[go: up one dir, main page]

JPH07207459A - Metal material coated with multilayered film - Google Patents

Metal material coated with multilayered film

Info

Publication number
JPH07207459A
JPH07207459A JP601794A JP601794A JPH07207459A JP H07207459 A JPH07207459 A JP H07207459A JP 601794 A JP601794 A JP 601794A JP 601794 A JP601794 A JP 601794A JP H07207459 A JPH07207459 A JP H07207459A
Authority
JP
Japan
Prior art keywords
layer
film
layers
metal material
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP601794A
Other languages
Japanese (ja)
Inventor
Haruo Tomari
治夫 泊里
Takenori Nakayama
武典 中山
Kenji Yamamoto
兼司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP601794A priority Critical patent/JPH07207459A/en
Publication of JPH07207459A publication Critical patent/JPH07207459A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a multilayer coated metal material excellent in corrosion resistance even in an environment exposed to corrosive gas such as in a chamber for production of semiconductors by utilizing a Ti alloy amorphous layer. CONSTITUTION:The metal material has a protective film which protects the metal base 1 from corrosive gas 8. The film consists of one or more Ti-X layers 6 containing Ti and X and one or more Ti-Y-N layers 7 containing Ti and N. X is same or different for layers and selected from Al, Si, Cr, Fe, Co, Ni, Nb, Mo, W, Re, Hf, Ta which includes inevitable impurities. Y may be an inevitable impurity, or may be intensively added as an additive, and is selected from the same groups as for X. By this method, the Ti-X layers in the multilayered film for metal material are formed in an amorphous or granular state but not in a columnar structure. Thus, continuity of film defects can be cut off, and the corrosion resistance of the film is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体製造用チャンバ
ー等の様に腐食性ガスや腐食性の液体に曝される環境下
で使用される多層皮膜被覆金属材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-layer coating metal material used in an environment exposed to corrosive gas or corrosive liquid such as a semiconductor manufacturing chamber.

【0002】[0002]

【従来の技術】半導体の製造工程では、高温多湿雰囲気
下で酸化を行なったり、イオン注入等の工程を行なうこ
とから、半導体製造用チャンバー等は腐食性のガスや液
体に曝されることになる。そこで半導体製造用チャンバ
ー等に使用される金属材料をこの様なシビアな環境から
守るため、防食特性を改善する措置を講じておく必要が
ある。
2. Description of the Related Art In a semiconductor manufacturing process, a semiconductor manufacturing chamber or the like is exposed to a corrosive gas or liquid because oxidation or ion implantation is performed in a hot and humid atmosphere. . Therefore, it is necessary to take measures to improve the anticorrosion property in order to protect the metal material used for the semiconductor manufacturing chamber and the like from such a severe environment.

【0003】防食特性を改善した従来技術としては、
TiNを金属材料(母材)表面に直接被覆したもの(山
口ら,日本金属学会誌,56, 3,(1992),294)、また上
記金属材料(母材)とTiN皮膜の間に、中間層として
金属TiやTiCを被覆したもの([2] Y.Massiani et
al.,Thin Solid Film,217,(1992),31 )等がある。
As a conventional technique with improved anticorrosion properties,
A material in which TiN is directly coated on the surface of the metal material (base material) (Yamaguchi et al., Journal of Japan Institute of Metals, 56, 3, (1992), 294), and between the metal material (base material) and the TiN film, an intermediate Metallic Ti or TiC coating as a layer ([2] Y. Massiani et
al., Thin Solid Film, 217, (1992), 31).

【0004】しかしながら、上記では、TiN皮膜の
厚さを6μm以上にしないと、外部環境から十分に遮断
しきれず、耐食性皮膜としての機能を果たすことができ
ないという問題があった。加えてTiN皮膜と母材の密
着性が悪く、腐食環境下では皮膜に生じたピンホール等
の欠陥から容易に腐食溶媒が侵入して母材を腐食した
り、更には皮膜を剥離するという問題があった。まして
や厚さが6μm以上のTiN皮膜では皮膜が厚過ぎて一
層剥離し易くなる。また膜厚が厚過ぎることは経済的に
不利である。この様に上記の金属材料では、耐食性の
良い材料として使用するには実用上色々な問題がある。
However, in the above, there is a problem that unless the thickness of the TiN film is set to 6 μm or more, the TiN film cannot be sufficiently shielded from the external environment and cannot function as a corrosion resistant film. In addition, the adhesion between the TiN coating and the base material is poor, and in a corrosive environment, defects such as pinholes in the coating make it easy for the corrosive solvent to enter and corrode the base material, or even peel the coating. was there. Furthermore, a TiN film having a thickness of 6 μm or more is too thick and is more likely to be peeled off. Moreover, it is economically disadvantageous that the film thickness is too thick. As described above, the above-mentioned metallic materials have various problems in practical use when they are used as materials having good corrosion resistance.

