にはピンホールや
スキップなどの不めっきが生じやすい。The alkali metal hydroxide is not particularly limited, but sodium hydroxide or potassium hydroxide is preferable from the viewpoint of price and availability. When the concentration of the alkali metal hydroxide in the liquid is less than 0.1 mol / l, the decomposition product layer is not sufficiently dissolved, and when it is more than 5 mol / l, pinholes, skips, etc. Non-plating is likely to occur.
【0014】また、アルカリ性溶液の液温が10℃より
も低い場合には分解生成物層の溶解が不十分であり、5
0℃よりも高い場合にはピンホールやスキップなどの不
めっきが生じやすい。When the liquid temperature of the alkaline solution is lower than 10 ° C., the dissolution of the decomposition product layer is insufficient, and
When the temperature is higher than 0 ° C., non-plating such as pinholes and skips is likely to occur.
【0015】しかし、これら条件のうち最適条件は、素
材ポリイミド樹脂フィルムの種類やエッチング液組成・
条件などによる変質層厚や生産性などの経済的理由によ
り選ばれるべきであり特に限定されるものではない。However, the optimum condition among these conditions is the type of the material polyimide resin film, the composition of the etching solution,
It should be selected for economic reasons such as altered layer thickness and productivity depending on conditions and is not particularly limited.
【0016】なお、本発明において行われるポリイミド
樹脂フィルム表面のエッチング処理、無電解めっきのた
めの触媒付与処理、該触媒活性化処理、ニッケル、コバ
ルトまたはこれら金属の合金のうち何れかの無電解めっ
き処理、不活性雰囲気中で熱処理、電気銅めっき処理に
おける処理手順は、従来採用される手順と何等変わるこ
とがないのでその説明は省略する。Incidentally, the etching treatment of the surface of the polyimide resin film carried out in the present invention, the catalyst applying treatment for electroless plating, the catalyst activation treatment, electroless plating of nickel, cobalt or an alloy of these metals. Since the treatment, the heat treatment in an inert atmosphere, and the treatment procedure in the electrolytic copper plating treatment are not different from those conventionally used, the description thereof will be omitted.
【0017】[0017]
【実施例】次に本発明の実施例について述べる。EXAMPLES Next, examples of the present invention will be described.
【0018】(実施例1)基板材料として鐘淵化学社製
アピカルNPI−25ポリイミド樹脂フィルムを用い、
その20×20cmの試験試料の片面をマスキングし、
25%抱水ヒドラジンを含有する25℃の水溶液中に3
0秒浸せきして表面を親水性にした後水洗を行い、次い
で25℃の1モル/リットル水酸化カリウム溶液中に3
0秒浸せきし、さらに水洗後奥野製薬社製OPC−80
キャタリストMを用いて触媒付与、水洗、奥野製薬社製
OPC−555アクセレーターによる触媒活性化、水洗
を行った後表1に示す条件で基板表面に無電解ニッケル
めっき処理を行った。この処理により基板上にニッケル
めっき被膜を形成できた。Example 1 As a substrate material, Apical NPI-25 polyimide resin film manufactured by Kaneka Corporation is used.
Mask one side of the 20 × 20 cm test sample,
3 in an aqueous solution containing 25% hydrazine hydrate at 25 ° C
Soak for 0 seconds to make the surface hydrophilic, then wash with water, and then add 3 mol.
Soak for 0 seconds and wash with water. OPC-80 manufactured by Okuno Pharmaceutical Co., Ltd.
After applying the catalyst using Catalyst M, washing with water, activating the catalyst with OPC-555 accelerator manufactured by Okuno Seiyaku Co., Ltd., and washing with water, the substrate surface was subjected to electroless nickel plating under the conditions shown in Table 1. By this treatment, a nickel plating film could be formed on the substrate.
