JPH07211642A - Vapor phase epitaxial growth method for compound semiconductor - Google Patents
Vapor phase epitaxial growth method for compound semiconductorInfo
- Publication number
- JPH07211642A JPH07211642A JP1310694A JP1310694A JPH07211642A JP H07211642 A JPH07211642 A JP H07211642A JP 1310694 A JP1310694 A JP 1310694A JP 1310694 A JP1310694 A JP 1310694A JP H07211642 A JPH07211642 A JP H07211642A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- plane
- vapor phase
- compound semiconductor
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 238000000034 method Methods 0.000 title claims description 17
- 150000001875 compounds Chemical class 0.000 title claims description 15
- 239000012808 vapor phase Substances 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 239000013078 crystal Substances 0.000 claims abstract description 26
- 239000012535 impurity Substances 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 9
- 238000001947 vapour-phase growth Methods 0.000 claims description 12
- 239000002019 doping agent Substances 0.000 abstract description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000010348 incorporation Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- HTDIUWINAKAPER-UHFFFAOYSA-N trimethylarsine Chemical compound C[As](C)C HTDIUWINAKAPER-UHFFFAOYSA-N 0.000 description 4
- XCZXGTMEAKBVPV-UHFFFAOYSA-N trimethylgallium Chemical compound C[Ga](C)C XCZXGTMEAKBVPV-UHFFFAOYSA-N 0.000 description 3
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- HJUGFYREWKUQJT-UHFFFAOYSA-N tetrabromomethane Chemical compound BrC(Br)(Br)Br HJUGFYREWKUQJT-UHFFFAOYSA-N 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 2
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、化合物半導体積層構造
を有する化合物半導体の気相成長方法に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth method for a compound semiconductor having a compound semiconductor laminated structure.
【0002】[0002]
【従来の技術】従来、素子応用を目指した化合物半導体
の気相成長には、面方位が(100)面などの低指数面
を持つ基板が用いられてきた。その理由は、高指数面は
対称性が低いため、各種物性定数やエッチング形状など
に非対称性が現れ、素子を製作する場合に方位を揃えな
ければならないことやへき開面を利用できないなどの制
限が生じるためである。また、(111)B面のように
成長条件によっては、成長が困難な指数面も、このよう
な目的には適さない。一方、低指数面では、結晶の構成
材料となるIII族およびV族原子が結晶中に効率的に取り
込まれるサイトである結晶表面の原子層ステップもしく
はキンクの面密度が低いため、表面モルホロジーや結晶
品質などが劣化することが問題であった。2. Description of the Related Art Conventionally, a substrate having a low index face such as a (100) face has been used for vapor phase growth of a compound semiconductor aiming at device application. The reason is that the high-index plane has low symmetry, so asymmetry appears in various physical property constants and etching shapes, and there are restrictions such as the fact that the azimuths must be aligned when manufacturing the element and the cleavage plane cannot be used. This is because it occurs. Further, an exponential surface, which is difficult to grow depending on the growth conditions such as the (111) B surface, is not suitable for such purpose. On the other hand, in the low-index plane, the atomic layer step or kink surface density of the crystal surface, which is a site where the group III and V atoms that are the constituent materials of the crystal are efficiently incorporated into the crystal, is low, so the surface morphology and crystal There was a problem that quality etc. deteriorated.
【0003】このような問題を解決するものとしては、
基板の面方位を(100)面もしくはこの(100)面
と等価な面から[011]方向またはこの[011]方
向と等価な方向へ僅かに傾けた基板を用いる方法が提案
されており、表面状態や結晶品質の改善効果が得られて
いる。この効果は、基板を傾斜させてステップの密度を
増大させることにより、原子の取り込み効率を増大させ
たり、基板を[011]方向またはこれと等価な方向へ
傾け、Ga原子のみをステップに配列させることによ
り、結晶中に取り込まれようとする不純物元素とステッ
プに存在する原子との親和力を弱くし、結晶の純度を上
げることにより達成される。To solve such a problem,
A method of using a substrate in which the plane orientation of the substrate is slightly inclined from the (100) plane or a plane equivalent to this (100) plane to the [011] direction or a direction equivalent to this [011] direction has been proposed. The effect of improving the condition and crystal quality is obtained. This effect is to increase the density of steps by inclining the substrate to increase the efficiency of uptake of atoms, or to incline the substrate in the [011] direction or its equivalent direction to arrange only Ga atoms in steps. This can be achieved by weakening the affinity between the impurity element to be incorporated in the crystal and the atoms present in the step and increasing the crystal purity.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな方法によると、残留不純物の結晶中への取り込みが
減少すると同時に素子構造を成長するのに不可欠な添加
不純物(ドーパント)の取り込みも阻害してしまい、所
望の不純物濃度が得られないという問題があった。However, according to such a method, the incorporation of residual impurities into the crystal is reduced, and at the same time, the incorporation of additional impurities (dopants) essential for growing the device structure is obstructed. Therefore, there is a problem that a desired impurity concentration cannot be obtained.
【0005】したがって本発明は、前述した従来の課題
を解決するためになされたものであり、その目的は、化
合物半導体の気相成長方法において、炭素不純物の取り
込みを阻害することなく、高品質な結晶の成長を可能に
した化合物半導体の気相成長方法を提供することにあ
る。Therefore, the present invention has been made in order to solve the above-mentioned conventional problems, and its object is to provide a high-quality compound in a vapor-phase growth method of a compound semiconductor without inhibiting the incorporation of carbon impurities. It is an object of the present invention to provide a vapor phase growth method for a compound semiconductor that enables crystal growth.
【0006】[0006]
【課題を解決するための手段】このような目的を達成す
るために本発明による化合物半導体の気相成長方法は、
基板の面方位を(100)面もしくはこの(100)面
と等価な面から[0バー11]方向もしくはこの[0バ
ー11]方向と等価な方向へ傾けたオフ基板を用いて結
晶成長するようにしたものである。また、本発明による
他の化合物半導体の気相成長方法は、オフ基板の傾斜角
を1度〜10度の範囲とし、かつ炭素の添加層の成長温
度を580℃以上に設定して結晶成長するようにしたも
のである。In order to achieve such an object, the method for vapor phase growth of a compound semiconductor according to the present invention comprises:
Crystal growth is performed using an off-substrate in which the plane orientation of the substrate is inclined from the (100) plane or a plane equivalent to this (100) plane to the [0 bar 11] direction or the direction equivalent to this [0 bar 11] direction. It is the one. In another vapor phase growth method of a compound semiconductor according to the present invention, the off-substrate tilt angle is set in the range of 1 to 10 degrees, and the growth temperature of the carbon-added layer is set to 580 ° C. or higher for crystal growth. It was done like this.
【0007】[0007]
【作用】本発明においては、添加不純物の取り込み効率
を同等に保ちながら、結晶品質を向上させることができ
る。In the present invention, the crystal quality can be improved while keeping the efficiency of incorporating the added impurities equal.
【0008】[0008]
【実施例】以下、図面を用いて本発明の実施例を詳細に
説明する。本発明の一実施例として有機金属気相成長
(MOCVD)法によるAlGaAs/GaAsヘテロ
接合バイポーラトランジスタ(HBT)の結晶成長の場
合を例に挙げて説明する。図1は、本発明を炭素ドープ
GaAs層の成長に適用した実施例である。本実施例で
は、GaおよびAsの原料としてトリメチルガリウム
(TMGa)およびアルシン(AsH3 )を用い、炭素
ソースとして四塩化炭素(CCl4 )を用いた。この場
合、CCl4 の流量は一定とした。成長温度は約600
℃である。Embodiments of the present invention will now be described in detail with reference to the drawings. As an embodiment of the present invention, a case of crystal growth of an AlGaAs / GaAs heterojunction bipolar transistor (HBT) by a metal organic chemical vapor deposition (MOCVD) method will be described as an example. FIG. 1 shows an embodiment in which the present invention is applied to the growth of a carbon-doped GaAs layer. In this example, trimethylgallium (TMGa) and arsine (AsH 3 ) were used as Ga and As raw materials, and carbon tetrachloride (CCl 4 ) was used as a carbon source. In this case, the flow rate of CCl 4 was kept constant. Growth temperature is about 600
℃.
【0009】発明者が実験的に検討した結果、基板のオ
フ化に伴い、[011]方向ではキャリア濃度が急激に
低下するのに対し、[0バー11]方向ではキャリア濃
度の低下がないことを見いだした。この現象は、C原子
がGaAs結晶中でGa原子と結合を作り、p型不純物
となるため、表面ステップにGa原子のみが配列してい
る従来の傾斜方位([011]方向)基板を用いた場
合、C原料の基板表面からの解離が促進され、取り込み
効率が低下するのに対し、従来とは異なる[0バー1
1]方向に微傾斜させた基板では、ステップにAsが配
列しているため、C原料の基板表面からの解離が促進さ
れることがないので、キャリア濃度の低下はないことに
起因すると推測される。As a result of an experimental study conducted by the inventor, the carrier concentration sharply decreases in the [011] direction as the substrate is turned off, whereas the carrier concentration does not decrease in the [0 bar 11] direction. I found it. In this phenomenon, since C atoms form bonds with Ga atoms in the GaAs crystal and become p-type impurities, a conventional tilted orientation ([011] direction) substrate in which only Ga atoms are arranged in the surface step was used. In this case, the dissociation of the C raw material from the substrate surface is promoted and the uptake efficiency is reduced, whereas the conventional method [0 bar 1
In the substrate slightly tilted in the 1] direction, As is arranged in the step, so that the dissociation of the C raw material from the substrate surface is not promoted, and it is presumed that this is because the carrier concentration does not decrease. It
【0010】図2は、本発明を、ベース層に炭素をドー
プしたAlGaAs/GaAsHBTに適用した場合の
電流利得の基板オフ角度依存性を示したものである。同
図から判るように傾斜方位によらず、基板のオフ化によ
り電流利得、すなわちベース層中の少数キャリア寿命は
大幅に向上している。しかしながら、ベース層のキャリ
ア濃度は、図1に示したようにオフ方位が[0バー1
1]の場合は一定に保たれているので、キャリア濃度の
低下がなくなり、かつ電流利得が改善される。一方、オ
フ方位[011]の場合では、図1に示すようにベース
層のキャリア濃度はオフ角度0度((100)面)の場
合に比べ、約1/2以下に低下しており、ベース抵抗が
高く、素子の高周波特性は劣る。FIG. 2 shows the dependence of the current gain on the off-substrate angle when the present invention is applied to AlGaAs / GaAs HBT having a base layer doped with carbon. As can be seen from the figure, the current gain, that is, the minority carrier lifetime in the base layer is significantly improved by turning off the substrate regardless of the tilt direction. However, the carrier concentration of the base layer is [0 bar 1 as shown in FIG.
In the case of 1], since it is kept constant, the carrier concentration does not decrease and the current gain is improved. On the other hand, in the case of the off azimuth [011], as shown in FIG. 1, the carrier concentration of the base layer is reduced to about 1/2 or less as compared with the case of the off angle of 0 degree ((100) plane). The resistance is high and the high frequency characteristics of the device are poor.
【0011】従来、微傾斜基板による結晶品質改善は、
結晶中への残留不純物(例えばGaAs中で再結合中心
となる酸素)の取り込み量低下に起因すると考えられて
きたが、電流利得改善に方位依存性がないことからも明
かなように結晶品質の改善は結晶固有の欠陥などの密度
低減に起因しており、本発明の成長温度範囲では、[0
バー11]方向へ傾斜させることによる残留不純物濃度
の増大などの影響はない。Conventionally, the improvement of crystal quality by the slightly inclined substrate is
It has been thought to be due to a decrease in the amount of residual impurities (eg, oxygen that becomes a recombination center in GaAs) in the crystal, but it is clear from the fact that there is no azimuth dependence in the improvement of the current gain. The improvement is due to the reduction of the density such as defects peculiar to the crystal, and in the growth temperature range of the present invention, [0
There is no influence such as an increase in residual impurity concentration due to tilting in the direction of bar 11].
【0012】発明者等は、以上の効果が基板のオフ方
位,角度および成長温度と深い相関関係にあると考えて
注意深く検討を行った結果、この傾向は、基板の面方位
が(100)面,これと等価な面から[0バー11]方
向またはこれと等価な方向へ約1度ないし約10度の範
囲とし、成長温度が約580℃以上で同様に得られるこ
とを確認した。The inventors of the present invention have conducted a careful study on the assumption that the above effects have a deep correlation with the off orientation, angle, and growth temperature of the substrate. As a result, this tendency shows that the plane orientation of the substrate is the (100) plane. From the plane equivalent to this, it was confirmed that the growth temperature was about 580 ° C. or higher in the [0 bar 11] direction or the equivalent direction to the range of about 1 ° to about 10 °.
【0013】つまり、前述した実施例では、基板のオフ
方位を約1度ないし約10度の範囲としたが、このオフ
方位が約1度未満では、本発明の効果が充分に得られ
ず、また、約10度を超えると、他の高指数の結晶面が
出現し、各種物性定数やエッチング形状などの非対称性
が現れたり、へき開面を利用できないことになる。ま
た、炭素の添加層の成長温度を約580℃以上とした
が、この温度が例えば約700℃以上と高くすると、充
分に高いキャリア濃度が得られなかったり、成長そのも
のが困難になるなどの問題が生じ、また、この成長温度
が例えば約500℃以下と低くなると、結晶品質を低下
させるなどの問題が生じる。したがってこれらの領域以
下でも定性的には効果が得られるものの、特に基板の方
位を約1度〜約10度の範囲とし、成長温度を約580
℃以上とすることで顕著な効果が得られた。That is, in the above-mentioned embodiment, the off orientation of the substrate is set in the range of about 1 degree to about 10 degrees, but if the off orientation is less than about 1 degree, the effect of the present invention cannot be sufficiently obtained. On the other hand, if it exceeds about 10 degrees, other high index crystal planes appear, asymmetries such as various physical property constants and etching shapes appear, and the cleavage plane cannot be used. Although the growth temperature of the carbon-added layer is set to about 580 ° C. or higher, if the temperature is increased to about 700 ° C. or higher, a sufficiently high carrier concentration cannot be obtained or the growth itself becomes difficult. If the growth temperature is lowered to, for example, about 500 ° C. or lower, problems such as deterioration of crystal quality occur. Therefore, although the effect can be obtained qualitatively even below these regions, the orientation of the substrate is set in the range of about 1 ° to about 10 °, and the growth temperature is set at about 580.
A remarkable effect was obtained when the temperature was set to ℃ or higher.
【0014】また、前述した実施例では、炭素原料とし
てCCl4 を用いたが、この他にもTMGaを用いる方
法やトリメチルアルシン(TMAs),トリメチルアル
ミニウム(TMAl),CBr4 (四臭化炭素)などを
用いる方法でも同様な効果が得られる。また、成長する
半導体層としてGaAsの場合の例を示したが、同様な
効果はAlx GayIn1-x-yAs(0≦x≦1,0≦y
≦1)またはGaAsxSb1-x(0≦x≦1)などでも
得られる。さらに本実施例ではHBTの場合について説
明したが、本発明は、共鳴トンネル素子,レーザーダイ
オード,LED,太陽電池などの各種の素子に適用する
ことができる。Although CCl 4 was used as the carbon raw material in the above-mentioned examples, other methods using TMGa, trimethylarsine (TMAs), trimethylaluminum (TMAl), CBr 4 (carbon tetrabromide) were also used. The same effect can be obtained by a method using, for example. Also, although an example in the case of GaAs as a semiconductor layer to be grown, a similar effect is Al x Ga y In 1-xy As (0 ≦ x ≦ 1,0 ≦ y
≦ 1) or GaAs x Sb 1-x (0 ≦ x ≦ 1). Further, although the case of the HBT has been described in the present embodiment, the present invention can be applied to various elements such as a resonance tunnel element, a laser diode, an LED, a solar cell and the like.
【0015】[0015]
【発明の効果】以上、説明したように本発明によれば、
炭素を不純物として添加する層を含む半導体積層構造を
成長する場合にキャリア濃度の低下がなく、結晶品質を
向上させることができ、各種の素子の特性向上が可能と
なるなどの極めて優れた効果が得られる。また、特定の
範囲の方位の傾斜基板を用い、成長温度を特定の範囲に
設定することによって炭素不純物の取り込みを阻害する
ことなく、高品質な結晶成長が可能となるなどの極めて
優れた効果が得られる。As described above, according to the present invention,
When growing a semiconductor laminated structure including a layer to which carbon is added as an impurity, there is no decrease in carrier concentration, crystal quality can be improved, and characteristics of various devices can be improved. can get. In addition, by using a tilted substrate with a specific range of orientation and setting the growth temperature in a specific range, it is possible to achieve extremely excellent effects such as high quality crystal growth without inhibiting the incorporation of carbon impurities. can get.
【図1】本発明による化合物半導体の気相成長方法を炭
素ドープGaAs層の結晶成長に適用した一実施例によ
るキャリア濃度のオフ角度依存性をオフ方向が[0バー
11]および[011]の場合について比較して示した
図である。FIG. 1 shows the off-angle dependence of carrier concentration according to an embodiment in which the vapor phase growth method for a compound semiconductor according to the present invention is applied to the crystal growth of a carbon-doped GaAs layer, where the off directions are [0 bar 11] and [011]. It is the figure which compared and showed about the case.
【図2】図1の炭素ドープGaAs層をAlGaAs/
GaAsHBTのベース層に適用した場合の電流利得の
オフ角度依存性をオフ方向が[0バー11]および[0
11]の場合について比較して示した図である。2 is a graph showing the carbon-doped GaAs layer of FIG.
The off-angle dependence of the current gain when applied to the base layer of GaAs HBT shows that [0 bar 11] and [0
11] is a diagram showing a comparison in the case of [11].
Claims (3)
半導体層を少なくとも1層含む積層構造を有する化合物
半導体の気相成長方法において、 前記基板の面方位を(100)面もしくはこの(10
0)面と等価な面から[0バー11]方向もしくはこの
[0バー11]方向と等価な方向へ傾けたオフ基板を用
いて結晶成長することを特徴とする化合物半導体の気相
成長方法。1. A vapor phase growth method of a compound semiconductor having a laminated structure including at least one semiconductor layer to which carbon is added as an impurity on a substrate, wherein the plane orientation of the substrate is (100) plane or this (10) plane.
A method for vapor phase growth of a compound semiconductor, which comprises performing crystal growth using an off-substrate tilted from a plane equivalent to the (0) plane to a [0 bar 11] direction or a direction equivalent to this [0 bar 11] direction.
半導体層を少なくとも1層を含む積層構造を有する化合
物半導体の気相成長方法において、 前記基板の面方位を(100)面もしくはこの(10
0)面と等価な面から[0バー11]方向もしくはこの
[0バー11]方向と等価な方向へ1度〜10度の範囲
に傾け、かつ前記炭素の添加層の成長温度を580℃以
上に設定して結晶成長することを特徴とする化合物半導
体の気相成長方法。2. A vapor phase growth method of a compound semiconductor having a laminated structure including at least one semiconductor layer to which carbon is added as an impurity on a substrate, wherein the plane orientation of the substrate is (100) plane or this (10) plane.
0) surface is inclined in the [0 bar 11] direction or a direction equivalent to this [0 bar 11] direction within a range of 1 to 10 degrees, and the growth temperature of the carbon-added layer is 580 ° C. or more. A method for vapor phase growth of compound semiconductors, characterized in that crystal growth is performed by setting the above.
半導体層をAlxGayIn1-x-y As(0≦x≦1,0
≦y≦1)とすることを特徴とする化合物半導体の気相
成長方法。3. An apparatus according to claim 1 or claim 2, the semiconductor layer Al x Ga y In 1-xy As (0 ≦ x ≦ 1,0
≦ y ≦ 1) The method for vapor phase growth of a compound semiconductor, characterized in that
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1310694A JPH07211642A (en) | 1994-01-12 | 1994-01-12 | Vapor phase epitaxial growth method for compound semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1310694A JPH07211642A (en) | 1994-01-12 | 1994-01-12 | Vapor phase epitaxial growth method for compound semiconductor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07211642A true JPH07211642A (en) | 1995-08-11 |
Family
ID=11823906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1310694A Pending JPH07211642A (en) | 1994-01-12 | 1994-01-12 | Vapor phase epitaxial growth method for compound semiconductor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07211642A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006030565A1 (en) * | 2004-09-17 | 2008-05-08 | 日鉱金属株式会社 | Epitaxial crystal growth method |
-
1994
- 1994-01-12 JP JP1310694A patent/JPH07211642A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2006030565A1 (en) * | 2004-09-17 | 2008-05-08 | 日鉱金属株式会社 | Epitaxial crystal growth method |
JP4696070B2 (en) * | 2004-09-17 | 2011-06-08 | Jx日鉱日石金属株式会社 | Epitaxial crystal growth method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0497350B1 (en) | Crystal growth method for gallium nitride-based compound semiconductor | |
JP5346146B2 (en) | Semiconductor device having selectively doped III-V nitride layer | |
TWI606587B (en) | Carbon doped semiconductor component | |
US6559038B2 (en) | Method for growing p-n heterojunction-based structures utilizing HVPE techniques | |
US6849862B2 (en) | III-V compound semiconductor device with an AlxByInzGa1-x-y-zN1-a-bPaAsb non-continuous quantum dot layer | |
JP6757357B2 (en) | Semiconductor heterostructure and its formation method | |
US20090108297A1 (en) | Semi-insulating nitride semiconductor substrate and method of manufacturing the same, nitride semiconductor epitaxial substrate, and field-effect transistor | |
US6476420B2 (en) | P-N homojunction-based structures utilizing HVPE growth III-V compound layers | |
US5231298A (en) | GaAs device having a strain-free c-doped layer | |
US6599133B2 (en) | Method for growing III-V compound semiconductor structures with an integral non-continuous quantum dot layer utilizing HVPE techniques | |
US6479839B2 (en) | III-V compounds semiconductor device with an AlxByInzGa1-x-y-zN non continuous quantum dot layer | |
JP4468744B2 (en) | Method for producing nitride semiconductor thin film | |
US6559467B2 (en) | P-n heterojunction-based structures utilizing HVPE grown III-V compound layers | |
US20020017650A1 (en) | III-V compound semiconductor device with an InGaN1-x-yPxASy non-continuous quantum dot layer | |
JP3158651B2 (en) | Compound semiconductor and method of manufacturing the same | |
JP2001024221A (en) | Gallium nitride compound semiconductor and its manufacture | |
US7550786B2 (en) | Compound semiconductor epitaxial substrate | |
JPH07211642A (en) | Vapor phase epitaxial growth method for compound semiconductor | |
US20020047135A1 (en) | P-N junction-based structures utilizing HVPE grown III-V compound layers | |
JP3502267B2 (en) | Manufacturing method of bipolar transistor | |
JPH0529653A (en) | Semiconductor device | |
JP4770130B2 (en) | Epitaxial wafer for field effect transistor and epitaxial wafer for high electron mobility transistor | |
JP3109149B2 (en) | Compound semiconductor crystal growth method | |
JPS63143810A (en) | Vapor growth of compound semiconductor | |
JPH0714785A (en) | Semiconductor epitaxial substrate and method for manufacturing the same |