【0005】一方上記は、上記に対して中間層(T
i又はTiC)を設けたもので、これによって母材とT
iN皮膜との密着性の改善を図っている。しかし上記
のものにおいても、皮膜に生じているピンホール(欠
陥)が完全になくなっているわけではなく、このピンホ
ールの面積が大きいため、ピンホールから腐食溶媒が侵
入してTiN層が剥離し、更にTi(あるいはTiC)
層のピンホールから腐食溶媒が侵入して母材を腐食させ
てしまうという問題があり、の場合においてもに比
べて半分程度しか耐食性が改善できなかった。
On the other hand, the above-mentioned
i or TiC), which allows the base metal and T
The adhesion with the iN film is improved. However, even in the case of the above, the pinholes (defects) generated in the film are not completely eliminated, and since the area of this pinhole is large, the corrosive solvent penetrates from the pinhole and the TiN layer peels off. , And further Ti (or TiC)
There is a problem that the corrosive solvent penetrates through the pinholes in the layer to corrode the base material, and in the case of, the corrosion resistance could be improved by only about half of that.

【0006】[0006]

【発明が解決しようとする課題】そこで本発明者らはこ
れらを解決した発明として先に特願平5−288484
号を出願している。該出願発明に係る多層皮膜被覆金属
材料は、Ti層とTiN層の積層群を1単位としてその
2単位以上を金属母材の表面に気相コーティングして積
層した構造となっており、該皮膜のうち、母材側から見
て第1層がTi層、最表層がTiN層であり、かつ上記
皮膜全体の膜厚を5μm以下と定めている。この先願発
明においては、皮膜を多層化したので、皮膜表面から母
材表面に貫通する様な欠陥がかなり減少し、また薄膜を
多数積層する様にしたから、皮膜全体の膜厚を薄く(5
μm以下)しても十分に耐食性の効果を発揮することが
でき、膜圧が厚いことに起因する皮膜の剥離し易さを低
減できる。
Therefore, the inventors of the present invention have previously proposed Japanese Patent Application No. 5-288484 as an invention that solves these problems.
No. has been filed. The multilayer coating metal material according to the invention of the application has a structure in which a laminated group of a Ti layer and a TiN layer is set as one unit, and two or more units are vapor-phase coated on the surface of a metal base material to be laminated. Among them, the first layer is a Ti layer, the outermost layer is a TiN layer as viewed from the base material side, and the thickness of the entire coating is set to 5 μm or less. In this prior invention, since the coating is multi-layered, defects such as penetrating the surface of the coating to the surface of the base material are considerably reduced, and a large number of thin films are laminated, so that the thickness of the entire coating is reduced (5
Even if it is less than or equal to μm), the effect of corrosion resistance can be sufficiently exhibited, and the ease of peeling of the coating film due to the thick film pressure can be reduced.

【0007】この様に上記先願に係る発明により、皮膜
に生じる実質上の欠陥面積率が大きく低減し、耐食性を
かなり改善することができたが、実際の部材への適応に
当たっては欠陥面積率を更に低減することが望ましいと
考えられた。そこで上記先願に係る発明を更に検討した
ところ下述の様な問題点を見出した。
As described above, according to the invention of the above-mentioned prior application, the substantial defect area ratio generated in the coating was greatly reduced, and the corrosion resistance could be considerably improved. However, in the application to the actual member, the defect area ratio is improved. It was considered desirable to further reduce Then, when the invention according to the above-mentioned prior application was further examined, the following problems were found.

【0008】即ち、気相コーティング膜の特にTiN膜
は、成膜条件にもよるが非常に細い柱状構造をして成長
する傾向が強く、この様に柱状に成長したTiN層は、
その上のTi層の成長形状にも影響してTi層をも柱状
にする。現実にTi/TiN多層膜を形成したところ、
Ti層の構造が、安定なTiN層の柱状構造に影響され
て同一断面の柱状になることが観察された。従って気相
コーティング膜に生じる欠陥が柱状組織の柱間の隙間を
伝搬して、基板界面から皮膜の最表面に貫通するという
問題があった。
That is, the vapor-phase coating film, particularly the TiN film, has a strong tendency to grow in a very thin columnar structure depending on the film forming conditions.
The Ti layer is also formed into a columnar shape by affecting the growth shape of the Ti layer thereon. When a Ti / TiN multilayer film was actually formed,
It was observed that the structure of the Ti layer was influenced by the stable columnar structure of the TiN layer and had a columnar shape with the same cross section. Therefore, there is a problem that defects generated in the vapor-phase coating film propagate through the gaps between the columns of the columnar structure and penetrate from the substrate interface to the outermost surface of the film.