【0019】表1 NiCl2・6H2O 0.1モル/リットル NaH2PO2・H2O 0.1モル/リットル グリシン 0.3モル/リットル pH 7.0 めっき浴温度 50℃ めっき時間 75秒Table 1 NiCl 2 .6H 2 O 0.1 mol / l NaH 2 PO 2 .H 2 O 0.1 mol / l Glycine 0.3 mol / l pH 7.0 Plating bath temperature 50 ° C. Plating time 75 Second
【0020】次にこの基板を光洋リンドバーグ社製の熱
風循環式加熱炉を用いて、窒素ガス雰囲気中で9℃/分
の昇温速度で400℃まで加熱し、同温度で1.5時間
保持した後2.5℃/分の降温速度で冷却する熱処理を
行った。Next, this substrate was heated to 400 ° C. at a temperature rising rate of 9 ° C./min in a nitrogen gas atmosphere using a hot air circulation type heating furnace manufactured by Koyo Lindbergh, and kept at the same temperature for 1.5 hours. After that, heat treatment for cooling at a temperature decrease rate of 2.5 ° C./min was performed.
【0021】その後、表2に示す条件で電気銅めっき処
理を行った。この処理により基板上に35μm厚の電気
銅めっき被膜を形成し銅被覆ポリイミド基板を得た。Thereafter, electrolytic copper plating treatment was performed under the conditions shown in Table 2. By this treatment, a 35 μm thick electrolytic copper plating film was formed on the substrate to obtain a copper-coated polyimide substrate.
【0022】表2 CuSO4・5H2O 100g/リットル H2SO4 150g/リットル めっき液温度 25℃ めっき時間 90分Table 2 CuSO 4 .5H 2 O 100 g / liter H 2 SO 4 150 g / liter Plating solution temperature 25 ° C. Plating time 90 minutes
【0023】銅被覆ポリイミド基板を半分に切断し、そ
の一方の銅表面にレジストを塗布し、マスキングし、エ
ッチングしてポリイミド樹脂フィルム表面に幅10m
m、長さ100mmの帯状の銅層を形成し、この銅層の
端部を基板に対して直角方向に引き剥して銅被覆とポリ
イミド樹脂フィルムとの密着強度を測定した。この結
果、1.5kgf/cmの密着強度(初期密着強度)が
得られた。次いで、もう一方の銅被覆ポリイミド基板
を、大気中200℃に3時間放置し、同様にして銅被覆
とポリイミド樹脂フィルムとの密着強度を測定した。そ
の結果、密着強度1.3kgf/cmであった。A copper-clad polyimide substrate is cut in half, a resist is applied to one of the copper surfaces, masked and etched to give a polyimide resin film surface with a width of 10 m.
A strip-shaped copper layer having a length of m and a length of 100 mm was formed, and an end portion of the copper layer was peeled off in a direction perpendicular to the substrate to measure adhesion strength between the copper coating and the polyimide resin film. As a result, an adhesion strength of 1.5 kgf / cm (initial adhesion strength) was obtained. Then, the other copper-coated polyimide substrate was left in the atmosphere at 200 ° C. for 3 hours, and the adhesion strength between the copper coating and the polyimide resin film was measured in the same manner. As a result, the adhesion strength was 1.3 kgf / cm.
【0024】(実施例2)アルカリ溶液として10℃の
1モル/リットル水酸化ナトリウム溶液を用いた以外は
実施例1と同様にして銅被覆ポリイミド基板を得た。そ
して、実施例1と同様にして各密着強度を測定した。得
られた値は、初期密着強度1.3kgf/cm、200
℃大気下3時間放置後の密着強度1.1kgf/cmで
あった。Example 2 A copper-coated polyimide substrate was obtained in the same manner as in Example 1 except that 1 mol / liter sodium hydroxide solution at 10 ° C. was used as the alkaline solution. Then, each adhesive strength was measured in the same manner as in Example 1. The value obtained is 200 kgf / cm at the initial adhesion strength of 200.
The adhesion strength after standing for 3 hours in the atmosphere at 1.1 ° C. was 1.1 kgf / cm.
【0025】(実施例3)アルカリ溶液の濃度を5モル
/リットルとし、アルカリ溶液中への浸漬時間を5秒と
した以外は実施例1と同様にして銅被覆ポリイミド基板
を得た。そして、実施例1と同様にして各密着強度を測
定した。得られた値は、初期密着強度1.4kgf/c
m、200℃大気下3時間放置後の密着強度1.0kg
f/cmであった。Example 3 A copper-coated polyimide substrate was obtained in the same manner as in Example 1 except that the concentration of the alkaline solution was 5 mol / liter and the immersion time in the alkaline solution was 5 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 kgf / c.
