JPH07214029A - Recycling method of heavy metal by making incineration ash or fly ash harmless - Google Patents
Recycling method of heavy metal by making incineration ash or fly ash harmlessInfo
- Publication number
- JPH07214029A JPH07214029A JP2598994A JP2598994A JPH07214029A JP H07214029 A JPH07214029 A JP H07214029A JP 2598994 A JP2598994 A JP 2598994A JP 2598994 A JP2598994 A JP 2598994A JP H07214029 A JPH07214029 A JP H07214029A
- Authority
- JP
- Japan
- Prior art keywords
- fly ash
- heavy metal
- hydroxide
- heavy metals
- ash
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001385 heavy metal Inorganic materials 0.000 title claims abstract description 96
- 239000010881 fly ash Substances 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000002956 ash Substances 0.000 title claims abstract description 27
- 238000004064 recycling Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 claims abstract description 35
- 239000002244 precipitate Substances 0.000 claims abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 25
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims abstract description 22
- 239000007787 solid Substances 0.000 claims abstract description 19
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 11
- 239000000460 chlorine Substances 0.000 claims abstract description 11
- 230000003472 neutralizing effect Effects 0.000 claims abstract description 11
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052725 zinc Inorganic materials 0.000 claims description 25
- 239000011701 zinc Substances 0.000 claims description 25
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 24
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 238000006386 neutralization reaction Methods 0.000 claims description 19
- 239000000126 substance Substances 0.000 claims description 18
- 239000002245 particle Substances 0.000 claims description 15
- 239000000706 filtrate Substances 0.000 claims description 14
- 239000000243 solution Substances 0.000 claims description 13
- 150000002500 ions Chemical class 0.000 claims description 11
- 239000007864 aqueous solution Substances 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims description 5
- 238000004062 sedimentation Methods 0.000 claims description 5
- 238000001784 detoxification Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims description 3
- 230000000717 retained effect Effects 0.000 claims description 2
- 239000006228 supernatant Substances 0.000 claims description 2
- 150000003568 thioethers Chemical class 0.000 claims 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 abstract description 24
- 239000002002 slurry Substances 0.000 abstract description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 6
- 239000012141 concentrate Substances 0.000 abstract description 6
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 abstract description 5
- 238000005486 sulfidation Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 230000002378 acidificating effect Effects 0.000 abstract description 2
- 239000011133 lead Substances 0.000 description 19
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 239000002994 raw material Substances 0.000 description 11
- 239000002351 wastewater Substances 0.000 description 11
- 230000008018 melting Effects 0.000 description 9
- 238000002844 melting Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 235000011121 sodium hydroxide Nutrition 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052793 cadmium Inorganic materials 0.000 description 6
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- 235000010755 mineral Nutrition 0.000 description 5
- HYHCSLBZRBJJCH-UHFFFAOYSA-M sodium hydrosulfide Chemical compound [Na+].[SH-] HYHCSLBZRBJJCH-UHFFFAOYSA-M 0.000 description 5
- 150000004763 sulfides Chemical class 0.000 description 5
- 238000005987 sulfurization reaction Methods 0.000 description 5
- -1 CaCl 2 Chemical compound 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 150000001805 chlorine compounds Chemical class 0.000 description 4
- 230000018044 dehydration Effects 0.000 description 4
- 238000006297 dehydration reaction Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 2
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003818 cinder Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 150000002013 dioxins Chemical class 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 229910001447 ferric ion Inorganic materials 0.000 description 2
- 239000002440 industrial waste Substances 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229920001021 polysulfide Polymers 0.000 description 2
- 239000005077 polysulfide Substances 0.000 description 2
- 150000008117 polysulfides Polymers 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- KVGZZAHHUNAVKZ-UHFFFAOYSA-N 1,4-Dioxin Chemical compound O1C=COC=C1 KVGZZAHHUNAVKZ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 238000003916 acid precipitation Methods 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000033444 hydroxylation Effects 0.000 description 1
- 238000005805 hydroxylation reaction Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 229910052979 sodium sulfide Inorganic materials 0.000 description 1
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 150000003752 zinc compounds Chemical class 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、都市ごみ焼却工場や産
業廃棄物焼却工場等における焼却炉および溶融炉から発
生する有害物をも含めた各種重金属を含有する焼却灰ま
たは飛灰の無害化処理による重金属のリサイクル方法に
関する。The present invention relates to the detoxification of incineration ash or fly ash containing various heavy metals including harmful substances generated from incinerators and melting furnaces in municipal waste incinerators and industrial waste incinerators. The present invention relates to a method for recycling heavy metals by treatment.
【0002】[0002]
【従来の技術】一般に、事業場や一般家庭から排出され
るゴミ(「都市ゴミ」または「一般廃棄物」と称されて
いる)は、都市ゴミ焼却場に集められて焼却処分される
が、その際に焼却炉から発生する燃えがらや飛灰は最終
処分場に堆積されていた。2. Description of the Related Art Generally, garbage discharged from business establishments and households (referred to as "urban garbage" or "general waste") is collected at an urban refuse incinerator and incinerated. At that time, cinder and fly ash generated from the incinerator were accumulated at the final disposal site.
【0003】しかしながら、近年、堆積場確保の困難性
や、堆積される飛灰に含まれている水銀、鉛、亜鉛、カ
ドミウム、砒素などの重金属やダイオキシン類の有害性
が問題視されている。However, in recent years, it has been regarded as a problem that it is difficult to secure a deposition site and the harmfulness of heavy metals such as mercury, lead, zinc, cadmium and arsenic contained in the fly ash to be deposited and dioxins.
【0004】そのため、上記有害物質の安定化を図るた
めセメント固化法や薬剤処理法等が開発され実用化され
ているが、セメント固化法等によると埋立容積を減らす
ことができないため、堆積場の確保に関する問題点は未
解決のままであった。また、飛灰とセメントとの混練処
理により、飛灰に含まれている重金属の溶出はなくなる
(環境庁告示第13号法による溶出試験)と報告されて
いるが、酸性雨等の影響を考えた場合、セメントと混練
した飛灰中の重金属類は必ずしも安定であるとはいいき
れないものであった(菊池猛著「プラズマによるゴミ焼
却灰の溶融処理による焼却残渣の無害化と生成スラグの
資源化」PPM1992/5)。Therefore, a cement solidification method, a chemical treatment method and the like have been developed and put into practical use in order to stabilize the above-mentioned harmful substances, but the landfill volume cannot be reduced by the cement solidification method and the like, so that the sedimentation site The issue of security remained unresolved. In addition, it is reported that the elution of heavy metals contained in fly ash will be eliminated by the kneading process of fly ash and cement (elution test according to the Environmental Agency Notification No. 13 method), but considering the effect of acid rain, etc. However, heavy metals in fly ash mixed with cement were not always stable (Takeshi Kikuchi, “Detoxification of incineration residue by melting treatment of garbage incineration ash by plasma and generation of slag Recycling "PPM1992 / 5).