【0009】図3はこの問題を説明する為に皮膜部分を
模式的に表わした断面図である。図中、1は金属母材、
2はTi層、3はTiN層、8はこの金属材料が曝され
ている腐食性ガスである。図に示す様に、Ti層2及び
TiN層3が同幅の柱状構造となっているため、隣接し
た柱状構造間の隙間が上下方向に貫通する形となってお
り、全体として複数層となっているにもかかわらずピン
ホールが上下に貫通したのと同様の結果になっている。
尚実際の構造では、ピンホールの全てが貫通する訳では
なく、柱状構造が若干ずれて存在するところもあるが、
現実の使用環境下では上記問題の発生する危険が多いこ
とが分かっている。
FIG. 3 is a cross-sectional view schematically showing the film portion in order to explain this problem. In the figure, 1 is a metal base material,
2 is a Ti layer, 3 is a TiN layer, and 8 is a corrosive gas to which this metal material is exposed. As shown in the figure, since the Ti layer 2 and the TiN layer 3 have a columnar structure having the same width, the gap between the adjacent columnar structures penetrates in the up-down direction, so that a plurality of layers are formed as a whole. However, the result is the same as if the pinhole penetrated vertically.
In the actual structure, not all the pinholes penetrate, but there are some columnar structures that are slightly displaced.
It has been found that there are many risks of the above problems occurring in an actual use environment.

【0010】この発明は以上の様な問題を解決するため
になされたもので、例えば半導体製造用チャンバーの様
に腐食性のガスや液体に曝される環境下であっても、腐
食を起こすことのない更に改良された多層皮膜被覆金属
材料を提供することを目的とする。
The present invention has been made to solve the above problems, and causes corrosion even in an environment exposed to a corrosive gas or liquid such as a semiconductor manufacturing chamber. It is an object of the present invention to provide a further improved multi-layer coating metal material which is free from the above.

【0011】[0011]

【課題を解決するための手段】本発明に係る多層皮膜被
覆金属材料は、皮膜が1以上のTiとXを含む層(更に
不可避不純物を含むことがある;以下Ti−X層と言
う)と1以上のTiとN層を含む(更に元素Xと同一か
又は異なった元素Y及びその他の不可避不純物を含むこ
とがある;以下Ti−Y−N層と言う)から構成され、
該皮膜のうち母材側から見て第1層が上記Ti−X層、
最表層が上記Ti−Y−N層であり、各層において上記
Xは、夫々同一または異なってAl,Si,Cr,F
e,Co,Ni,Nb,Mo,W,Re,Hf,Taよ
りなる群から選択される1種以上であることを要旨とす
る。
The multi-layer coating metal material according to the present invention has a layer in which the coating contains one or more layers of Ti and X (which may further contain inevitable impurities; hereinafter referred to as Ti-X layer). And at least one Ti and N layer (which may further contain an element Y which is the same as or different from the element X and other unavoidable impurities; hereinafter referred to as a Ti-Y-N layer),
When viewed from the base metal side of the coating, the first layer is the Ti-X layer,
The outermost layer is the Ti-Y-N layer, and the X in each layer is the same or different and is Al, Si, Cr, F.
The gist is that it is at least one selected from the group consisting of e, Co, Ni, Nb, Mo, W, Re, Hf, and Ta.

【0012】[0012]

【作用】腐食環境下における被覆金属材料の腐食は、前
述の如く、皮膜に存在するピンホール等の欠陥部から腐
食性溶液やガスが侵入して母材を腐食し始め、この腐食
により皮膜が剥離し、欠陥部の面積が増大して更に腐食
の進行を加速するためであると考えられる。従って腐食
を抑制するには、皮膜を伝搬する欠陥を低減し、且つ皮
膜の密着性を改善することが重要であると考えられる。
図1及び図2は本発明の多層皮膜被覆金属材料の皮膜付
近を示した模式図であり、本図を例として用い以下に本
発明について説明する。
[Function] As described above, the corrosion of the coated metal material in a corrosive environment causes the corrosive solution or gas to invade the base material from the defective portion such as the pinhole existing in the coating to corrode the base metal, and the corrosion causes the coating to be damaged. It is considered that this is because the area of the defective portion is peeled off and the progress of corrosion is further accelerated. Therefore, in order to suppress corrosion, it is considered important to reduce defects propagating through the coating and improve the adhesion of the coating.
1 and 2 are schematic diagrams showing the vicinity of a coating of a metal material coated with a multilayer coating according to the present invention, and the present invention will be described below using this drawing as an example.

