JPH07212174A - Boundary acoustic wave device - Google Patents
Boundary acoustic wave deviceInfo
- Publication number
- JPH07212174A JPH07212174A JP110694A JP110694A JPH07212174A JP H07212174 A JPH07212174 A JP H07212174A JP 110694 A JP110694 A JP 110694A JP 110694 A JP110694 A JP 110694A JP H07212174 A JPH07212174 A JP H07212174A
- Authority
- JP
- Japan
- Prior art keywords
- acoustic wave
- boundary acoustic
- piezoelectric substrate
- sio
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 239000013078 crystal Substances 0.000 claims abstract description 27
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 claims abstract description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 8
- 238000004806 packaging method and process Methods 0.000 abstract description 3
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 33
- 229910052755 nonmetal Inorganic materials 0.000 description 5
- 238000001552 radio frequency sputter deposition Methods 0.000 description 4
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000013464 silicone adhesive Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/0222—Details of interface-acoustic, boundary, pseudo-acoustic or Stonely wave devices
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
(57)【要約】
【目的】温度特性が良く、体積増大を伴う容器によるパ
ッケージングを必要としない小型の弾性境界波装置を提
供する。
【構成】温度特性の良い弾性境界波を強く励振するた
め、100<θ<124または128<θ<150であ
るようなθ回転Yカットタンタル酸リチウム単結晶圧電
基板10上に弾性境界波波長換算膜厚h/λがh/λ>
1であるシリコン酸化膜12を形成する。
(57) [Summary] [Object] To provide a small-sized boundary acoustic wave device having good temperature characteristics and not requiring packaging by a container accompanied by volume increase. [Structure] In order to strongly excite an elastic boundary wave having good temperature characteristics, a θ-rotation Y-cut lithium tantalate single crystal piezoelectric substrate 10 with 100 <θ <124 or 128 <θ <150 is converted to an elastic boundary wave wavelength conversion. The film thickness h / λ is h / λ>
A silicon oxide film 12 of 1 is formed.
Description
【0001】[0001]
【産業上の利用分野】本発明は、光,無線又はテレビI
F(中間周波数)フィルタ等、小型化が要求される通信
用フィルタに関する。BACKGROUND OF THE INVENTION The present invention relates to optical, radio or television I.
The present invention relates to a communication filter such as an F (intermediate frequency) filter that is required to be downsized.
【0002】[0002]
【従来の技術】移動通信分野では、超小型のフィルタと
して、弾性境界波装置が知られている。弾性境界波と
は、特殊な条件の圧電単結晶基板上に、充分厚い非金属
膜を形成することにより、基板と非金属膜との境界近傍
に存在することができる弾性波である。このため、弾性
境界波装置は体積増大をもたらす容器によるパッケージ
ングを必要としない長所がある。2. Description of the Related Art In the field of mobile communication, a boundary acoustic wave device is known as a micro filter. The boundary acoustic wave is an elastic wave that can exist near the boundary between the substrate and the non-metal film by forming a sufficiently thick non-metal film on a piezoelectric single crystal substrate under special conditions. For this reason, the boundary acoustic wave device has an advantage that it does not require packaging by a container that causes an increase in volume.
【0003】従来報告されている弾性境界波(BAW)
は、シリコン酸化膜(以下SiO2と略す)/126度
回転YカットX伝搬タンタル酸リチウム単結晶圧電基板
がある(例えば、アイ・イー・イー・イー,トランザク
ションズ オン ソニックスアンド ウルトラソニック
ス エス ユー 25巻 6号(1978年)第384
頁から第389頁(IEEE Transactions on sonics and u
ltrasonics, SU-25, No.6,(1978) pp.384-389))。Conventionally reported boundary acoustic wave (BAW)
Is a silicon oxide film (hereinafter abbreviated as SiO 2 ) / 126 degree rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate (for example, IEE, Transactions on Sonics and Ultrasonics S25). Volume 6 (1978) No. 384
Pages 389 (IEEE Transactions on sonics and u
ltrasonics, SU-25, No.6, (1978) pp.384-389)).