【0005】一方、焼却炉からの燃えがらや飛灰を溶融
処理することにより、減容化やダイオキシン類の熱分解
による無害化を図ることができるという報告がある(永
田勝也著「都市ゴミ焼却炉におけるダイオキシン対策の
現状と動向」廃棄物学会誌第3巻第3号)。On the other hand, there is a report that it is possible to achieve volume reduction and detoxification by thermal decomposition of dioxins by melting and treating the cinders and fly ash from the incinerator (Katsuya Nagata "Urban waste incinerator". Status and Trends of Dioxin Countermeasures in Japan ", Journal of Japan Society of Waste, Vol. 3, No. 3).
【0006】しかしながら、上記溶融処理によると、蒸
気圧の大きい鉛やカドミウム等の重金属は、炉内で揮発
して排ガス中に入り、排ガスに入った重金属は排ガス処
理設備内で凝縮し、再び飛灰となってしまうという問題
点があった。However, according to the above-mentioned melting treatment, heavy metals such as lead and cadmium, which have a large vapor pressure, volatilize into the exhaust gas and enter the exhaust gas, and the heavy metal entering the exhaust gas is condensed in the exhaust gas processing equipment and re-flyed. There was a problem that it became ashes.
【0007】[0007]
【発明が解決しようとする課題】そこで本発明は、上述
従来の技術の問題点を解決し、飛灰中に含まれている重
金属を安定な形で固定しながら積極的に分離回収し、環
境汚染の問題を生じることなくリサイクルによる有価金
属の有効利用が可能な焼却炉および溶融炉からの焼却灰
または飛灰の処理方法を提供することを目的とする。Therefore, the present invention solves the above-mentioned problems of the prior art and positively separates and collects heavy metals contained in fly ash while fixing them in a stable form, and An object of the present invention is to provide a method for treating incineration ash or fly ash from an incinerator and a melting furnace, which enables effective use of valuable metals by recycling without causing pollution problems.
【0008】[0008]
【課題を解決するための手段】本発明者等は、上記目的
を達成するために鋭意研究した結果、焼却炉や溶融炉か
ら発生する重金属を含有する焼却灰または飛灰を、塩素
換算量で少なくとも2wt% 以上、好ましくは3wt% 以上
の塩化物の存在下で加熱処理して重金属を塩化物として
揮発させることによって重金属の塩化物を飛灰として濃
縮させ、次いで該濃縮物から重金属を回収することによ
って前記重金属の有価金属としてのリサイクルをはかる
ことが可能であることを見い出し、本発明方法を開発す
ることができた。Means for Solving the Problems As a result of earnest studies for achieving the above object, the present inventors have found that incineration ash or fly ash containing heavy metals generated from an incinerator or a melting furnace is converted into a chlorine-equivalent amount. Heat treatment is performed in the presence of at least 2 wt% or more, preferably 3 wt% or more chloride to volatilize heavy metal as chloride to concentrate chloride of heavy metal as fly ash, and then recover heavy metal from the concentrate. As a result, it was found that the heavy metal can be recycled as a valuable metal, and the method of the present invention could be developed.
【0009】すなわち本発明者等の開発した第1の発明
は、重金属を含有する焼却灰または飛灰を、塩素換算量
で少なくとも2wt% 以上、好ましくは3wt% 以上の塩化
物の存在下で加熱処理して、重金属を塩化物として揮発
させ、これを飛灰として濃縮する第1工程と、次いで得
られた飛灰を液中に溶解し、さらに中和処理することに
よって重金属分を固形殿物中に捕集した後固液分離し、
固形殿物中の重金属分を回収する第2工程とからなる焼
却灰または飛灰の無害化処理による重金属のリサイクル
方法であり;第2の発明は、重金属を含有する焼却灰ま
たは飛灰を、塩素換算量で少なくとも2wt% 以上、より
好ましくは3wt% 以上の塩化物の存在下で加熱処理し
て、重金属を塩化物として揮発させ飛灰として濃縮する
第1工程、上記飛灰をそのまままたは鉱酸とともに水性
液中に添加し、pH3以下において溶解することによっ
て鉛以外の重金属を溶出せしめ、鉛を含む残渣を沈降分
離または濾別する第2工程、上記第2工程において生じ
た上澄液または濾液を中和し、亜鉛を主とする重金属の
水酸化殿物を生成させた後、該水酸化殿物を種結晶とし
て中和槽内で一定時間滞留循環させて粒子径の大きい水
酸化殿物とする第3工程、次いで第3工程液に少量の硫
化剤を添加することによって水酸化殿物表面の重金属お
よび液中の微量重金属イオンを硫化物とした後、固液分
離して固形殿物から重金属を回収する第4工程、からな
ることを特徴とする焼却灰または飛灰の無害化処理によ
る重金属のリサイクル方法であり;第3の発明は、重金
属を含有する焼却灰または飛灰を、塩素換算量で少なく
とも2wt% の好ましくは3wt% 以上の塩化物の存在下で
加熱処理して重金属を塩化物として揮発させ飛灰として
濃縮する第1工程、上記飛灰を鉱酸を含むまたは含まな
い水に溶解した後、液中に中和剤を添加し、pH6以上
に中和して鉛および亜鉛を主とする重金属の水酸化殿物
を生成させ該水酸化殿物を種結晶として中和槽内で一定
時間滞留循環させて粒子径の大きい水酸化殿物とする第
2工程、および第2工程液に少量の硫化剤を添加するこ
とによって水酸化殿物表面および液中の微量重金属イオ
ンを硫化物とした後固液分離して重金属を含む固形殿物
から重金属を回収する第3工程からなることを特徴とす
る焼却灰または飛灰の無害化処理による重金属のリサイ
クル方法に関するものである。上記本発明方法において
第1工程で使用する塩化物とは重金属を塩化物として揮
発させるための塩素源となり得る化合物を意味し、具体
的にはNaCl、CaCl2 、KCl、MgCl2 等で
ある。That is, the first invention developed by the present inventors is to heat incineration ash or fly ash containing a heavy metal in the presence of at least 2 wt% or more, preferably 3 wt% or more of chloride in terms of chlorine. The first step of treating and volatilizing heavy metal as chloride and concentrating it as fly ash, and then dissolving the obtained fly ash in the liquid and further neutralizing the heavy metal content to a solid precipitate. After being collected in the solid-liquid separation,
A method for recycling heavy metal by detoxifying incineration ash or fly ash, which comprises a second step of recovering heavy metal content in solid matter; a second invention is incineration ash or fly ash containing heavy metal, The first step of heat-treating in the presence of at least 2 wt% or more, more preferably 3 wt% or more in terms of chlorine of chloride to volatilize heavy metals as chlorides and concentrate as fly ash, the fly ash as it is or in the ore A second step in which a heavy metal other than lead is eluted by being added to an aqueous solution together with an acid and dissolved at a pH of 3 or less, and a lead-containing residue is separated by sedimentation or filtered, or a supernatant produced in the second step or After the filtrate is neutralized to form a hydroxide of a heavy metal mainly containing zinc, the hydroxide is used as a seed crystal and circulated in the neutralization tank for a certain period of time to be circulated for a certain period of time so that a hydroxide having a large particle size can be obtained. 