【0013】図において、1は金属母材、8は腐食性ガ
スである。4,6はTi−X層であり、このXは夫々同
一または異なってAl,Si,Cr,Fe,Co,N
i,Nb,Mo,W,Re,Hf,Taよりなる群から
選択される1種以上である。尚Ti−X層に不可避不純
物が含まれる場合があることは言うまでもない。
In the figure, 1 is a metal base material and 8 is a corrosive gas. Reference numerals 4 and 6 are Ti-X layers, and these X are the same or different and are Al, Si, Cr, Fe, Co, N.
It is one or more selected from the group consisting of i, Nb, Mo, W, Re, Hf, and Ta. Needless to say, the Ti-X layer may contain inevitable impurities.

【0014】5,7はTi−Y−N層である。このYは
主として、成膜時においてTi−X層の添加元素Xが不
可避的にTi−N層に入った場合の当該添加元素を指
す。Yはこの様に不可避的に入る場合もあるが、添加元
素として積極的に添加する様にしても良く、その添加元
素としては上記Xの場合と同様、Al,Si,Cr,F
e,Co,Ni,Nb,Mo,W,Re,Hf,Ta
(以下、これらを添加元素と総称する)が挙げられる。
上記Ti−Y−N層はTi−X層の添加元素Xが入ら
ず、Ti−N層となる場合もあり得る。尚Ti−Y−N
層に更に他の不可避不純物が含まれる場合があることは
言うまでもない。
Reference numerals 5 and 7 are Ti-Y-N layers. This Y mainly refers to the additional element X when the additional element X of the Ti-X layer inevitably enters the Ti-N layer during film formation. Although Y may inevitably enter in this way, it may be positively added as an additional element, and the additive element may be Al, Si, Cr, F as in the case of X above.
e, Co, Ni, Nb, Mo, W, Re, Hf, Ta
(Hereinafter, these are collectively referred to as additional elements).
The Ti-Y-N layer may be a Ti-N layer without the additive element X of the Ti-X layer. Ti-Y-N
It goes without saying that the layer may further contain other unavoidable impurities.

【0015】図に示す如く本発明におけるTi−X層
は、非結晶質状態(図1)であるか、或は等方性に成長
した粒状を示すもの(図2)であり、これらが柱状構造
の上下連通を遮断することによって、外気と母材表面が
遮断されて防食効果を発揮するのである。
As shown in the figure, the Ti-X layer in the present invention is in a non-crystalline state (FIG. 1) or isotropically grown grains (FIG. 2), and these are columnar. By blocking the upper and lower communication of the structure, the outside air and the surface of the base material are blocked and the anticorrosion effect is exerted.

【0016】Xに該当する上記添加元素のうちAl,N
i,Fe,Si(以下、これらを第1群添加元素と総称
する)の場合は、Tiと合金化したとき非晶質の皮膜を
形成する。この様な非晶質の気相コーティング膜は結晶
粒界を有しないので、柱状構造との間の連続性を遮断す
ることができる。
Of the above additive elements corresponding to X, Al, N
In the case of i, Fe and Si (hereinafter, these are collectively referred to as the first group additive element), an amorphous film is formed when alloyed with Ti. Since such an amorphous vapor-phase coating film has no crystal grain boundary, the continuity with the columnar structure can be cut off.

【0017】図1はその構造モデルを表わしているが、
図に示す様にTi−X層4が非晶質化しているから、た
とえTi−Y−N層5が柱状構造を形成しても、この様
なTi−X層4が挿入されていることによりその柱状構
造による皮膜欠陥が母材1の表面にまで貫通することは
ない。また更に、仮に、Ti−X層4とTi−Y−N層
5の両方に欠陥があっても、それらの欠陥が同じ位置に
形成されるという偶然は殆どなく、各層間では位置がず
れて存在するからと考えられるから、最上層のピンホー
ルから腐食溶液等が浸入したとしてもストレートに母材
まで達することがなくなり、腐食されることがなくな
る。
FIG. 1 shows the structural model,
As shown in the figure, since the Ti-X layer 4 is made amorphous, even if the Ti-Y-N layer 5 has a columnar structure, such a Ti-X layer 4 is inserted. Therefore, the film defect due to the columnar structure does not penetrate to the surface of the base material 1. Furthermore, even if there are defects in both the Ti-X layer 4 and the Ti-Y-N layer 5, there is almost no chance that these defects will be formed at the same position, and the positions will be displaced between the layers. Since it is considered that it exists, even if the corrosive solution or the like enters from the pinhole of the uppermost layer, it does not reach the base material straightly and is not corroded.