【0004】[0004]
【発明が解決しようとする課題】SiO2 /126度回
転YカットX伝搬タンタル酸リチウム単結晶圧電基板は
温度特性が悪い。このため、システムの仕様を満足でき
る弾性境界波装置を作製することは不可能であった。SiO 2/126 degree rotated Y-cut X-propagation lithium tantalate single-crystal piezoelectric substrate [SUMMARY OF THE INVENTION] has poor temperature characteristics. Therefore, it has been impossible to fabricate a boundary acoustic wave device that satisfies the system specifications.
【0005】本発明の目的は、このような従来の問題点
を解決するため、温度特性の良いBAW装置を提供する
ことである。An object of the present invention is to provide a BAW device having good temperature characteristics in order to solve the above-mentioned conventional problems.
【0006】[0006]
【課題を解決するための手段】上記目的は、圧電基板
に、100<θ<124または128<θ<150であ
るθ度回転YカットX伝搬タンタル酸リチウム単結晶圧
電基板を用い、SiO2膜の厚さをh/λ>1とするこ
とにより達成できる。Means for Solving the Problems The above object is to use a θ-degree rotated Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate having 100 <θ <124 or 128 <θ <150 as a piezoelectric substrate, and a SiO 2 film. Can be achieved by setting the thickness of h / λ> 1.
【0007】ここで、θ°回転Yカットタンタル酸リチ
ウム単結晶圧電基板とは、IRE標準の+Y軸からIR
E標準の+Z軸方向にθ°傾けた方向、またはIRE標
準の−Y軸からIRE標準の−Z軸方向にθ°傾けた方
向に対して略垂直(誤差1°以内)であるようにタンタ
ル酸リチウム結晶を切り出したタンタル酸リチウム単結
晶圧電基板を意味する。またhはSiO2 膜の厚さ、λ
は櫛型電極の周期を表す。Here, the θ ° rotation Y-cut lithium tantalate single crystal piezoelectric substrate means the IR axis from the + Y axis of the IRE standard.
Tantalum so that it is approximately perpendicular (within 1 ° error) to a direction tilted θ ° in the E standard + Z axis direction or a direction tilted θ ° in the IRE standard −Z axis to the IRE standard −Z axis direction. A lithium tantalate single crystal piezoelectric substrate obtained by cutting out a lithium acid crystal. Further, h is the thickness of the SiO 2 film, λ
Represents the period of the comb electrodes.
【0008】[0008]
【作用】上記構造の作用を調べるために、発明者らはS
iO2 /θ°回転Yカットタンタル酸リチウム単結晶圧
電基板を用いた弾性境界波素子を作製し、伝搬特性を調
べた。作成した素子の電極構造は、電極周期4μm,対
数10対,開口長110λ(λ:電極周期)の二開口共
振器である。またSiO2 膜はRFスパッタ法で作成し
た。その結果、以下のことが分かった。In order to investigate the action of the above structure, the inventors
A boundary acoustic wave device using a TiO 2 / θ ° rotation Y-cut lithium tantalate single crystal piezoelectric substrate was prepared and its propagation characteristics were investigated. The electrode structure of the produced element is a two-hole resonator having an electrode period of 4 μm, a logarithm of 10 pairs, and an aperture length of 110λ (λ: electrode period). The SiO 2 film was formed by the RF sputtering method. As a result, the following was found.
【0009】 θにかかわらず、h/λ>1のとき、
急激に、弾性境界波装置の良品率が向上する。この様子
を図1に示す。Regardless of θ, when h / λ> 1,
The non-defective rate of the boundary acoustic wave device is rapidly improved. This state is shown in FIG.
【0010】 SiO2 /126度回転YカットX伝
搬タンタル酸リチウム単結晶圧電基板の構造で、SiO
2 膜を厚くしても、温度特性が良くならない。[0010] In the structure of SiO 2/126 degree rotated Y-cut X-propagation lithium tantalate single-crystal piezoelectric substrate, SiO