3rd work to be a thing Then, after adding a small amount of a sulfiding agent to the liquid in the third step, the heavy metal on the surface of the hydroxide and a trace amount of heavy metal ions in the liquid are converted into sulfides, and then the solid-liquid separation is performed to recover the heavy metal from the solid precipitate. A fourth step is a method for recycling heavy metals by detoxifying incineration ash or fly ash, which is characterized by comprising the fourth step; and a third invention is at least incineration ash or fly ash containing heavy metals in terms of chlorine. The first step of heat-treating in the presence of 2 wt% or more of chloride, preferably 3 wt% or more, to volatilize heavy metals as chlorides and concentrate as fly ash, the fly ash was dissolved in water containing or not containing mineral acid After that, a neutralizing agent is added to the solution and neutralized to pH 6 or more to generate a hydroxide of a heavy metal mainly containing lead and zinc, and the hydroxide is used as a seed crystal and is kept constant in the neutralization tank. Hydroxylation with large particle diameter by circulating for a long time The second step, and the second step is to add a small amount of a sulfiding agent to the liquid to make a trace amount of heavy metal ions on the surface of the hydroxide and the liquid into sulfide, and then perform solid-liquid separation to obtain a solid substance containing heavy metal. The present invention relates to a method for recycling heavy metals by detoxifying incineration ash or fly ash, which comprises a third step of recovering heavy metals from The chloride used in the first step in the method of the present invention means a compound that can serve as a chlorine source for volatilizing heavy metals as chlorides, and specifically includes NaCl, CaCl 2 , KCl, MgCl 2 and the like.
【0010】[0010]
【作用】本発明法を、都市ゴミ焼却工場において焼却灰
の溶融処理の際に発生する飛灰の処理方法を中心に例に
あげて具体的に説明する。The method of the present invention will be specifically described with an example of a method for treating fly ash generated during melting treatment of incinerated ash in an urban refuse incineration plant.
【0011】なお、明細書の実施例では、焼却灰として
都市ゴミ焼却工場で発生したものを用いたが、この他下
水処理工場や産業廃棄物処理工場からのものでも重金属
を含有するものは、全て本発明法の対象原料となり得
る。In the examples of the specification, as the incineration ash, the one produced at the municipal refuse incineration plant was used. However, other substances from the sewage treatment plant and the industrial waste treatment plant, which contain heavy metals, are All can be the target materials of the method of the present invention.
【0012】これらの焼却灰または飛灰を処理原料とし
て用いる場合、重金属分を揮発させて飛灰として濃縮す
る手段として、電気炉、アーク炉、バーナー炉、プラズ
マ炉、低周波炉あるいは高周波炉等公知の溶融炉を用い
て900℃以上の温度で原料中の重金属を揮発させ、生
じた飛灰はEPやバッグフィルターあるいはベンチュリ
ースクラバー等の捕集装置を用いて捕集する。When these incinerated ash or fly ash is used as a processing raw material, electric furnace, arc furnace, burner furnace, plasma furnace, low-frequency furnace or high-frequency furnace is used as means for volatilizing heavy metal components to concentrate as fly ash. The heavy metal in the raw material is volatilized at a temperature of 900 ° C. or higher using a known melting furnace, and the generated fly ash is collected using a collecting device such as an EP, a bag filter or a venturi scrubber.
【0013】上記飛灰を捕集する場合、原料中に塩素換
算量で少なくとも2wt% 、好ましくは3wt% 以上の塩化
物の存在が必要である。この理由として、一般に、塩化
物が不存在の原料を溶融する場合、1200〜1400
℃位の温度で重金属分が溶融するが、塩化物が2wt% 以
上存在すると約900℃前後の温度で原料中の重金属分
がより多く揮発することが、本発明者等の試験により確
認することができた(第1工程)。When collecting the fly ash, it is necessary that at least 2 wt%, preferably 3 wt% or more, of chloride is present in the raw material in terms of chlorine. The reason for this is generally 1200-1400 when melting chloride-free feedstocks.
Although the heavy metal content melts at a temperature of about ℃, it is confirmed by the inventors' tests that the heavy metal content in the raw material volatilizes more at a temperature of about 900 ° C. when chloride is present in an amount of 2 wt% or more. Was completed (first step).
【0014】この場合、出発原料によっては塩化物の存
在しないものもあるが、この時はNaCl、CaCl2
等の塩化物を適量添加するか、飛灰のように重金属の
他、塩化物を多量に含有する原料を併せて溶融してもよ
い。In this case, some starting materials do not have chlorides, but at this time, NaCl or CaCl 2 is used.
An appropriate amount of chloride such as the above may be added, or a heavy metal such as fly ash and a raw material containing a large amount of chloride may be melted together.
【0015】次いで、得られた飛灰を液中に溶解して中
和処理後、重金属分を固形殿物中に集め、固液分離し
て、これら固形殿物中の重金属を有価物として回収する
ことにより有価金属をリサイクルする(第2工程)。Next, the fly ash thus obtained is dissolved in a liquid to be neutralized, and then the heavy metal content is collected in a solid substance and solid-liquid separated to collect the heavy metal in the solid substance as a valuable resource. By doing so, the valuable metal is recycled (second step).
【0016】上記重金属分の回収手段としては、まず、
飛灰を水あるいは水性液に溶解させてスラリーとし、こ
のスラリーを攪拌しながら塩酸または硫酸等の鉱酸(無
機酸)を添加してpHを3以下に調整する。なお、飛灰
のpHはその組成によって異なるため、鉱酸の添加量は
飛灰のpHに応じて調整する必要がある。すなわち、ス
ラリーのpHは低いほうが後に得られる鉛残渣の鉛品位
が高くなる傾向を示すため、飛灰の品位等に応じて最適
pHを設定し、そのpHを得るべく鉱酸の添加量を調整
すればよいのである。また、上記スラリーのpHがすで
に最適pHである場合には鉱酸を加える必要はない。さ
らに、上記pHを維持しての攪拌時間は少なくとも10
分あればよく、その時の温度は室温でもよい。As a means for recovering the heavy metal content, first,
Fly ash is dissolved in water or an aqueous liquid to form a slurry, and a mineral acid (inorganic acid) such as hydrochloric acid or sulfuric acid is added to the slurry while stirring to adjust the pH to 3 or less. Since the pH of fly ash varies depending on its composition, the amount of mineral acid added needs to be adjusted according to the pH of fly ash. That is, the lower the pH of the slurry, the higher the lead quality of the lead residue obtained later tends to be, so the optimum pH is set according to the grade of fly ash, etc., and the amount of mineral acid added is adjusted to obtain that pH. All you have to do is do it. Also, if the pH of the slurry is already at the optimum pH, it is not necessary to add mineral acid. Further, the stirring time while maintaining the above pH is at least 10
The temperature at that time may be room temperature.