【0018】一方Xに該当する添加元素のうち上記以
外、即ちCr,Co,Nb,Mo,W,Re,Hf,T
a(以下、これらを第2群添加元素と総称する)の場合
は、Tiと合金皮膜を形成する際、柱状構造以外の構造
を優先的に成長させる。図2はその構造モデルを表わし
ている。第2群添加元素のTi−Xの場合は、上記第1
群添加元素のTi−Xの様に非晶質とはならないが、図
2に示す様にTi−X層6が柱状構造とはならないか
ら、上述と同様、Ti−Y−N層7がたとえ柱状構造を
採っていても、Ti−X層6によってその柱状構造によ
る欠陥部が母材1の表面にまで連通されることがなくな
る。
On the other hand, of the additive elements corresponding to X, other than the above, that is, Cr, Co, Nb, Mo, W, Re, Hf, T
In the case of a (hereinafter collectively referred to as the second group additive element), when forming an alloy film with Ti, a structure other than the columnar structure is preferentially grown. FIG. 2 shows the structural model. In the case of Ti-X which is a second group additive element, the above first
Although it does not become amorphous like Ti-X of the group addition element, the Ti-X layer 6 does not have a columnar structure as shown in FIG. Even if the columnar structure is adopted, the Ti-X layer 6 prevents the defective portion due to the columnar structure from communicating with the surface of the base material 1.

【0019】本発明におけるTi−Y−N層5,7に導
入されている窒素(N)は、層の硬度を上昇させるもの
であり、これにより皮膜全体の強度が上昇する。また窒
素導入によりTi−Y−N層の耐食性が向上する。従っ
てTi−Y−N層を最表層に用いることにより全体とし
て優れた耐食性を示すことになる。
Nitrogen (N) introduced into the Ti-Y-N layers 5 and 7 in the present invention increases the hardness of the layers, which increases the strength of the entire coating. Further, the introduction of nitrogen improves the corrosion resistance of the Ti-Y-N layer. Therefore, by using the Ti-Y-N layer as the outermost layer, excellent corrosion resistance is exhibited as a whole.

【0020】X,Yとして用いられる元素は添加元素の
群から適宜選択すれば良く、それらは1種又は2種、或
はそれ以上の元素を選択することにより多元素の合金と
しても良い。Ti−X層におけるXの濃度は10〜60
at%であることが推奨され、Ti−Y−N層におけるY
の濃度は5〜50at%であることが推奨される。
The elements used as X and Y may be appropriately selected from the group of additive elements, and one or two or more elements may be selected to form a multi-element alloy. The concentration of X in the Ti-X layer is 10 to 60.
at% is recommended, and Y in the Ti-Y-N layer is recommended.
Is recommended to be 5 to 50 at%.

【0021】尚、金属母材に直接接する皮膜の第1層と
してTi−X層を形成することとしたので、Ti−Xが
金属母材との密着性が良いことに基づき、皮膜の剥離を
抑制できる。Ti−XとTi−Y−Nは、両者ともTi
をベースにしており、なじみが良く、従って本発明の多
層皮膜被覆金属材料は母材から皮膜最表層に至るまで密
着性が良い。
Since the Ti-X layer is formed as the first layer of the coating that is in direct contact with the metal base material, the Ti-X has good adhesion to the metal base material, and therefore the coating is peeled off. Can be suppressed. Ti-X and Ti-Y-N are both Ti
Is used as the base material, and therefore the metal coating material of the present invention has good adhesion from the base material to the outermost surface layer of the coating.

【0022】上記説明では、Ti−X層及びTi−Y−
N層を各2層(計4層)積層する場合を示したが、Ti
−X層の形成による欠陥の遮断効果は、本質的に一層で
十分である。従って、本発明では層数を各1層という様
に少なくしても良い。また逆に各3層以上とすることを
排除するものではなく、多数の層を形成する様にしても
良い。
In the above description, the Ti-X layer and the Ti-Y-
The case of laminating two N layers each (four layers in total) is shown.
The effect of blocking defects by forming the -X layer is essentially sufficient. Therefore, in the present invention, the number of layers may be reduced to one. On the contrary, it is not excluded that the number of layers is three or more, and a large number of layers may be formed.