Adhesion strength after leaving for 3 hours at 200 ° C in the atmosphere of 1.0kg
It was f / cm.
【0026】(実施例4)アルカリ溶液の濃度を0.1
モル/リットルとし、アルカリ溶液中への浸漬時間を1
20秒とした以外は実施例1と同様にして銅被覆ポリイ
ミド基板を得た。そして、実施例1と同様にして各密着
強度を測定した。得られた値は、初期密着強度1.4k
gf/cm、200℃大気下3時間放置後の密着強度
1.1kgf/cmであった。(Example 4) The concentration of the alkaline solution was set to 0.1.
Mol / l and the immersion time in the alkaline solution is 1
A copper-coated polyimide substrate was obtained in the same manner as in Example 1 except that the time was 20 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 k.
The adhesive strength was gf / cm, and the adhesion strength was 1.1 kgf / cm after standing at 200 ° C. in the atmosphere for 3 hours.
【0027】(実施例5)アルカリ溶液の濃度を3モル
/リットルとし、アルカリ溶液中への浸漬時間を10秒
とした以外は実施例1と同様にして銅被覆ポリイミド基
板を得た。そして、実施例1と同様にして各密着強度を
測定した。得られた値は、初期密着強度1.4kgf/
cm、200℃大気下3時間放置後の密着強度1.0k
gf/cmであった。Example 5 A copper-coated polyimide substrate was obtained in the same manner as in Example 1 except that the concentration of the alkaline solution was 3 mol / liter and the immersion time in the alkaline solution was 10 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 kgf /
cm, adhesion strength 1.0k after standing in the air at 200 ° C for 3 hours
It was gf / cm.
【0028】(実施例6)アルカリ溶液の温度を50℃
とし、アルカリ溶液中への浸漬時間を5秒とした以外は
実施例1と同様にして銅被覆ポリイミド基板を得た。そ
して、実施例1と同様にして各密着強度を測定した。得
られた値は、初期密着強度1.5kgf/cm、200
℃大気下3時間放置後の密着強度1.3kgf/cmで
あった。(Example 6) The temperature of the alkaline solution was set to 50 ° C.
A copper-coated polyimide substrate was obtained in the same manner as in Example 1 except that the immersion time in the alkaline solution was 5 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is 200 kgf / cm in initial adhesion strength, 200
The adhesive strength was 1.3 kgf / cm after standing for 3 hours in the atmosphere at ℃.
【0029】(実施例7)アルカリ溶液の濃度を5モル
/リットルとし、アルカリ溶液中への浸漬時間を10秒
とした以外は実施例2と同様にして銅被覆ポリイミド基
板を得た。そして、実施例1と同様にして各密着強度を
測定した。得られた値は、初期密着強度1.4kgf/
cm、200℃大気下3時間放置後の密着強度1.1k
gf/cmであった。Example 7 A copper-coated polyimide substrate was obtained in the same manner as in Example 2 except that the concentration of the alkaline solution was 5 mol / liter and the immersion time in the alkaline solution was 10 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 kgf /
cm, adhesion strength 1.1k after standing in the atmosphere at 200 ° C for 3 hours
It was gf / cm.
【0030】(実施例8)アルカリ溶液の濃度を0.1
モル/リットルとし、アルカリ溶液中への浸漬時間を1
80秒とした以外は実施例2と同様にして銅被覆ポリイ
ミド基板を得た。そして、実施例1と同様にして各密着
強度を測定した。得られた値は、初期密着強度1.4k
gf/cm、200℃大気下3時間放置後の密着強度
1.1kgf/cmであった。(Embodiment 8) The concentration of the alkaline solution is set to 0.1.
Mol / l and the immersion time in the alkaline solution is 1
A copper-coated polyimide substrate was obtained in the same manner as in Example 2 except that the time was 80 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 k.
The adhesive strength was gf / cm, and the adhesion strength was 1.1 kgf / cm after standing at 200 ° C. in the atmosphere for 3 hours.
【0031】(実施例9)アルカリ溶液の濃度を3モル
/リットルとし、アルカリ溶液中への浸漬時間を20秒
とした以外は実施例2と同様にして銅被覆ポリイミド基
板を得た。そして、実施例1と同様にして各密着強度を
測定した。得られた値は、初期密着強度1.4kgf/
cm、200℃大気下3時間放置後の密着強度1.1k
gf/cmであった。Example 9 A copper-coated polyimide substrate was obtained in the same manner as in Example 2 except that the concentration of the alkaline solution was 3 mol / liter and the immersion time in the alkaline solution was 20 seconds. Then, each adhesive strength was measured in the same manner as in Example 1. The obtained value is the initial adhesion strength of 1.4 kgf /
cm, adhesion strength 1.1k after standing in the atmosphere at 200 ° C for 3 hours
It was gf / cm.
【0032】(実施例10)アルカリ溶液の温度を50
℃とし、アルカリ溶液中への浸漬時間を5秒とした以外
は実施例2と同様にして銅被覆ポリイミド基板を得た。
そして、実施例1と同様にして各密着強度を測定した。
得られた値は、初期密着強度1.4kgf/cm、20
0℃大気下3時間放置後の密着強度1.2kgf/cm
であった。(Example 10) The temperature of the alkaline solution was set to 50.
C. and a copper-coated polyimide substrate was obtained in the same manner as in Example 2 except that the immersion time in the alkaline solution was 5 seconds.
Then, each adhesive strength was measured in the same manner as in Example 1.
The obtained value is 20 kg for the initial adhesion strength of 1.4 kgf / cm.
Adhesion strength of 1.2 kgf / cm after standing at 0 ° C in the atmosphere for 3 hours
Met.
【0033】(比較例1)アルカリ溶液で処理しない以
外は実施例1と同様にして銅被覆ポリイミド樹脂基板を
得た。その後実施例1と同様の方法でこの基板について
密着強度を測定した。その結果、初期密着強度0.8k
gf/cm、200℃大気下3時間放置後の密着強度
0.7kgf/cmであった。(Comparative Example 1) A copper-coated polyimide resin substrate was obtained in the same manner as in Example 1 except that the treatment with an alkaline solution was omitted. Then, the adhesion strength of this substrate was measured by the same method as in Example 1. As a result, initial adhesion strength 0.8k
The adhesive strength was gf / cm, and the adhesion strength was 0.7 kgf / cm after standing at 200 ° C. in the atmosphere for 3 hours.
【0034】(比較例2)アルカリ溶液の濃度を6モル
/リットルとした以外は実施例1と同様にして銅被覆ポ
リイミド樹脂基板を得た。Comparative Example 2 A copper-coated polyimide resin substrate was obtained in the same manner as in Example 1 except that the concentration of the alkaline solution was 6 mol / liter.
【0035】得られたこの基板はピンホールやスキップ
などの不めっきが生じ実用には適さなかった。The obtained substrate was not suitable for practical use due to non-plating such as pinholes and skips.
【0036】(比較例3)アルカリ溶液の濃度を0.0
8モル/リットルとした以外は実施例1と同様にして銅
被覆ポリイミド樹脂基板を得た。そして、実施例1と同
様にしてこの基板の密着強度を測定した。得られた密着
強度は0.8kgf/cmであった。Comparative Example 3 The concentration of the alkaline solution was 0.0
A copper-coated polyimide resin substrate was obtained in the same manner as in Example 1 except that the amount was 8 mol / liter. Then, in the same manner as in Example 1, the adhesion strength of this substrate was measured. The obtained adhesion strength was 0.8 kgf / cm.
【0037】(比較例4)アルカリ溶液の温度を60℃
とした以外は実施例1と同様にして銅被覆ポリイミド樹
脂基板を得た。(Comparative Example 4) The temperature of the alkaline solution was set to 60 ° C.
A copper-coated polyimide resin substrate was obtained in the same manner as in Example 1 except for the above.
【0038】得られたこの基板はピンホールやスキップ
などの不めっきが生じ実用には適さなかった。The obtained substrate was not suitable for practical use due to non-plating such as pinholes and skips.
【0039】[0039]
【発明の効果】本発明の方法によれば、厚さ25μmの
ポリイミド樹脂フィルムについても1.0kgf/cm
以上の密着強度が得られる銅被覆ポリイミド樹脂フィル
ムを製造することができ、フレキシブルプリント配線板
(FPC)、テープ自動ボンディング(TAB)テープ
等のプリント配線板(PWB)などの素材に使用するこ
とが可能になる。According to the method of the present invention, a polyimide resin film having a thickness of 25 μm is 1.0 kgf / cm.
It is possible to manufacture a copper-coated polyimide resin film that can obtain the above adhesion strength, and to use it as a material for flexible printed wiring boards (FPC), printed wiring boards (PWB) such as tape automatic bonding (TAB) tapes, and the like. It will be possible.
Claims (2)
チング処理する工程と、無電解めっきのための触媒を付
与する工程と、付与した触媒を活性化処理する工程と、
ニッケル、コバルトまたはこれら金属の合金のうち何れ
かを無電解めっきする工程と、得られた被めっき物を不
活性雰囲気中で熱処理をする工程と、無電解めっき層の
上に電気銅めっきを施す工程とから基本的に構成される
銅被覆ポリイミド基板の製造方法において、ポリイミド
樹脂フィルムの表面をエッチング処理した後、この表面
を濃度0.1〜5モル/リットル、温度10〜50℃の
アルカリ溶液で処理することを特徴とする銅被覆ポリイ
ミド基板の製造方法。1. A step of etching the surface of a polyimide resin film, a step of applying a catalyst for electroless plating, and a step of activating the applied catalyst.
Electroless plating of nickel, cobalt or any of these metal alloys, heat treatment of the obtained object to be plated in an inert atmosphere, and electrolytic copper plating on the electroless plating layer In the method for producing a copper-clad polyimide substrate basically composed of steps, after the surface of the polyimide resin film is subjected to etching treatment, the surface is treated with an alkaline solution having a concentration of 0.1 to 5 mol / liter and a temperature of 10 to 50 ° C. A method for producing a copper-clad polyimide substrate, characterized by comprising:
溶液または水酸化カリウム溶液を用いることを特徴とす
る請求項1記載の製造方法。2. The method according to claim 1, wherein a sodium hydroxide solution or a potassium hydroxide solution is used as the alkaline solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP853594A JPH07216553A (en) | 1994-01-28 | 1994-01-28 | Production of copper-coated polyimide substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP853594A JPH07216553A (en) | 1994-01-28 | 1994-01-28 | Production of copper-coated polyimide substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07216553A true JPH07216553A (en) | 1995-08-15 |
Family
ID=11695849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP853594A Pending JPH07216553A (en) | 1994-01-28 | 1994-01-28 | Production of copper-coated polyimide substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07216553A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003334890A (en) * | 2002-05-23 | 2003-11-25 | Sumitomo Metal Mining Co Ltd | Two-layer copper polyimide base |
WO2003102267A1 (en) * | 2002-06-04 | 2003-12-11 | Agency For Science, Technology And Research | Method for electroless metalisation of polymer substrate |
JP2007056343A (en) * | 2005-08-26 | 2007-03-08 | Ebara Udylite Kk | Method for forming metal plating film on polyimide resin |
KR100747627B1 (en) * | 2006-06-22 | 2007-08-08 | 디엠아이텍 주식회사 | Method for producing 2 layered conductive metal plated polyimide substrate |
JP2007281309A (en) * | 2006-04-10 | 2007-10-25 | Hitachi Cable Ltd | Wiring substrate plating method and plating apparatus |
KR100863264B1 (en) * | 2007-06-29 | 2008-10-15 | 한국기계연구원 | Manufacturing Method of Flexible Copper Clad Laminated Film Using Precision Wet Plating Process |
WO2008152974A1 (en) * | 2007-06-15 | 2008-12-18 | Nippon Mining & Metals Co., Ltd. | Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property |
CN114300351A (en) * | 2021-12-28 | 2022-04-08 | 青岛天银纺织科技有限公司 | Method for mixing metal into crystal chip, crystal chip and electronic device |
-
1994
- 1994-01-28 JP JP853594A patent/JPH07216553A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003334890A (en) * | 2002-05-23 | 2003-11-25 | Sumitomo Metal Mining Co Ltd | Two-layer copper polyimide base |
JP4517564B2 (en) * | 2002-05-23 | 2010-08-04 | 住友金属鉱山株式会社 | 2-layer copper polyimide substrate |
WO2003102267A1 (en) * | 2002-06-04 | 2003-12-11 | Agency For Science, Technology And Research | Method for electroless metalisation of polymer substrate |
CN100424226C (en) * | 2002-06-04 | 2008-10-08 | 新加坡科技研究局 | Method for electroless metallization of polymer substrates |
JP2007056343A (en) * | 2005-08-26 | 2007-03-08 | Ebara Udylite Kk | Method for forming metal plating film on polyimide resin |
JP4708920B2 (en) * | 2005-08-26 | 2011-06-22 | 荏原ユージライト株式会社 | Method for forming metal plating film on polyimide resin |
JP2007281309A (en) * | 2006-04-10 | 2007-10-25 | Hitachi Cable Ltd | Wiring substrate plating method and plating apparatus |
JP4692363B2 (en) * | 2006-04-10 | 2011-06-01 | 日立電線株式会社 | Wiring substrate plating method and plating apparatus |
KR100747627B1 (en) * | 2006-06-22 | 2007-08-08 | 디엠아이텍 주식회사 | Method for producing 2 layered conductive metal plated polyimide substrate |
WO2008152974A1 (en) * | 2007-06-15 | 2008-12-18 | Nippon Mining & Metals Co., Ltd. | Method for production of metal-coated polyimide resin substrate having excellent thermal aging resistance property |
KR100863264B1 (en) * | 2007-06-29 | 2008-10-15 | 한국기계연구원 | Manufacturing Method of Flexible Copper Clad Laminated Film Using Precision Wet Plating Process |
CN114300351A (en) * | 2021-12-28 | 2022-04-08 | 青岛天银纺织科技有限公司 | Method for mixing metal into crystal chip, crystal chip and electronic device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5478462A (en) | Process for forming polyimide-metal laminates | |
JP5461988B2 (en) | Metal laminated polyimide substrate and manufacturing method thereof | |
US4725504A (en) | Metal coated laminate products made from textured polyimide film | |
US4868071A (en) | Thermally stable dual metal coated laminate products made from textured polyimide film | |
US4832799A (en) | Process for coating at least one surface of a polyimide sheet with copper | |
US4806395A (en) | Textured polyimide film | |
US4992144A (en) | Thermally stable dual metal coated laminate products made from polyimide film | |
US5066545A (en) | Process for forming polyimide-metal laminates | |
JPH07216553A (en) | Production of copper-coated polyimide substrate | |
US4950553A (en) | Thermally stable dual metal coated laminate products made from polyimide film | |
JP2622016B2 (en) | Copper polyimide substrate and method for manufacturing printed wiring board using the same | |
JP2006104504A (en) | Electroless plating pre-treatment method and surface metallizing method for polyimide resin, and flexible printed circuit board and manufacturing method for the same | |
US5156731A (en) | Polyimide substrate and method of manufacturing a printed wiring board using the substrate | |
JP3166868B2 (en) | Method for manufacturing copper polyimide substrate | |
JPH06146014A (en) | Production of metal coated glass epoxy substrate | |
JP4572363B2 (en) | Adhesive layer forming liquid between copper and resin for wiring board and method for producing adhesive layer between copper and resin for wiring board using the liquid | |
US4968398A (en) | Process for the electrolytic removal of polyimide resins | |
JPH0621157A (en) | Manufactured of copper polyimide substrate | |
US5015517A (en) | Textured polyimide film | |
JPH07243085A (en) | Production of metal-clad polyimide substrate | |
JP2982323B2 (en) | Method for manufacturing polyimide substrate | |
JP2574535B2 (en) | Method for manufacturing copper polyimide substrate | |
JPH06256960A (en) | Production of copper-coated aramid substrate | |
JPH06316768A (en) | Electroless plating method for fluorine containing polyimide resin | |
JPH06200396A (en) | Manufacture of metal-coated polyimide substrate |