【0017】次いで、上記スラリーを沈降分離または濾
過し、鉛を含有する残渣と鉛以外の重金属を含む水溶液
とに分離する。なお、上記濾過において残渣に付着する
浸出液を除去するためには、十分に水洗を行う必要があ
り、この作業は特に得られた残渣を資源として活用する
場合に重要となる。Next, the slurry is separated by sedimentation or filtered to separate into a residue containing lead and an aqueous solution containing heavy metals other than lead. In addition, in order to remove the leachate adhering to the residue in the above-mentioned filtration, it is necessary to sufficiently wash with water, and this work is particularly important when the obtained residue is utilized as a resource.
【0018】上記のようにして得た濾液には、一般に亜
鉛のほかにカドミウム、銅、鉄、水銀等が含まれている
が、飛灰に鉄が多く含まれている場合には、後工程で得
られる亜鉛を主とする重金属の沈殿物における亜鉛品位
が低くなるため、鉄を選択的に分離する必要がある。The filtrate obtained as described above generally contains cadmium, copper, iron, mercury and the like in addition to zinc. However, when the fly ash contains a large amount of iron, the subsequent step Since the grade of zinc in the heavy metal precipitate mainly containing zinc obtained in (3) is low, it is necessary to selectively separate iron.
【0019】この場合、上記濾液中に酸化剤(過酸化水
素水、次亜塩素酸ナトリウムおよび塩素ガスなどからな
る群より選ばれる少なくとも1種)を添加し、液中に溶
解している第一鉄イオンを第二鉄イオンに酸化し、その
後苛性ソーダ等の中和剤を添加して中和することによっ
て第二鉄イオンを水酸化物として沈殿させ、この沈殿物
を濾別することによって鉄を選択的に分離している。In this case, an oxidizing agent (at least one selected from the group consisting of hydrogen peroxide solution, sodium hypochlorite, chlorine gas, etc.) is added to the filtrate and dissolved in the liquid. By oxidizing iron ions to ferric ions and then adding a neutralizing agent such as caustic soda to neutralize them, the ferric ions are precipitated as hydroxides, and the precipitates are filtered to remove iron. Selectively separated.
【0020】次に、鉛および鉄が除かれた濾液に、水酸
化ナトリウム、炭酸ナトリウムまたは水酸化カルシウム
などの中和剤を添加してそのpHを6以上に調整するこ
とにより、亜鉛を主とする重金属の水酸化殿物を生成さ
せる。Next, zinc is mainly contained by adding a neutralizing agent such as sodium hydroxide, sodium carbonate or calcium hydroxide to the filtrate from which lead and iron have been removed to adjust the pH to 6 or more. Produces a heavy metal hydroxide.
【0021】この場合、生成する水酸化殿物の粒子は小
さいため、後工程において添加する硫化剤の消費量が多
くなることから、本発明法の一態様においては中和槽内
で生成した水酸化殿物を種結晶として一定時間槽内に滞
留循環させ、結晶粒子の大きい水酸化殿物が得られるよ
うにした。In this case, since the particles of the hydroxide compound formed are small, the consumption of the sulfiding agent added in the subsequent step is large. Therefore, in one embodiment of the method of the present invention, the water formed in the neutralization tank is used. The oxidized precipitate was retained and circulated in the tank for a certain period of time as a seed crystal so that a hydroxide compound having large crystal particles was obtained.
【0022】次いで、中和槽からのオーバーフロー液す
なわち第2工程液を、硫化反応槽に導き硫化ナトリウ
ム、水硫化ナトリウムまたは硫化水素などの硫化剤を少
量添加することにより、水酸化殿物表面の重金属分のみ
を硫化物化させる他、液中の微量の重金属イオンを硫化
物として沈殿させ、この溶液を濾過して亜鉛殿物と中和
濾液を得る。Next, the overflow liquid from the neutralization tank, that is, the second step liquid is introduced into the sulfidation reaction tank and a small amount of a sulfidizing agent such as sodium sulfide, sodium hydrosulfide or hydrogen sulfide is added to the surface of the hydroxide precipitate. In addition to sulphidizing only the heavy metal component, a trace amount of heavy metal ions in the liquid are precipitated as sulphide, and this solution is filtered to obtain a zinc precipitate and a neutralized filtrate.
【0023】従来法の硫化物法では、非常に細かい結晶
が生成するため沈降速度が遅く脱水性の悪い欠点を有す
るとともに、硫化剤が不足であれば液中の重金属イオン
は十分低くならず、反対に過剰であれば、重金属が多硫
化物イオンとなって液中に再び溶解し、排水の重金属イ
オンレベルが低くならなかった。In the conventional sulfide method, very fine crystals are formed and thus the settling rate is slow and the dehydration is poor, and if the sulfiding agent is insufficient, the heavy metal ions in the liquid are not sufficiently low, On the contrary, if the amount was excessive, the heavy metal became polysulfide ion and was dissolved again in the liquid, and the level of heavy metal ion in the waste water did not become low.
【0024】これに対し、本発明法は水酸化殿物粒子の
表面のみを硫化物化する方法であり、先ず大きな水酸化
殿物粒子に結晶を生成せしめてから硫化するので、生成
する結晶は大きく沈降速度も大きく脱水性も極めて良好
な殿物を得ることができる。On the other hand, the method of the present invention is a method in which only the surface of hydroxide precipitate particles is sulfided. First, large hydroxide precipitate particles are made to form crystals and then sulfided. It is possible to obtain a substance having a high sedimentation rate and a very good dehydration property.
【0025】また、硫化剤も水酸化殿物粒子表面のみを
十分に硫化するだけの量を添加すればよいため、硫化剤
は従来法の1/5〜1/6程度あるいはそれ以下で済
み、従来法のように多硫化物を生成させることなく液中
に重金属イオンの非常に低い排水を安定して得ることが
でき、特に重金属イオンの中でも水銀、カドミウム濃度
の低下に関しては顕著な効果があることがわかった。Further, since the sulfurizing agent may be added in an amount sufficient to sufficiently sulfurize only the surfaces of the hydroxide particles, the sulfurizing agent may be about 1/5 to 1/6 of the conventional method or less, Efficiently low wastewater of heavy metal ions can be stably obtained in the liquid without producing polysulfide as in the conventional method, and particularly in heavy metal ions, there is a remarkable effect in reducing the concentration of mercury and cadmium. I understood it.