【0023】Ti−X層及びTi−Y−N層が夫々2層
以上形成される場合における各層のX,Yは夫々の層に
おいて同種のものに限定される訳ではなく、各層で異な
る元素を用いてもよい。また、XとYを同種の元素とし
ても、異種の元素を用いても良い。尚前述の如く、Yと
しての添加元素を加えない様にしても良いことは言うま
でもない。
When two or more Ti-X layers and Ti-Y-N layers are formed, X and Y of each layer are not limited to the same kind in each layer, and different elements in each layer may be used. You may use. Further, X and Y may be the same kind of element or different kinds of elements may be used. Needless to say, as described above, the additional element as Y may not be added.

【0024】更に図1,2ではTi−X層とTi−Y−
N層を交互に積層したものを示したが、上述の様に異な
る元素を採用することにより、例えばTi−X層とし
て、第1のTi−X層(例えばTi−Ta層)と第2の
Ti−X層(例えばTi−Ni層)を隣接形成したもの
とすることもできる。Ti−Y−N層についても同様で
ある。
1 and 2, the Ti-X layer and the Ti-Y-
Although the structure in which the N layers are alternately laminated is shown, by adopting different elements as described above, for example, as the Ti-X layer, the first Ti-X layer (for example, Ti-Ta layer) and the second Ti-X layer are formed. A Ti-X layer (for example, a Ti-Ni layer) may be formed adjacent to each other. The same applies to the Ti-Y-N layer.

【0025】尚、上記金属母材の材料は特に限定される
ものではないが、例えば鉄系材料やアルミ合金など、酸
性の水溶液中で不働態化せず耐食性に乏しい材料を母材
とする場合に特に効果的である。
The material of the above-mentioned metal base material is not particularly limited. For example, when a material which does not passivate in an acidic aqueous solution and has poor corrosion resistance, such as an iron-based material or an aluminum alloy, is used as the base material. Especially effective for.

【0026】[0026]

【実施例】以下に本発明の実施例及び比較例を示す。金
属母材として普通鋼を鏡面仕上したものを用い、Ti−
X層及びTi−Y−N層を交互に気相成長させて積層
し、皮膜を形成した。その積層数は合計8層であり、皮
膜全体の膜厚は約3μmとなる様にした。下記表1に上
記X及びYに該当する添加元素、及びその含有濃度(a
t%)を示す。
EXAMPLES Examples and comparative examples of the present invention will be shown below. Using a mirror-finished plain steel as the metal base material, Ti-
The X layers and the Ti-Y-N layers were alternately vapor-grown and laminated to form a film. The total number of layers was 8, and the total thickness of the film was about 3 μm. In Table 1 below, additional elements corresponding to the above X and Y, and their content concentrations (a
t%).

【0027】これら実施例1〜6、参考例について、夫
々機械的に破断した断面を走査型電子顕微鏡を用いて構
造解析した。また防食特性の評価として、1%硫酸中で
のアノード分極曲線から欠陥面積率を計算した。その結
果を表1に合わせて記載する。
With respect to these Examples 1 to 6 and Reference Example, the mechanically broken cross sections were structurally analyzed using a scanning electron microscope. Further, as an evaluation of the anticorrosion property, the defect area ratio was calculated from the anodic polarization curve in 1% sulfuric acid. The results are also shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】電子顕微鏡による観察の結果、実施例1〜
6及び参考例は全膜厚が約3μmで、8層被覆されてい
た。また、Ti−Y−N層は柱状組織であったが第2群
添加元素を選択した実施例1,2のTi−X層は粒状、
第1群添加元素を選択した実施例3〜6のTi−X層は
非晶質(アモルファス)となっていた。即ちTi−X層
は柱状構造のTi−Y−N層に影響されることなく粒状
或はアモルファス状の構造となっていた。
As a result of observation with an electron microscope, Examples 1 to 1
6 and the reference example had a total film thickness of about 3 μm and were covered with 8 layers. Further, the Ti-Y-N layer had a columnar structure, but the Ti-X layers of Examples 1 and 2 in which the second group additive element was selected were granular,
The Ti-X layers of Examples 3 to 6 in which the first group additive element was selected were amorphous. That is, the Ti-X layer had a granular or amorphous structure without being affected by the columnar Ti-Y-N layer.

【0030】表1に示す様に、第1群添加元素を選択し
た実施例3〜6では、皮膜欠陥面積率が極めて低くなっ
ている。この欠陥面積率は、添加元素を加えない参考例
に比べて1/10程度に低下しており、耐食性の著しい
向上が見られる。
As shown in Table 1, in Examples 3 to 6 in which the first group additive element was selected, the film defect area ratio was extremely low. The defect area ratio is reduced to about 1/10 of that of the reference example in which no additional element is added, and the corrosion resistance is remarkably improved.