2 Even if the film is thickened, the temperature characteristics do not improve.
【0011】 100<θ<150でも、BAWは存
在する。特に、100<θ<124または128<θ<
150では、SiO2 膜の厚さをhとすると、h/λが
1から3近傍で、極めて温度特性が良くなる。この様子
を図2に示す。θ,h,λ間に18×λ/h/|θ−1
26|=1の関係が成立するとき、遅延時間変化率の室
温における1次温度係数TCDの絶対値|TCD|が最
小値を示す。Even at 100 <θ <150, BAW exists. In particular, 100 <θ <124 or 128 <θ <
In 150, assuming that the thickness of the SiO 2 film is h, the temperature characteristic becomes extremely good when h / λ is in the vicinity of 1 to 3. This state is shown in FIG. 18 × λ / h / | θ-1 between θ, h and λ
When the relationship of 26 | = 1 holds, the absolute value | TCD | of the first-order temperature coefficient TCD of the delay time change rate at room temperature shows the minimum value.
【0012】 θ=138近傍で、電気機械結合係数
が最大になる。この様子を図3に示す。130<θ<1
45で2%を超える。The electromechanical coupling coefficient becomes maximum near θ = 138. This state is shown in FIG. 130 <θ <1
It exceeds 45% at 45.
【0013】以上のことから、100<θ<124また
は128<θ<150のとき、h/λを1から3の近傍
にすることにより、|TCD|が最小値を示すことが実
験より分かった。このため、この条件を用いることによ
り、温度特性が良い弾性境界波装置を作成できる。From the above, it was found from an experiment that | TCD | exhibits a minimum value when h / λ is in the vicinity of 1 to 3 when 100 <θ <124 or 128 <θ <150. . Therefore, by using this condition, a boundary acoustic wave device having good temperature characteristics can be created.
【0014】また18×λ/h/|θ−126|=1と
することにより、いっそう温度特性が良い装置を作成で
きる。By setting 18 × λ / h / | θ-126 | = 1, a device having better temperature characteristics can be manufactured.
【0015】また130<θ<145を用いることによ
り、最も大きな圧電効果が得られる。このため、損失の
小さい弾性境界波装置を作ることができる。By using 130 <θ <145, the greatest piezoelectric effect can be obtained. Therefore, a boundary acoustic wave device with low loss can be manufactured.
【0016】また、θにかかわらず、h/λ>1を用い
ることにより、弾性境界波装置の量産性を向上させるこ
とができる。Further, regardless of θ, by using h / λ> 1, the mass productivity of the boundary acoustic wave device can be improved.
【0017】またBAWは、表面が非金属膜で保護され
ているため、電極の物理的,化学的変質が発生しない。
外部応力に対しても、非金属膜を介在する間接影響であ
るため、モルト剤で覆う、またシリコーン接着剤を非金
属膜表面に塗っても特性の変化は極めて小さい。このた
め、体積を大きくする容器を用いたパッケージングを行
う必要がなく、装置を小型化できる。Further, since the surface of BAW is protected by the non-metal film, physical and chemical deterioration of the electrode does not occur.
Even with respect to external stress, since it is an indirect effect through the non-metal film, even if it is covered with a malt agent or a silicone adhesive is applied to the surface of the non-metal film, the change in characteristics is extremely small. Therefore, it is not necessary to perform packaging using a container having a large volume, and the device can be downsized.
【0018】[0018]
【実施例】図1に本発明の1実施例として、SiO2 /
θ°回転YカットX伝搬タンタル酸リチウム単結晶圧電
基板におけるBAWの伝搬速度のSiO2 膜膜厚依存性
を示す。SiO2 膜厚hは、BAW波長λ(=電極周
期)で規格化してある。またSiO2 膜はRFスパッタ
法で作成した。作成した素子は、h/λ=0.5 ,1,
1.5,2.0、またθ=100,108,114,12
0,126,132,138,144,150である。EXAMPLE FIG. 1 shows an example of the present invention in which SiO 2 /
The θ ° rotation Y-cut X-propagation shows the dependence of BAW propagation velocity on the SiO 2 film thickness in a lithium tantalate single crystal piezoelectric substrate. The SiO 2 film thickness h is standardized by the BAW wavelength λ (= electrode period). The SiO 2 film was formed by the RF sputtering method. The created element has h / λ = 0.5, 1,
1.5, 2.0 and θ = 100, 108, 114, 12
0, 126, 132, 138, 144, 150.
【0019】製品を量産するとき、伝搬速度のバラツキ
は中心周波数のバラツキに比例するため、SiO2 膜膜
厚のバラツキに対して伝搬速度の変化が小さいことは、
良品率向上に対して極めて重要な問題である。BAWを
用いた場合、いずれのθでもSiO2 膜を厚くするにつ
れて、伝搬速度の変化率が小さくなる。本発明によれ
ば、SiO2 膜作成時の膜厚のバラツキを±5%とする
と、h/λ>1にすることにより、製品の中心周波数バ
ラツキを0.15% 以下にできる。When a product is mass-produced, the variation of the propagation velocity is proportional to the variation of the center frequency, and therefore the variation of the propagation velocity is small with respect to the variation of the SiO 2 film thickness.
This is a very important issue for improving the yield rate. When BAW is used, the change rate of the propagation velocity becomes smaller as the SiO 2 film becomes thicker at any θ. According to the present invention, if the variation of the film thickness when the SiO 2 film is formed is ± 5%, the variation of the center frequency of the product can be reduced to 0.15% or less by setting h / λ> 1.
【0020】図2にSiO2 /θ°回転YカットX伝搬
タンタル酸リチウム単結晶圧電基板におけるBAWの温
度特性を示す。縦軸は|TCD|である。FIG. 2 shows the temperature characteristics of BAW in a SiO 2 / θ ° rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate. The vertical axis is | TCD |.
【0021】100<θ<124と128<θ<150
に必ず|TCD|が最小になるθが存在する。SiO2
膜が厚くなるにつれ、このθは共に126度に漸近す
る。なお126度は完全なBAWであるため、SiO2
膜が厚くしても、|TCD|はゼロにならなず、一定値
に漸近する。測定値を内挿することにより、|TCD|
が最小になるθとh/λの関係を調べた結果、18×λ
/h/|θ−126|=1であった。100 <θ <124 and 128 <θ <150
Necessarily has a θ that minimizes | TCD |. SiO 2
Both .theta. Asymptotically approach 126 degrees as the film becomes thicker. Since 126 degrees is a perfect BAW, SiO 2
Even if the film becomes thick, | TCD | does not become zero, and approaches a constant value. By interpolating the measured values, | TCD |
As a result of examining the relationship between θ and h / λ that minimize
/ H / | θ-126 | = 1.
【0022】SiO2 膜は、作成方法が異なると、弾性
特性が変化することが知られている。特に、CVD法で
は、ガスソースの混合比を変えることで、SiとOの比
が変化させることができ(通称SiOx膜と表すが、こ
こではこれを含めて、SiO2膜と表記する)、温度特
性が大きく変化することが知られている。このため、R
Fスパッタ法以外に、常圧CVD法,プラズマCVD法
により検討した。用いた圧電基板のθは144度、Si
O2 膜の膜厚h/λは0.5〜1 である。It is known that the elastic properties of the SiO 2 film change depending on the manufacturing method. In particular, in the CVD method, the ratio of Si and O can be changed by changing the mixing ratio of the gas source (commonly referred to as SiO x film, but here, it is also referred to as SiO 2 film). It is known that the temperature characteristics change greatly. Therefore, R
In addition to the F sputtering method, the atmospheric pressure CVD method and the plasma CVD method were examined. The piezoelectric substrate used had a θ of 144 degrees and Si
The film thickness h / λ of the O 2 film is 0.5 to 1.
【0023】その結果、常圧CVD法を用いた場合、h
/λ=0.8〜0.96と、RFスパッタ法より多少小さ
い値で|TCD|が最小になった。プラズマCVD法を
用いた場合、h/λ=0.5〜0.9と、RFスパッタ法
よりかなり小さい値で|TCD|が最小になった。As a result, when the atmospheric pressure CVD method is used, h
/Λ=0.8 to 0.96, which is a value slightly smaller than that of the RF sputtering method, the | TCD | was minimized. When the plasma CVD method was used, | TCD | became the minimum with h / λ = 0.5 to 0.9, which is considerably smaller than that of the RF sputtering method.
【0024】以上の結果、0.5<18×λ/h/|θ
−126|<1 の関係を有する場合、上記いずれかの
手法により、|TCD|を最小にできることが分かる。
本発明によれば、上記θ,h,λの関係を有することに
より、|TCD|が小さい、つまり温度特性の優れた弾
性境界波装置を作ることができる。As a result of the above, 0.5 <18 × λ / h / | θ
It can be seen that, in the case of the relationship of −126 | <1, it is possible to minimize | TCD | by any of the above methods.
According to the present invention, by having the relationship of θ, h, and λ, | TCD | is small, that is, a boundary acoustic wave device having excellent temperature characteristics can be manufactured.
【0025】図3にSiO2 /θ°回転YカットX伝搬
タンタル酸リチウム単結晶圧電基板におけるBAWの電
気機械結合係数(k2)を示す。130<θ<145で2
%を超える。本発明によれば、130<θ<145を用
いることにより、最も大きな圧電効果を得られる。この
ため、損失の小さい弾性境界波装置を作ることができ
る。FIG. 3 shows the electromechanical coupling coefficient (k 2 ) of BAW in a SiO 2 / θ ° rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate. 2 for 130 <θ <145
Exceeds%. According to the present invention, the greatest piezoelectric effect can be obtained by using 130 <θ <145. Therefore, a boundary acoustic wave device with low loss can be manufactured.
【0026】弾性波を用いた装置では、圧電基板の結晶
の対称性から、θ°回転Yカットとθ°+180°回転
Yカットは全く等価である。このため、上記発明が、θ
°+180°回転Yカットタンタル酸リチウム単結晶圧
電基板にも適用できることは明らかである。In the device using elastic waves, the θ ° rotation Y cut and the θ ° + 180 ° rotation Y cut are completely equivalent due to the symmetry of the crystal of the piezoelectric substrate. Therefore, the above invention
It is obvious that it can also be applied to a + 180 ° rotated Y-cut lithium tantalate single crystal piezoelectric substrate.
【0027】図4,図5,図6に本発明の他の実施例を
示す。図4は一開口共振器、図6は二開口共振器を示
し、図5は断面図である。タンタル酸リチウム単結晶圧
電基板10上に、SiO2 膜12を形成している。タン
タル酸リチウム単結晶圧電基板10とSiO2 膜12の
間に、波長λのBAWを励振する電極周期λの櫛型電極
11が存在する。FIG. 4, FIG. 5 and FIG. 6 show another embodiment of the present invention. FIG. 4 shows a single aperture resonator, FIG. 6 shows a double aperture resonator, and FIG. 5 is a sectional view. A SiO 2 film 12 is formed on a lithium tantalate single crystal piezoelectric substrate 10. Between the lithium tantalate single crystal piezoelectric substrate 10 and the SiO 2 film 12, there is a comb-shaped electrode 11 having an electrode period λ that excites BAW having a wavelength λ.
【0028】本発明によれば、SiO2 膜12が櫛型電
極11の保護膜として働くため、カンパッケージ等、体
積を大きくするような容器によるパッケージを行う必要
がない。According to the present invention, since the SiO 2 film 12 acts as a protective film for the comb-shaped electrode 11, it is not necessary to package a can package or the like in a container having a large volume.
【0029】またBAWの伝搬方向をIRE標準のX軸
方向にできるため、PFA(PowerFlow Angle:位相速
度と群速度の成す角度)をゼロにすることができる。こ
のことはPFAを考えずに電極設計を行えるため、設計
が容易に成る長所がある。Further, since the propagation direction of BAW can be set to the X-axis direction of the IRE standard, PFA (Power Flow Angle: angle formed by phase velocity and group velocity) can be made zero. This has an advantage that the design can be facilitated because the electrode can be designed without considering the PFA.
【0030】[0030]
【発明の効果】本発明によれば、θ°回転Yカットタン
タル酸リチウム単結晶圧電基板上に、SiO2 膜を形成
し、θ及びSiO2 膜の厚さを上記条件にすれば、温度
特性が良く、挿入損失が小さく、量産性の優れた弾性境
界波装置を作ることができる。According to the present invention, if a SiO 2 film is formed on a θ ° rotated Y-cut lithium tantalate single crystal piezoelectric substrate and the thicknesses of θ and the SiO 2 film are set to the above-mentioned conditions, temperature characteristics can be improved. It is possible to fabricate a boundary acoustic wave device which is excellent in productivity, small in insertion loss, and excellent in mass productivity.
【0031】またSiO2 膜が櫛型電極の保護膜として
働くため、体積増大を伴う容器によるパッケージングを
必要としないため、超小型の弾性境界波装置が実現でき
る。このため、本発明の弾性境界波装置を各種通信分野
のフィルタ等に適用することにより、モジュ−ルの小型
化,高性能化を実現することが可能になる。Further, since the SiO 2 film acts as a protective film for the comb-shaped electrodes, it is not necessary to package the container with a volume increase, so that a micro-sized boundary acoustic wave device can be realized. Therefore, by applying the boundary acoustic wave device of the present invention to a filter or the like in various communication fields, it becomes possible to realize a compact module and high performance.
【図1】SiO2 /θ°回転YカットX伝搬タンタル酸
リチウム単結晶圧電基板における弾性境界波の伝搬速度
のSiO2 膜膜厚依存性を示した特性図。FIG. 1 is a characteristic diagram showing the SiO 2 film thickness dependence of the propagation velocity of a boundary acoustic wave in a SiO 2 / θ ° rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate.
【図2】SiO2 /θ°回転YカットX伝搬タンタル酸
リチウム単結晶圧電基板における弾性境界波の温度特性
図。FIG. 2 is a temperature characteristic diagram of boundary acoustic waves in a SiO 2 / θ ° rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate.
【図3】SiO2 /θ°回転YカットX伝搬タンタル酸
リチウム単結晶圧電基板における弾性境界波の電気機械
結合係数を示した特性図。FIG. 3 is a characteristic diagram showing an electromechanical coupling coefficient of a boundary acoustic wave in a SiO 2 / θ ° rotation Y-cut X-propagation lithium tantalate single crystal piezoelectric substrate.
【図4】タンタル酸リチウム単結晶圧電基板上に、Si
O2 膜を形成し、その界面に櫛型電極を設けた一開口共
振器の平面図。FIG. 4 Si single crystal piezoelectric substrate on lithium tantalate
FIG. 3 is a plan view of a one-hole resonator in which an O 2 film is formed and a comb-shaped electrode is provided on the interface.
【図5】タンタル酸リチウム単結晶圧電基板上に、Si
O2 膜を形成し、その界面に櫛型電極を設けた一開口共
振器の断面図。FIG. 5: Si on a lithium tantalate single crystal piezoelectric substrate
O 2 film is formed, cross-sectional view of one opening resonator having a comb electrode on the interface.
【図6】タンタル酸リチウム単結晶圧電基板上に、Si
O2 膜を形成し、その界面に櫛型電極を設けた二開口共
振器の平面図。FIG. 6 shows a Si single crystal on a lithium tantalate single crystal piezoelectric substrate.
FIG. 3 is a plan view of a two-hole resonator in which an O 2 film is formed and a comb-shaped electrode is provided on the interface.
1…θ=144の弾性境界波の伝搬速度、2…θ=13
0の弾性境界波の伝搬速度、3…θ=120の弾性境界
波の伝搬速度、4…θ=110の弾性境界波の伝搬速
度、5…シミュレ−ションから求めたSiO2 のバルク
波の伝搬速度、6…h/λ=1の弾性境界波の|TCD
|、7…h/λ=1.5 の弾性境界波の|TCD|、8
…h/λ=1の弾性境界波の|TCD|、9…h/λ=
2.5 の弾性境界波の|TCD|、10…タンタル酸リ
チウム単結晶圧電基板、11…櫛型電極、12…SiO
2 膜。1 ... Propagation velocity of boundary acoustic wave with θ = 144, 2 ... θ = 13
Propagation velocity of 0 boundary acoustic wave, 3 ... Propagation velocity of boundary acoustic wave of θ = 120, 4 ... Propagation velocity of boundary acoustic wave of θ = 110, 5 Propagation of bulk wave of SiO 2 obtained from simulation Velocity, 6 ... h / λ = 1 | TCD of boundary acoustic wave
|, 7 ... | TCD |, 8 of the boundary acoustic wave with h / λ = 1.5
... | TCD | of boundary acoustic wave of h / λ = 1, 9 ... h / λ =
2.5 boundary acoustic wave | TCD |, 10 ... Lithium tantalate single crystal piezoelectric substrate, 11 ... Comb type electrode, 12 ... SiO
2 membranes.
Claims (3)
単結晶圧電基板と、前記圧電基板の主表面に、少なくと
も一対の電極指を有する電極周期λの櫛型電極と、前記
圧電基板及び前記櫛型電極の上に、膜厚hのシリコン酸
化膜を構成した弾性境界波装置において、前記圧電基板
のカット角θを100<θ<124または128<θ<
150とし、かつh/λ>1としたことを特徴とする弾
性境界波装置。1. A rotation Y-cut lithium tantalate single crystal piezoelectric substrate having an angle θ, a comb-shaped electrode having an electrode period λ having at least a pair of electrode fingers on a main surface of the piezoelectric substrate, the piezoelectric substrate and the comb. In a boundary acoustic wave device in which a silicon oxide film having a film thickness h is formed on a mold electrode, the cut angle θ of the piezoelectric substrate is 100 <θ <124 or 128 <θ <.
The boundary acoustic wave device is characterized in that it is set to 150 and h / λ> 1.
膜厚hと前記圧電基板のカット角θの間に、0.5<1
8×λ/h/|θ−126|<1 の関係を有する弾性
境界波装置。2. The method according to claim 1, wherein between the film thickness h of the silicon oxide film and the cut angle θ of the piezoelectric substrate, 0.5 <1.
A boundary acoustic wave device having a relationship of 8 × λ / h / | θ-126 | <1.
した弾性境界波装置。3. The boundary acoustic wave device according to claim 1, wherein 130 <θ <145.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP110694A JPH07212174A (en) | 1994-01-11 | 1994-01-11 | Boundary acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP110694A JPH07212174A (en) | 1994-01-11 | 1994-01-11 | Boundary acoustic wave device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07212174A true JPH07212174A (en) | 1995-08-11 |
Family
ID=11492233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP110694A Pending JPH07212174A (en) | 1994-01-11 | 1994-01-11 | Boundary acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07212174A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046656A (en) * | 1997-05-08 | 2000-04-04 | Kabushiki Kaisha Toshiba | Elastic boundary wave device and method of its manufacture |
WO2004095699A1 (en) * | 2003-04-18 | 2004-11-04 | Murata Manufacturing Co., Ltd. | Elastic boundary wave device |
WO2005093949A1 (en) * | 2004-03-29 | 2005-10-06 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device manufacturing method and boundary acoustic wave device |
WO2007138840A1 (en) * | 2006-05-30 | 2007-12-06 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
KR100856217B1 (en) * | 2006-02-28 | 2008-09-03 | 후지쓰 메디아 데바이스 가부시키가이샤 | Elastic boundary wave device, resonator and filter |
US7489064B2 (en) | 2005-07-22 | 2009-02-10 | Murata Manufacturing Co., Ltd | Boundary acoustic wave device |
EP1739830A4 (en) * | 2004-04-19 | 2009-04-22 | Murata Manufacturing Co | ELASTIC WAVE FILTER AND COMMUNICATION DEVICE USING THE SAME |
-
1994
- 1994-01-11 JP JP110694A patent/JPH07212174A/en active Pending
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046656A (en) * | 1997-05-08 | 2000-04-04 | Kabushiki Kaisha Toshiba | Elastic boundary wave device and method of its manufacture |
US7453184B2 (en) | 2003-04-18 | 2008-11-18 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
WO2004095699A1 (en) * | 2003-04-18 | 2004-11-04 | Murata Manufacturing Co., Ltd. | Elastic boundary wave device |
DE112004000499B4 (en) * | 2003-04-18 | 2011-05-05 | Murata Mfg. Co., Ltd., Nagaokakyo-shi | Boundary acoustic wave device |
JP2009177829A (en) * | 2003-04-18 | 2009-08-06 | Murata Mfg Co Ltd | Boundary acoustic wave device |
US7322093B2 (en) | 2004-03-29 | 2008-01-29 | Murata Manufacturing Co., Ltd. | Method for producing a boundary acoustic wave device |
JP4535067B2 (en) * | 2004-03-29 | 2010-09-01 | 株式会社村田製作所 | Boundary wave device manufacturing method and boundary acoustic wave device |
JPWO2005093949A1 (en) * | 2004-03-29 | 2008-02-14 | 株式会社村田製作所 | Boundary wave device manufacturing method and boundary acoustic wave device |
WO2005093949A1 (en) * | 2004-03-29 | 2005-10-06 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device manufacturing method and boundary acoustic wave device |
KR100804407B1 (en) * | 2004-03-29 | 2008-02-15 | 가부시키가이샤 무라타 세이사쿠쇼 | Manufacturing method of boundary acoustic wave device |
JP2010166592A (en) * | 2004-03-29 | 2010-07-29 | Murata Mfg Co Ltd | Method for producing boundary acoustic wave device, and boundary acoustic wave device |
EP1739830A4 (en) * | 2004-04-19 | 2009-04-22 | Murata Manufacturing Co | ELASTIC WAVE FILTER AND COMMUNICATION DEVICE USING THE SAME |
US7760048B2 (en) | 2004-04-19 | 2010-07-20 | Murata Manufacturing Co., Ltd. | Elastic wave filter and communication device equipped with the elastic wave filter |
US7489064B2 (en) | 2005-07-22 | 2009-02-10 | Murata Manufacturing Co., Ltd | Boundary acoustic wave device |
KR100856217B1 (en) * | 2006-02-28 | 2008-09-03 | 후지쓰 메디아 데바이스 가부시키가이샤 | Elastic boundary wave device, resonator and filter |
JPWO2007138840A1 (en) * | 2006-05-30 | 2009-10-01 | 株式会社村田製作所 | Boundary acoustic wave device |
US7772742B2 (en) | 2006-05-30 | 2010-08-10 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
WO2007138840A1 (en) * | 2006-05-30 | 2007-12-06 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
JP4715922B2 (en) * | 2006-05-30 | 2011-07-06 | 株式会社村田製作所 | Boundary acoustic wave device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11817840B2 (en) | XBAR resonators with non-rectangular diaphragms | |
US10797675B2 (en) | Transversely excited film bulk acoustic resonator using rotated z-cut lithium niobate | |
JP4535067B2 (en) | Boundary wave device manufacturing method and boundary acoustic wave device | |
US12323125B2 (en) | Symmetric transversely-excited film bulk acoustic resonators with reduced spurious modes | |
US12231113B2 (en) | Rotation in XY plane to suppress spurious modes in XBAR devices | |
US20070001549A1 (en) | Boundary acoustic wave device | |
US20210013860A1 (en) | Transversely-excited film bulk acoustic resonator with a cavity having a curved perimeter | |
CN101964642A (en) | Boundary acoustic wave device | |
CN100490317C (en) | Interface acoustic wave device made of lithium tantalate | |
JPH07212174A (en) | Boundary acoustic wave device | |
WO2021060507A1 (en) | Elastic wave device | |
EP0513267B1 (en) | Crystal cut angles for lithium tantalate crystal for novel surface acoustic wave devices | |
JP3219885B2 (en) | Surface acoustic wave device | |
US20240356525A1 (en) | Transversely-excited film bulk acoustic resonator with symmetric diaphragm | |
JPH09238039A (en) | Element including surface skimming bulk wave substrate and its method | |
JPS63120511A (en) | Quartz crystal element with single orientation cut angle for elestic surface wave device and elestic surface wave device formed on the quartz crystal element and manufacture of the same | |
JP3188480B2 (en) | Surface acoustic wave device | |
JP2001257554A (en) | Surface acoustic wave device | |
US12301212B2 (en) | XBAR resonators with non-rectangular diaphragms | |
JP3953558B2 (en) | Surface acoustic wave device | |
US12283944B2 (en) | Transversely-excited film bulk acoustic resonator with recessed rotated-Y-X cut lithium niobate | |
US20250105820A1 (en) | Bragg stack structure for spurious mode suppression in solidly-mounted acoustic resonator | |
US20250141428A1 (en) | Resonator with complementarily oriented piezoelectric structure | |
JP2000138557A (en) | Surface acoustic wave element | |
JPH1041777A (en) | Surface acoustic wave device |