【0026】以下、実施例により本発明をさらに詳細に
説明する。しかし本発明の範囲は以下の実施例により制
限されるものではない。Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by the following examples.
【0027】[0027]
【実施例1】A都市ゴミ焼却工場からの焼却灰を出発原
料として塩素量が約12wt% になるように調整したもの
を電気炉中に入れ、温度を1300℃一定で3時間溶融
して重金属分を塩化物として揮発させ、飛灰として濃縮
したものをバグフィルターで捕集した(第1工程)。Example 1 A Incinerator ash from an municipal waste incineration plant was adjusted to a chlorine content of about 12 wt% as a starting material, placed in an electric furnace, and melted for 3 hours at a constant temperature of 1300 ° C. What was volatilized as chloride and concentrated as fly ash was collected by a bag filter (first step).
【0028】次いで得られた飛灰を、図1に示す前工程
6中に設けられた溶解槽(図示せず)に入れ、硫酸酸性
侵出液中の固形殿物の割合が50g/l となるように調整
してスラリー化した。溶解槽からのオーバーフロー液を
中和槽1および2に導き中和剤としてNaOHを加えp
H6.0まで中和した。本実施例に用いた装置は、図1
に示すような円筒形状の寸法が150mmφ×210mmH
の槽で上方にオーバーフロー口を要する2つの中和反応
槽1および2と硫化反応槽3である。これら槽間の液の
移動は、電磁定量ポンプを用いて行なったが、この場
合、電磁定量ポンプによる流量の設定は浸出液の移動が
52〜3.5ml/minの流量、中和剤の添加が22.6〜
0.36ml/minの流量となるようにした。Then, the obtained fly ash was put into a dissolution tank (not shown) provided in the previous step 6 shown in FIG. 1, and the ratio of the solid precipitate in the sulfuric acid acidic leachate was 50 g / l. It was adjusted so as to form a slurry. The overflow liquid from the dissolution tank is introduced into the neutralization tanks 1 and 2 and NaOH is added as a neutralizing agent.
Neutralized to H6.0. The apparatus used in this example is shown in FIG.
The dimensions of the cylindrical shape as shown in 150mmφ × 210mmH
The two neutralization reaction tanks 1 and 2 and the sulfurization reaction tank 3 that require an overflow port at the upper side. The movement of the liquid between these tanks was carried out using an electromagnetic metering pump. In this case, the flow rate of the leachate was set to 52 to 3.5 ml / min and the addition of the neutralizing agent was set by the electromagnetic metering pump. 22.6 ~
The flow rate was 0.36 ml / min.
【0029】溶解槽内で得られた飛灰のスラリー液は液
温20℃、pH1.0であった。このスラリーを濾別し
て鉛を主体とする残渣を得た。The fly ash slurry liquid obtained in the dissolution tank had a liquid temperature of 20 ° C. and a pH of 1.0. This slurry was filtered to obtain a lead-based residue.
【0030】次いで上記濾別によって得られた濾液を中
和反応槽1および2に送って、200g/l に濃度を調整
した水酸化ナトリウム水溶液を添加してpH6以上に中
和して水酸化殿物を生成させ、中和反応槽1および2内
の滞留時間が合計で2時間となるように反応時間を調節
して液を循環させ、水酸化殿物の粒径が大きくなるよう
にした。Next, the filtrate obtained by the above-mentioned filtration is sent to the neutralization reaction tanks 1 and 2, and a sodium hydroxide aqueous solution whose concentration is adjusted to 200 g / l is added to neutralize it to pH 6 or above to neutralize the hydroxide. The product was produced and the reaction time was adjusted so that the total residence time in the neutralization reaction tanks 1 and 2 was 2 hours, and the liquid was circulated to increase the particle size of the hydroxide precipitate.
【0031】次いで、上記水酸化殿物含有液を硫化反応
槽3に導き、10g/l に濃度調製した水硫化ナトリウム
水溶液を酸化還元電位で−100mVまで添加し、亜鉛を
主とする重金属の水酸化物および他の重金属の硫化殿物
を生成させた。この場合の水硫化ナトリウムの添加量は
硫化反応槽内の液中濃度で0.7g/l であり、水酸化殿
物の凝集粒子は、凝集粒子の表面のみが硫化物となって
いるのが確認できた。Then, the above-mentioned hydroxide-containing solution is introduced into the sulfurization reaction tank 3 and an aqueous solution of sodium hydrosulfide adjusted to a concentration of 10 g / l is added at an oxidation-reduction potential to -100 mV, and water of a heavy metal mainly containing zinc is added. Produced sulfides of oxides and other heavy metals. In this case, the amount of sodium hydrosulfide added was 0.7 g / l in terms of the liquid concentration in the sulfurization reaction tank, and the aggregated particles of the hydroxide hydroxide were sulfides only on the surface of the aggregated particles. It could be confirmed.
【0032】次に、上記沈殿物が生成した溶液を濾過
し、亜鉛殿物と中和濾液とに分けた。このようにして得
た残渣、沈殿物(亜鉛殿物)、中和濾液および飛灰にお
けるCu、Pb、Zn、Fe、Cd、As、Na、K、
Ca、Mg、SiO2 、Al2O3 、Cl、S、Hg等
の含有量を調べ、その結果を表1および表2に示した。Next, the solution in which the above precipitate was formed was filtered and separated into a zinc precipitate and a neutralized filtrate. Cu, Pb, Zn, Fe, Cd, As, Na, K in the residue, precipitate (zinc precipitate), neutralized filtrate and fly ash thus obtained
The contents of Ca, Mg, SiO 2 , Al 2 O 3 , Cl, S, Hg, etc. were examined, and the results are shown in Tables 1 and 2.
【0033】[0033]
【表1】 原料と各産物の化学組成 (単位:固形物%・排水およびHgはppm )[Table 1] Raw materials and chemical composition of each product (Unit:% solids, wastewater and Hg is ppm)
【0034】[0034]
【表2】 原料と各産物の化学組成 [Table 2] Raw materials and chemical composition of each product
【0035】(単位:固形物%・排水およびHgはppm
)このとき処理した灰の約10%に当たる量が溶融飛
灰として回収された。(Unit:% solids, wastewater and Hg are ppm
) About 10% of the ash treated at this time was recovered as molten fly ash.
【0036】表1および表2からわかるように、飛灰に
含まれている鉛、亜鉛等の重金属は安定な形でほぼ完全
に分離されていた。また、残渣中の鉛品位は35.60
%、沈殿物中の亜鉛品位は38.35%であり、これら
は資源として非鉄製錬所で処理できる品位のものであっ
た。さらに、中和排水は排水基準を下回っており、直
接、河川や海に放流できるものであった。As can be seen from Table 1 and Table 2, the heavy metals such as lead and zinc contained in the fly ash were separated almost completely in a stable form. The lead quality in the residue is 35.60.