【0031】また第2群添加元素を選択した実施例1,
2の欠陥面積率は、参考例に比べて1/2〜1/3に減
少している。この実施例1,2においても上記先願方法
を採用した参考例に比べ耐食性の改善が見られる。この
様な耐食性の向上は、Ti−X層が非晶質或は粒状とな
っているから、皮膜欠陥の連続的な成長が阻止された為
と考えられる。
Example 1, in which the second group additive element was selected,
The defect area ratio of No. 2 is reduced to 1/2 to 1/3 as compared with the reference example. Also in Examples 1 and 2, the corrosion resistance is improved as compared with the reference example adopting the above-mentioned prior application method. It is considered that such improvement in corrosion resistance is due to the fact that the Ti-X layer is amorphous or granular, and therefore continuous growth of film defects is prevented.

【0032】[0032]

【発明の効果】本発明に係る多層皮膜被覆金属材料は、
上述の様に構成されているので、多数層のうちのTi−
X層が非晶質あるいは粒状となり、柱状構造とならない
から、皮膜欠陥の連通が遮断され、耐食性が向上すると
いう効果がある。従って半導体製造用チャンバなどの様
に腐食性ガス等に曝される環境下においても優れた耐食
性を示す金属材料を提供できる。
The multi-layer coating metal material according to the present invention is
Since it is configured as described above, Ti-
Since the X layer becomes amorphous or granular and does not have a columnar structure, the communication of film defects is blocked and the corrosion resistance is improved. Therefore, it is possible to provide a metal material having excellent corrosion resistance even in an environment exposed to a corrosive gas or the like such as a semiconductor manufacturing chamber.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る多層皮膜被覆金属材料の皮膜付近
の構造モデルの一例を示す図。
FIG. 1 is a diagram showing an example of a structural model in the vicinity of a film of a multilayer film-coated metal material according to the present invention.

【図2】本発明に係る多層皮膜被覆金属材料の皮膜付近
の構造モデルの他の例を示す図。
FIG. 2 is a diagram showing another example of a structural model in the vicinity of a film of a multilayer film-coated metal material according to the present invention.

【図3】従来の多層皮膜被覆金属材料の皮膜付近の構造
モデルを示す図。
FIG. 3 is a diagram showing a structural model in the vicinity of a film of a conventional multilayer film-coated metal material.

【符号の説明】[Explanation of symbols]

1 金属母材 4,6 Ti−X層 5,7 Ti−Y−N層 8 腐食性ガス 1 Metal Base Material 4,6 Ti-X Layer 5,7 Ti-Y-N Layer 8 Corrosive Gas

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 金属母材の表面に皮膜を有する金属材料
において、 上記皮膜は、TiとXを含む1以上の層と、TiとNを
含む1以上の層から構成され、 該皮膜のうち母材側から見て第1層が上記TiとXを含
む層、最表層が上記TiとNを含む層であることを特徴
とする多層皮膜被覆金属材料。[各層において上記X
は、夫々同一または異なってAl,Si,Cr,Fe,
Co,Ni,Nb,Mo,W,Re,Hf,Taよりな
る群から選択される1種以上である]
1. A metal material having a coating on the surface of a metal base material, wherein the coating is composed of one or more layers containing Ti and X and one or more layers containing Ti and N. A multilayer coating metal material, wherein the first layer is a layer containing Ti and X, and the outermost layer is a layer containing Ti and N, as viewed from the base material side. [X in each layer
Are the same or different from Al, Si, Cr, Fe,
At least one selected from the group consisting of Co, Ni, Nb, Mo, W, Re, Hf, and Ta]
JP601794A 1994-01-24 1994-01-24 Metal material coated with multilayered film Withdrawn JPH07207459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP601794A JPH07207459A (en) 1994-01-24 1994-01-24 Metal material coated with multilayered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP601794A JPH07207459A (en) 1994-01-24 1994-01-24 Metal material coated with multilayered film

Publications (1)

Publication Number Publication Date
JPH07207459A true JPH07207459A (en) 1995-08-08

Family

ID=11626935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP601794A Withdrawn JPH07207459A (en) 1994-01-24 1994-01-24 Metal material coated with multilayered film

Country Status (1)