%, The zinc grade in the precipitate was 38.35%, and these were grades which could be treated as resources in a non-ferrous smelter. Furthermore, the neutralized wastewater was below the discharge standard and could be discharged directly into rivers and the sea.
【0037】[0037]
【実施例2】実施例1の第1工程で得られた飛灰を、図
1に示す中和反応槽1の前工程6中に設けた溶解槽にお
いて浸出してスラリーを得、このスラリーを中和反応槽
1、2に送った後中和剤として200g/l に濃度調整し
た水酸化ナトリウム水溶液を添加してpH6以上になる
ように中和して水酸化殿物を生成させ、中和反応槽1お
よび2内の滞留時間が合計で2時間となるように反応時
間を調節して中和槽反応2のオーバーフロー液の一部を
中和反応槽1に戻すことにより液を循環させて、水酸化
殿物の粒径が大きくなるようにした。Example 2 The fly ash obtained in the first step of Example 1 was leached in a dissolution tank provided in the previous step 6 of the neutralization reaction tank 1 shown in FIG. 1 to obtain a slurry. After sending to the neutralization reaction tanks 1 and 2, a sodium hydroxide aqueous solution whose concentration is adjusted to 200 g / l is added as a neutralizing agent to neutralize the solution to a pH of 6 or more to form a hydroxide hydroxide, which is then neutralized. The reaction time was adjusted so that the total residence time in the reaction tanks 1 and 2 was 2 hours, and a part of the overflow liquid of the neutralization tank reaction 2 was returned to the neutralization reaction tank 1 to circulate the solution. , The particle size of hydroxide was increased.
【0038】次いで、該水酸化殿物含有液を硫化反応槽
3に導き、10g/l に濃度調整した水硫化ナトリウム水
溶液を酸化還元電位で−100mVまで添加して、鉛およ
び亜鉛を主とする重金属の水酸化殿物と他の重金属の硫
化殿物を生成させた。この場合の水硫化ナトリウムの添
加量は硫化反応槽内の液中濃度で0.8g/l であり、水
酸化殿物の凝集粒子は凝集粒子の表面のみが硫化物とな
っていることが確認できた。Then, the hydroxide-containing solution is introduced into the sulfurization reaction tank 3 and an aqueous solution of sodium hydrosulfide whose concentration is adjusted to 10 g / l is added up to -100 mV at the redox potential, and mainly lead and zinc are added. Heavy metal hydroxides and other heavy metal sulfides were formed. In this case, the amount of sodium hydrosulfide added was 0.8 g / l in the liquid concentration in the sulfurization reaction tank, and it was confirmed that only the surface of the aggregated particles of the hydroxide hydroxide was sulfide. did it.
【0039】次に、上記沈殿物が生成した溶液を濾過
し、亜鉛殿物と中和濾液とに分けた。このようにして得
た沈殿物(鉛・亜鉛殿物)、中和濾液および飛灰におけ
る化学組成を調べ、その結果を表3および表4に示し
た。Next, the solution in which the above precipitate was formed was filtered and separated into a zinc precipitate and a neutralized filtrate. The chemical compositions of the thus obtained precipitate (lead / zinc precipitate), the neutralized filtrate and the fly ash were investigated, and the results are shown in Tables 3 and 4.
【0040】[0040]
【表3】 原料と各産物の化学組成 (単位:固形物%・排水およびHgはppm )[Table 3] Raw material and chemical composition of each product (Unit:% solids, wastewater and Hg is ppm)
【0041】[0041]
【表4】 原料と各産物の化学組成 [Table 4] Raw materials and chemical composition of each product
【0042】(単位:固形物%・排水およびHgはppm
)表3および表4からもわかるように、飛灰に含まれ
ている鉛・亜鉛等の重金属は安定な形でほぼ完全に分離
されていた。この時の沈殿物中の鉛は12.89%、亜
鉛は24.14%であり、この殿物を資源として非鉄製
錬所で処理できる品位のものであった。さらに中和排水
も実施例1と同様に排水基準を下回っており、直接、河
川や海に放流できるものであった。(Unit:% solids, waste water and Hg are ppm
As can be seen from Tables 3 and 4, heavy metals such as lead and zinc contained in the fly ash were separated almost completely in a stable form. At this time, the precipitate contained 12.89% of lead and 24.14% of zinc, which was of a grade that could be processed in a non-ferrous smelter using this precipitate as a resource. Further, the neutralization drainage was below the drainage standard as in Example 1, and could be directly discharged into a river or the sea.
【0043】[0043]
【比較例1】焼却灰として塩化物含有量が、塩素として
1.3wt% しかないものを出発原料として実施例1に示
す電気炉中で1250℃で溶融して、飛灰としてバグフ
ィルターで捕集した。Comparative Example 1 Incinerator ash having a chloride content of only 1.3 wt% as a starting material was melted at 1250 ° C. in the electric furnace shown in Example 1 and collected as fly ash with a bag filter. Gathered.
【0044】次いで得られた飛灰を、中和反応槽におい
て浸出してスラリー化して固液分離し、鉛を主とする残
渣を得た。Then, the obtained fly ash was leached in a neutralization reaction tank to form a slurry, and solid-liquid separation was performed to obtain a residue mainly containing lead.
【0045】次いで濾液には200g/l に濃度調整した
水酸化ナトリウム水溶液を添加してpH8以上に中和し
て水酸化殿物を生成したものを循環することなく、次工
程の硫化反応槽に導き、10g/l に調整した水酸化ナト
リウム水溶液を酸化還元電位で−100mVまで添加し、
亜鉛を主とする重金属および他の重金属の硫化殿物を生
成させた。Next, an aqueous solution of sodium hydroxide adjusted to a concentration of 200 g / l was added to the filtrate to neutralize it to a pH of 8 or more to produce a hydroxide hydroxide, and the solution was not circulated to the sulfidation reaction tank of the next step. The sodium hydroxide aqueous solution adjusted to 10 g / l was added up to -100 mV at the redox potential,
Sulfides of zinc and other heavy metals were formed.
【0046】次に、上記沈殿物が生成した溶液を濾過
し、亜鉛殿物と中和濾液とに分けた。このようにして得
た残渣、沈殿物(亜鉛殿物)、中和濾液および飛灰にお
ける化学組成を調べ、その結果を表5および表6に示し
た。Next, the solution in which the above precipitate was formed was filtered and separated into a zinc precipitate and a neutralized filtrate. The chemical compositions of the thus obtained residue, precipitate (zinc precipitate), neutralized filtrate and fly ash were investigated, and the results are shown in Tables 5 and 6.
【0047】[0047]
【表5】 原料と各産物の化学組成 (単位:固形物%・排水およびHgはppm )[Table 5] Raw materials and chemical composition of each product (Unit:% solids, wastewater and Hg is ppm)
【0048】[0048]
【表6】 原料と各産物の化学組成 [Table 6] Raw materials and chemical composition of each product
【0049】(単位:固形物%・排水およびHgはppm
)このとき処理した灰の約3%に当たる量が溶融飛灰
として回収された。(Unit:% solids, wastewater and Hg are ppm
) At this time, about 3% of the treated ash was recovered as molten fly ash.
【0050】表5および表6からわかるように、重金属
の回収率は本発明法に比べて相当悪く、その上中和反応
時において生成する水酸化殿物の粒子が小さいため、硫
化剤を多量に入れなければならず、その添加量は5〜6
倍量を要した。さらに亜鉛殿物の脱水性が悪く、水分は
83%であった。これは本発明の方法による場合は水分
が64%であったのに比し、極めて脱水性が劣ることを
示している。さらに排水の亜鉛、カドミウムおよび水銀
の重金属イオン濃度も本発明の場合に比べて高く、排水
基準を満たすことはできなかった。As can be seen from Tables 5 and 6, the recovery rate of heavy metals is considerably worse than that of the method of the present invention, and in addition, since the hydroxide precipitate particles produced during the neutralization reaction are small, a large amount of sulfurizing agent is used. Must be added to the
It took twice as much. Furthermore, the dehydration property of the zinc compound was poor, and the water content was 83%. This indicates that the water content of the method of the present invention was 64%, which was extremely inferior to the dehydration property. Further, the heavy metal ion concentrations of zinc, cadmium and mercury in the wastewater were higher than those in the case of the present invention, and the wastewater standards could not be satisfied.
【0051】[0051]
【発明の効果】上述のように本発明法によれば、出発原
料である焼却灰からの重金属の回収を効率よく行なえる
とともに、分離回収工程の中和剤や硫化剤の添加量も従
来法に比し相当量減らすことができるため、処理コスト
を安価にできる効果を有する。As described above, according to the method of the present invention, the heavy metals can be efficiently recovered from the incineration ash as a starting material, and the amount of the neutralizing agent and the sulfurizing agent added in the separation and recovery step can be increased by the conventional method. As compared with the above, since the amount can be reduced considerably, the processing cost can be reduced.
【図1】本発明法に用いた処理装置の断面概略図であ
る。FIG. 1 is a schematic sectional view of a processing apparatus used in the method of the present invention.
【符号の説明】 1,2 中和反応槽 3 硫化反応槽 4 攪拌棒 5 種結晶を含む循環液 6 前工程 7 次工程[Explanation of symbols] 1, 2 Neutralization reaction tank 3 Sulfidation reaction tank 4 Stirring rod 5 Circulating liquid containing seed crystals 6 Previous step 7 Next step
───────────────────────────────────────────────────── フロントページの続き (72)発明者 田淵 健太 東京都千代田区丸の内1丁目8番2号 同 和鉱業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kenta Tabuchi 1-2-8 Marunouchi, Chiyoda-ku, Tokyo Dowa Mining Co., Ltd.
Claims (3)
塩素換算量で少なくとも2wt% の塩化物の存在下で加熱
処理して重金属分を塩化物として揮発させることにより
重金属を飛灰中に濃縮する第1工程、および得られた飛
灰を水性液中に溶解し、さらに中和処理することによっ
て重金属分を固形殿物中に捕集した後、固液分離し、固
形殿物中の重金属分を回収する第2工程、 からなることを特徴とする焼却灰または飛灰の無害化処
理による重金属のリサイクル方法。1. An incineration ash or fly ash containing a heavy metal,
The first step of concentrating the heavy metal in fly ash by heat-treating it in the presence of at least 2 wt% chloride in terms of chlorine to evaporate the heavy metal component as chloride, and the obtained fly ash in an aqueous liquid. The second step is to collect the heavy metal content in the solid substance by solidifying the heavy metal content in the solid substance by performing a second step of: A method for recycling heavy metals by detoxifying ash or fly ash.
塩素換算量で少なくとも2wt% の塩化物の存在下で加熱
処理して重金属分を塩化物として揮発させることにより
重金属を飛灰中に濃縮する第1工程、 得られた飛灰をそのまままたは鉱酸とともに水性液中に
添加し、pH3以下において溶解することによって鉛以
外の重金属を液中に溶出せしめ、鉛を含む残渣を沈降分
離または濾別して液から分離する第2工程、 上記第2工程において得られた上澄液または濾液を中和
槽内で中和して亜鉛を主とする重金属の水酸化殿物を生
成させた後、該水酸化殿物を種結晶として一定時間中和
槽内で滞留循環させて粒子径の大きい水酸化殿物とする
第3工程、および第3工程液に少量の硫化剤を添加する
ことによって液中に含まれる水酸化殿物表面の重金属お
よび液中の微量重金属イオンを硫化物とした後固液分離
して重金属を含む固形殿物から重金属を回収する第4工
程、 からなることを特徴とする焼却灰または飛灰の無害化処
理による重金属のリサイクル方法。2. An incineration ash or fly ash containing a heavy metal,
The first step of concentrating heavy metal in fly ash by heat-treating it in the presence of at least 2 wt% chloride in terms of chlorine to volatilize heavy metal components as chloride; A second step in which a heavy metal other than lead is dissolved in the solution by adding it together with an aqueous solution at a pH of 3 or less, and a lead-containing residue is separated from the solution by sedimentation separation or filtration. The obtained supernatant or filtrate is neutralized in a neutralization tank to form a hydroxide of a heavy metal mainly containing zinc, and the hydroxide is used as a seed crystal in the neutralization tank for a certain period of time. Heavy metal on the surface of the hydroxide contained in the liquid and a trace amount in the liquid by adding a small amount of sulfidizing agent to the third step in which the hydroxide is retained and circulated to form a hydroxide having a large particle size, and the third step After converting heavy metal ions to sulfides Fourth step, the method of recycling the heavy metal by detoxification of incineration ash or fly ash, characterized in that it consists in liquid separation to recover heavy metals from the solid builders containing heavy metals.