Country Link
JP (1) JPH07207459A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429058B1 (en) * 2000-04-18 2004-04-29 니뽄 가이시 가부시키가이샤 Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
KR100835387B1 (en) * 2006-09-19 2008-06-04 한국야금 주식회사 PDF multilayer film cutting tool with high hardness and high temperature oxidation resistance
JP2014505369A (en) * 2011-02-01 2014-02-27 エーエスエムエル ネザーランズ ビー.ブイ. Substrate table, lithographic apparatus, and device manufacturing method
WO2016088329A1 (en) * 2014-12-02 2016-06-09 株式会社デンソー Coating structure, heat exchanger, and method for manufacturing heat exchanger
RU2596522C1 (en) * 2015-03-13 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method for production of multi-layer coating for cutting tool
WO2018010927A1 (en) * 2016-07-14 2018-01-18 Hoppe Holding Ag Component comprising a substrate and anti-corrosion coating
WO2018010926A1 (en) * 2016-07-14 2018-01-18 Hoppe Holding Ag Process for producing a component having anti-corrosion coating
CN116121702A (en) * 2023-03-29 2023-05-16 纳狮新材料有限公司杭州分公司 TiSiNiYN coating for enhancing high-temperature wear resistance

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429058B1 (en) * 2000-04-18 2004-04-29 니뽄 가이시 가부시키가이샤 Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
KR100835387B1 (en) * 2006-09-19 2008-06-04 한국야금 주식회사 PDF multilayer film cutting tool with high hardness and high temperature oxidation resistance
JP2014505369A (en) * 2011-02-01 2014-02-27 エーエスエムエル ネザーランズ ビー.ブイ. Substrate table, lithographic apparatus, and device manufacturing method
US9329497B2 (en) 2011-02-01 2016-05-03 Asml Netherlands B.V. Substrate table, lithographic apparatus and device manufacturing method
WO2016088329A1 (en) * 2014-12-02 2016-06-09 株式会社デンソー Coating structure, heat exchanger, and method for manufacturing heat exchanger
RU2596522C1 (en) * 2015-03-13 2016-09-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" Method for production of multi-layer coating for cutting tool
WO2018010927A1 (en) * 2016-07-14 2018-01-18 Hoppe Holding Ag Component comprising a substrate and anti-corrosion coating
WO2018010926A1 (en) * 2016-07-14 2018-01-18 Hoppe Holding Ag Process for producing a component having anti-corrosion coating
CN116121702A (en) * 2023-03-29 2023-05-16 纳狮新材料有限公司杭州分公司 TiSiNiYN coating for enhancing high-temperature wear resistance

Similar Documents

Publication Publication Date Title
EP1982830B1 (en) Clad textured metal substrate for forming epitaxial thin film thereon and method for manufacturing the same
US20080199349A1 (en) High performance alloys with improved metal dusting corrosion resistance
EP1217095A1 (en) Protective coating for an article used at high temperatures, particularly turbine components
EP2987888A1 (en) Ferrite stainless steel foil
JPH07207459A (en) Metal material coated with multilayered film
EP3561154B1 (en) Plated steel sheet having multilayer structure and manufacturing method therefor
US20150345041A1 (en) Iron strike plating on chromium-containing surfaces
JP4125560B2 (en) Titanium alloy material with excellent hydrogen absorption resistance
KR102680966B1 (en) Corrosion- and erosion-resistant coatings for turbine blades of gas turbines
US12209315B2 (en) Compositions and methods for forming damage-resistant multilayered hydrogen permeation barriers
EP0358685B1 (en) Coated near -alpha titanium articles
JP5114672B2 (en) Laminated steel sheet and manufacturing method thereof
JP3545051B2 (en) Zn-Mg based plated steel sheet excellent in corrosion resistance and manufacturing method
EP0480404A2 (en) Corrosion-resistant and heat-resistant metal composite and method of producing
EP0745699A1 (en) Multilayer coating of a nitride-containing compound and method for producing it
JP4485570B2 (en) Barrier film for flexible copper substrate and sputtering target for barrier film formation
JP4098922B2 (en) Aluminum clad material and aluminum foil for electrolytic capacitor electrode
KR0166099B1 (en) Corrosion-resistant aluminum-silicon-chromium plated steel sheet and manufacturing method thereof
JPH0621348B2 (en) Alloyed zinc plated steel sheet and its manufacturing method
JPH0881761A (en) Zn-mg alloy plated steel sheet and production thereof
JPH07138771A (en) Multilayered film coated metallic material
EP4265807A1 (en) Galvanized steel sheet with excellent surface quality and electrical resistance spot weldability and method for manufacturing same
JP4761576B2 (en) Au-containing surface-treated Ti material
JPH05198575A (en) Corrosion-resistant a1 or a1 alloy material
Sonobe et al. Corrosion resistance and corrosion fatigue strength of carbon steel coated with chromium nitride by multistage PVD method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403