塩素換算量で少なくとも2wt% の塩化物の存在下で加熱
処理して重金属分を塩化物中に揮発させることにより重
金属を飛灰として濃縮する第1工程、 得られた飛灰を鉱酸を含むまたは含まない水性液中に溶
解した液中に中和剤を添加し、pH6以上に中和して鉛
および亜鉛を主とする重金属の水酸化殿物を生成させた
後、該水酸化殿物を種結晶として中和槽内で滞留循環さ
せて粒子径の大きい水酸化殿物とする第2工程、および
第2工程液に硫化剤を添加することによって水酸化殿物
表面の重金属および液中の微量重金属イオンを硫化物と
した後固液分離して重金属を含む固形殿物から重金属を
回収する第3工程、 からなることを特徴とする焼却灰または飛灰の無害化処
理による重金属のリサイクル方法。3. An incineration ash or fly ash containing heavy metals,
The first step of concentrating the heavy metal as fly ash by heat-treating it in the presence of at least 2 wt% of chloride in terms of chlorine to volatilize the heavy metal content in chloride, and the fly ash obtained contains mineral acid. Alternatively, a neutralizing agent is added to a solution dissolved in an aqueous solution not containing it, and neutralized to pH 6 or more to produce a hydroxide of a heavy metal mainly containing lead and zinc. Is used as a seed crystal in the neutralization tank for residence and circulation to form a hydroxide hydroxide having a large particle size, and by adding a sulfidizing agent to the liquid in the second step Recycling heavy metals by detoxifying incineration ash or fly ash, which comprises a third step of recovering heavy metals from solid precipitates containing heavy metals by solid-liquid separation after making trace amounts of heavy metal ions into sulfides. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2598994A JP3568569B2 (en) | 1994-01-28 | 1994-01-28 | Recycling of heavy metals by detoxifying incinerated ash or fly ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2598994A JP3568569B2 (en) | 1994-01-28 | 1994-01-28 | Recycling of heavy metals by detoxifying incinerated ash or fly ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07214029A true JPH07214029A (en) | 1995-08-15 |
JP3568569B2 JP3568569B2 (en) | 2004-09-22 |
Family
ID=12181130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2598994A Expired - Lifetime JP3568569B2 (en) | 1994-01-28 | 1994-01-28 | Recycling of heavy metals by detoxifying incinerated ash or fly ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3568569B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970069157A (en) * | 1996-04-30 | 1997-11-07 | 이대원 | Stabilization Method of Municipal Waste Incineration Ash using Waste Desulfurization Slag |
JP2007029813A (en) * | 2005-07-25 | 2007-02-08 | Kobelco Eco-Solutions Co Ltd | Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil |
JP2008169449A (en) * | 2007-01-15 | 2008-07-24 | Dowa Metals & Mining Co Ltd | Method for purifying arsenic solution |
JP2010076973A (en) * | 2008-09-26 | 2010-04-08 | Taiheiyo Cement Corp | Apparatus and method for processing exhaust gas of cement kiln |
CN106378352A (en) * | 2016-11-18 | 2017-02-08 | 华中科技大学 | Fused salt heat treatment method for rubbish incineration fly ash |
JP2017160496A (en) * | 2016-03-10 | 2017-09-14 | 住友金属鉱山株式会社 | Treatment method of waste water |
JP2018118235A (en) * | 2017-01-27 | 2018-08-02 | 太平洋セメント株式会社 | Heavy metal recovery method of incineration ash and heavy metal recovery treatment system of incineration ash |
CN113943011A (en) * | 2021-09-17 | 2022-01-18 | 光大环保技术研究院(深圳)有限公司 | Method for resource utilization of secondary fly ash after melting of hazardous waste plasma |
-
1994
- 1994-01-28 JP JP2598994A patent/JP3568569B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970069157A (en) * | 1996-04-30 | 1997-11-07 | 이대원 | Stabilization Method of Municipal Waste Incineration Ash using Waste Desulfurization Slag |
JP2007029813A (en) * | 2005-07-25 | 2007-02-08 | Kobelco Eco-Solutions Co Ltd | Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil |
JP4567544B2 (en) * | 2005-07-25 | 2010-10-20 | 株式会社神鋼環境ソリューション | Detoxification treatment method and detoxification treatment apparatus for composite heavy metal contaminated soil |
JP2008169449A (en) * | 2007-01-15 | 2008-07-24 | Dowa Metals & Mining Co Ltd | Method for purifying arsenic solution |
JP2010076973A (en) * | 2008-09-26 | 2010-04-08 | Taiheiyo Cement Corp | Apparatus and method for processing exhaust gas of cement kiln |
JP2017160496A (en) * | 2016-03-10 | 2017-09-14 | 住友金属鉱山株式会社 | Treatment method of waste water |
CN106378352A (en) * | 2016-11-18 | 2017-02-08 | 华中科技大学 | Fused salt heat treatment method for rubbish incineration fly ash |
JP2018118235A (en) * | 2017-01-27 | 2018-08-02 | 太平洋セメント株式会社 | Heavy metal recovery method of incineration ash and heavy metal recovery treatment system of incineration ash |
CN113943011A (en) * | 2021-09-17 | 2022-01-18 | 光大环保技术研究院(深圳)有限公司 | Method for resource utilization of secondary fly ash after melting of hazardous waste plasma |
Also Published As
Publication number | Publication date |
---|---|
JP3568569B2 (en) | 2004-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6274045B1 (en) | Method for recovering and separating metals from waste streams | |
US6270679B1 (en) | Method for recovering and separating metals from waste streams | |
JP3911538B2 (en) | Heavy metal recovery from fly ash | |
JP4478585B2 (en) | How to recover valuable materials from fly ash | |
JP3568569B2 (en) | Recycling of heavy metals by detoxifying incinerated ash or fly ash | |
JP2001017939A (en) | Treatment of cement kiln waste gas dust | |
JP3441239B2 (en) | Method for wet processing of fly ash containing heavy metals from high temperature processing furnace | |
JPH09187752A (en) | Method for treating waste incineration ash and molten fly ash | |
JP3574928B2 (en) | Method for treating fly ash from incinerators and melting furnaces | |
JP4420216B2 (en) | Method for treating cleaning liquid containing lead | |
JP2005246226A (en) | Fly ash treatment method | |
JP3300081B2 (en) | Method for treating fly ash from incinerators and melting furnaces | |
JP2005068535A (en) | Method for processing lead or zinc containing gas or fly ash | |
JP2894477B2 (en) | Method of treating substances containing zinc, lead, mercury and chlorine | |
JP3524601B2 (en) | Method for treating fly ash from incinerators and melting furnaces | |
JP3896442B2 (en) | Method for treating fly ash containing heavy metals | |
JPH0924240A (en) | Method for recovering heavy metals from exhaust gas generated when bottom ash and fly ash are melted | |
JP3276074B2 (en) | How to treat fly ash from incinerators | |
JP3794260B2 (en) | Waste disposal method | |
JPH105736A (en) | Treatment of alkaline fly ash | |
JP4044068B2 (en) | Method for treating substances containing heavy metals | |
JP3608069B2 (en) | Incineration ash treatment method | |
JP2000109938A (en) | Method for recovering valuable metal from fly ash | |
JP2005177757A (en) | Calcium-and heavy metal-containing matter treatment method | |
JP3733452B2 (en) | Waste disposal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040120 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20040206 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20040318 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040616 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080625 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090625 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100625 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110625 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110625 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120625 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120625 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130625 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |