[go: up one dir, main page]

JPH07207337A - Method for producing high strength duplex stainless steel - Google Patents

Method for producing high strength duplex stainless steel

Info

Publication number
JPH07207337A
JPH07207337A JP6021993A JP2199394A JPH07207337A JP H07207337 A JPH07207337 A JP H07207337A JP 6021993 A JP6021993 A JP 6021993A JP 2199394 A JP2199394 A JP 2199394A JP H07207337 A JPH07207337 A JP H07207337A
Authority
JP
Japan
Prior art keywords
stainless steel
duplex stainless
cold working
corrosion resistance
working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6021993A
Other languages
Japanese (ja)
Inventor
Terutaka Tsumura
輝隆 津村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6021993A priority Critical patent/JPH07207337A/en
Publication of JPH07207337A publication Critical patent/JPH07207337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

(57)【要約】 【目的】 CO2 −H2S−Cl- 環境下の深層油井,ガス
井用の油井検層線等としても十分に満足できる高耐食性
高強度2相ステンレス鋼材を提供する。 【構成】 Cuを含有するオ−ステナイト・フェライト系
2相ステンレス鋼の溶体化処理材に、断面減少率35%
以上の冷間加工を施した後、一旦50℃/sec以上の加熱
速度で800〜1150℃の温度域まで加熱してからこ
れを急冷し、次いで300〜700℃での温間加工を施
した後に再び冷間加工を施すか、あるいはこの冷間加工
の後に450〜700℃で時効処理する。
(57) Abstract: OBJECTIVE CO 2 -H 2 S-Cl - also provides a sufficiently high corrosion resistance and high strength duplex stainless steel capable of satisfying a deep oil well environment, oil well logging lines and the like for gas wells . [Composition] Austenite / ferrite duplex stainless steel solution-containing material containing Cu, with a cross-section reduction rate of 35%
After performing the above cold working, it was once heated to a temperature range of 800 to 1150 ° C. at a heating rate of 50 ° C./sec or more, then rapidly cooled, and then warm worked at 300 to 700 ° C. After that, cold working is performed again, or after this cold working, aging treatment is performed at 450 to 700 ° C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、炭酸ガス腐食環境や
応力腐食環境においても優れた耐食性を発揮すると共に
高い強度をも兼ね備え、例えば油井検層線等としても十
分に満足できるオ−ステナイト・フェライト系2相ステ
ンレス鋼材の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention exhibits an excellent corrosion resistance even in a carbon dioxide gas corrosive environment and a stress corrosive environment and also has a high strength. The present invention relates to a method for manufacturing a ferritic duplex stainless steel material.

【0002】[0002]

【従来技術とその課題】近年、油井や天然ガス井は深井
戸化する傾向が著しく、これに伴い、井戸の掘削時ある
いは石油や天然ガスの生産時に井戸中へ各種の測定器,
治具を吊り下げるための“油井検層線”に対して更なる
強度の向上が要求されるようになった。加えて、産出油
や産出ガス中に湿潤な炭酸ガス(CO2),硫化水素(H2
S),塩素イオン(Cl- )等の腐食性物質を含む油井や
ガス井にまで開発の目が向けられるようになってきたこ
とから、その腐食対策についても重要性を一段と増して
きている。
2. Description of the Related Art In recent years, oil wells and natural gas wells have tended to deepen wells. With this trend, various measuring instruments have been introduced into wells during well drilling or oil or natural gas production.
It has become necessary to further improve the strength of the "oil well logging" for suspending jigs. In addition, carbon dioxide (CO 2 ), hydrogen sulfide (H 2
S), chlorine ions (Cl - From what has come to be directed eye development to the) oil wells and gas wells containing corrosive substances, such as, has increased more importance also for the corrosion protection.

【0003】従来、油井検層線の腐食対策としては、井
戸中へ腐食抑制剤(インヒビタ−)を投入する方法が最
も一般的なものとして知られているが、この方法では十
分な成果が期待できないことが多く、また海上油井やガ
ス井等には有効に活用できないという問題点を有してい
た。
Conventionally, a method of introducing a corrosion inhibitor (inhibitor) into a well is known as the most general countermeasure for the corrosion of the well logging, but this method is expected to produce sufficient results. In many cases, it could not be done, and it could not be effectively used for offshore oil wells and gas wells.

【0004】このような事情に鑑み、最近ではより高級
な耐食性材料を用いる傾向にあり、22Cr鋼や25Cr鋼のよ
うなCr量の高いオ−ステナイト・フェライト系の2相ス
テンレス鋼の採用が注目を集めている。
In view of such circumstances, recently, there is a tendency to use higher-grade corrosion-resistant materials, and attention is paid to the use of austenite / ferrite type duplex stainless steel having a high Cr content such as 22Cr steel and 25Cr steel. Are gathering.

【0005】しかし、このオ−ステナイト・フェライト
系2相ステンレス鋼は、鋼材製造の際通常に施される溶
体化処理のままでは80kgf/mm2 程度の引張強さを得る
のが精々で、深井戸用油井検層線としての強度を満足し
得ないものであった。そこで、オ−ステナイト・フェラ
イト系2相ステンレス鋼を適用するに当っては、溶体化
処理の後で更に冷間加工を施し、これによって深井戸用
油井検層線に要求される高強度を具備させているのが現
状である。
However, this austenitic ferritic duplex stainless steel is able to obtain a tensile strength of about 80 kgf / mm 2 at the solution treatment which is usually applied in the production of steel materials, and it is deep and deep. The strength as an oil well well logging line for wells could not be satisfied. Therefore, in applying the austenitic-ferritic duplex stainless steel, cold working is further performed after the solution treatment, and thereby the high strength required for the deep well oil well logging is provided. This is the current situation.

【0006】しかるに、本発明者等によって行われたオ
−ステナイト・フェライト系2相ステンレス鋼に関する
詳細な実験・研究の結果、次の事実が明らかになった。
即ち、150〜250℃といった高温の湿潤CO2 環境
下で優れた耐食性を示すオ−ステナイト・フェライト系
2相ステンレス鋼も、その環境がH2 SやCl-で汚染さ
れていると耐食性は著しく劣化してくる。このCO2
2 S−Cl- を含む油井やガス井環境下における腐食の
主たるものは応力腐食割れ(以降“SCC”と略称す
る)であるが、この場合のSCCは通常のそれとは挙動
を全く異にするものであって、Cl- の存在もさることな
がら、それ以上にH2 Sの影響が極めて大きい。
However, as a result of detailed experiments and studies conducted by the present inventors on the austenitic-ferritic duplex stainless steel, the following facts have become clear.
That is, an austenitic / ferritic duplex stainless steel showing excellent corrosion resistance in a high temperature humid CO 2 environment of 150 to 250 ° C. also has a remarkable corrosion resistance if the environment is contaminated with H 2 S or Cl −. It deteriorates. This CO 2
H 2 S-Cl - but mainly those of corrosion under oil well and gas well environments containing is stress corrosion cracking (referred to as hereinafter "SCC"), SCC in this case is usually completely different in behavior from that In addition to the presence of Cl , the influence of H 2 S is extremely large.

【0007】そして、上記事実を踏まえて更に続けられ
た検討により、次のことが解明されたのである。イ ) 溶体化処理のままのオ−ステナイト・フェライト系
2相ステンレス鋼では、環境中のH2 S分圧が10気圧
を超えるとSCCを発生するようになる。ロ ) また、強冷間加工を施して強化したものでは、集合
組織の発達により1気圧程度のH2Sが含まれていてもS
CCを生じる。ハ ) そして、Cl- の存在はこのSCCの発生を助長する
こととなる。ニ ) その上、前述したCO2 −H2S−Cl- 環境下におけ
るオ−ステナイト・フェライト系2相ステンレス鋼は、
例えSCCを発生しないとしてもH2Sの影響でフェライ
ト域が選択的に溶解されるという所謂“選択腐食”を生
じる場合があり、この選択腐食に対しても冷間加工は少
なからぬ悪影響を及ぼしている。
Then, further studies based on the above facts have revealed the following. A) In the austenite / ferrite type duplex stainless steel that has been subjected to the solution treatment, SCC will be generated when the H 2 S partial pressure in the environment exceeds 10 atm. (B) In addition, in the case of strengthening by subjecting to strong cold working, even if H 2 S of about 1 atm is contained due to the development of texture, S
Produce a CC. C) Then, the presence of Cl promotes the generation of this SCC. D) Moreover, the above-mentioned austenite-ferrite duplex stainless steel in the CO 2 —H 2 S—Cl environment is
Even if SCC is not generated, so-called "selective corrosion" may occur in which the ferrite region is selectively dissolved due to the effect of H 2 S, and cold working also has a considerable adverse effect on this selective corrosion. ing.

【0008】このように、オ−ステナイト・フェライト
系2相ステンレス鋼には、強度不足を補うために強冷間
加工を施すとH2Sの存在する環境下での耐食性が著しく
劣化するという問題が認められたのである。
As described above, when the austenite-ferrite duplex stainless steel is subjected to the strong cold working in order to make up for the insufficient strength, the corrosion resistance in the environment where H 2 S exists is significantly deteriorated. Was recognized.

【0009】そこで、本発明が目的としたのは、“H2
共存環境下でのSCCや選択腐食に対する抵抗性能”に
悪影響を及ぼす冷間加工の加工量を極力低減できるオ−
ステナイト・フェライト系2相ステンレス鋼の強化手段
を確立し、例えば分圧で1気圧程度以下の微量H2Sを含
むCO2 −H2S−Cl- 環境下の深層油井,ガス井用の油
井検層線等としても十分に満足できる高耐食性高強度鋼
材を提供することである。
Therefore, the object of the present invention is "H 2 S
The amount of cold working that adversely affects the resistance to SCC and selective corrosion under coexisting environment can be reduced as much as possible.
Establishing a reinforcing means of austenite-ferrite duplex stainless steel, for example, the partial pressure in CO 2 -H 2 S-Cl containing trace H 2 S of more than about 1 atm - deep oil well environment, oil wells for gas wells It is an object of the present invention to provide a high-corrosion-resisting and high-strength steel material that is sufficiently satisfactory as a logging wire and the like.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく試行錯誤を繰り返しながら更に研究を重ねた
結果、以下のような新しい知見を得ることができた。 a) オ−ステナイト・フェライト系2相ステンレス鋼の
中でも特に“Cuを含有するもの”の溶体化処理材は、強
冷間加工を施してから急速加熱・急冷処理することによ
り超微細な再結晶粒組織材となり、更にこの処理に続い
て温間加工を施せば、組織微細化がもたらす作用に温間
加工歪、更にはこの温間加工歪と温間加工時のCuの析出
による作用が重畳されて強度が大幅に向上する。しか
も、これらの処理によっても、CO2 −H2S−Cl- を含
んだ油井,ガス井環境下での耐SCC性や耐選択腐食性
は良好に維持される。そのため、更なる強化のために冷
間加工を施す場合でも、小さな冷間加工量で十分に大き
な強度レベルを達成できるので、この冷間加工後の耐食
性も従来の再加熱溶体化処理後に強冷間加工を施す方法
(以降“従来法”と呼ぶ)によるものに比較して良好と
なる。
Means for Solving the Problems The present inventor has obtained the following new findings as a result of further research by repeating trial and error in order to achieve the above object. a) Among the austenitic / ferritic duplex stainless steels, the solution-treated material of "containing Cu" is ultra-fine recrystallized by subjecting it to strong cold working followed by rapid heating / quenching. If it becomes a grain structure material and if further warm working is performed after this treatment, the effect of microstructure refinement is superposed by the warm working strain, and the effect of this warm working strain and the precipitation of Cu during warm working. The strength is greatly improved. Moreover, even by these treatments, the SCC resistance and the selective corrosion resistance in an oil well or gas well environment containing CO 2 —H 2 S—Cl 2 are maintained well. Therefore, even if cold working is performed for further strengthening, a sufficiently large strength level can be achieved with a small amount of cold working, so the corrosion resistance after cold working is also strong after cold remelting. It is better than that obtained by the method of performing hot working (hereinafter referred to as "conventional method").

【0011】b) この場合、急速加熱・急冷処理の前に
施す冷間加工の加工率を断面減少率で35%以上とし、
また急速加熱時の加熱速度を50℃/sec以上、加熱到達
温度を800〜1150℃にそれぞれ調整した場合に
は、耐SCCと耐選択腐食性は殊更に良好となる。
B) In this case, the reduction rate of the cold working performed before the rapid heating / quenching treatment is 35% or more in terms of cross-section reduction rate,
Further, when the heating rate during rapid heating is adjusted to 50 ° C./sec or higher and the ultimate heating temperature is adjusted to 800 to 1150 ° C., respectively, the SCC resistance and the selective corrosion resistance become particularly good.

【0012】c) また、強冷間加工とそれに続く急速加
熱・急冷処理,温間加工及び冷間加工を施した前記2相
ステンレス鋼を、その後に時効処理すると、更なるCuの
析出によって材料強度は一段と向上する。従って、この
場合には、所要強度を得るために施す“温間加工後の冷
間加工”の加工量を一層小さくできるで、耐SCC性と
耐選択腐食性は従来法によるものと比較して極めて良好
となる。
C) Further, if the duplex stainless steel that has been subjected to strong cold working followed by rapid heating / quenching, warm working and cold working is then aged, further Cu precipitation causes the material to precipitate. Strength is further improved. Therefore, in this case, the amount of "cold working after warm working" performed to obtain the required strength can be further reduced, and the SCC resistance and selective corrosion resistance are better than those obtained by the conventional method. It will be extremely good.

【0013】本発明は、上記知見等に基づいてなされた
ものであって、「Cuを含有するオ−ステナイト・フェラ
イト系2相ステンレス鋼の溶体化処理材に、 断面減少率
35%以上の冷間加工を施した後、 一旦50℃/sec以上
の加熱速度で800〜1150℃の温度域まで加熱して
からこれを急冷し、 次いで300〜700℃での温間加
工を施した後に再び冷間加工を施すか、 あるいはこの冷
間加工の後に450〜700℃で時効処理することによ
って、 耐CO2 腐食性,耐SCC性,耐選択腐食性等の
耐食性に優れると共に強度が十分に高いオ−ステナイト
・フェライト系2相ステンレス鋼材(線,棒,板,管材
等)を安定して得られるようにした点」に大きな特徴を
有している。
The present invention has been made on the basis of the above findings and the like. "A solution-treated material of austenite-ferrite duplex stainless steel containing Cu is used as a solution treatment material having a cross-section reduction rate of 35% or more. After hot working, it is heated once to a temperature range of 800 to 1150 ° C at a heating rate of 50 ° C / sec or more, then rapidly cooled, and then warm worked at 300 to 700 ° C and then cooled again. By performing hot working or aging treatment at 450 to 700 ° C. after this cold working, excellent corrosion resistance such as CO 2 corrosion resistance, SCC resistance, and selective corrosion resistance and sufficiently high strength are obtained. -Stainite / ferrite type duplex stainless steel materials (wires, rods, plates, pipes, etc.) can be stably obtained. "

【0014】更に詳述すれば、本発明は、次に示すよう
な各技術的手段とそれによってもたらされる作用・効果
とを総合的・有機的に組み合わせることによって完成さ
れたものである。即ち、 1) オ−ステナイト・フェライト系2相ステンレス鋼の
中で、特にCuを含有すると共に炭化物やσ相等の析出物
が基地組織中に固溶した所謂“溶体化処理材”を選定
し、これに所定の強冷間加工を施してから適正な温度域
に急速加熱し急冷すると、炭化物やσ相が固溶した超微
細な再結晶粒が得られるが、更にこの急冷材に対し粗大
な炭化物やσ相の析出を見ることのないような適正な温
間加工を施すと、微細組織と温間加工歪、更には温間加
工時のCuの析出との重畳作用で強度が大幅に向上する。
More specifically, the present invention has been completed by comprehensively and organically combining the following technical means and the actions and effects brought by them. That is, 1) Among the austenite / ferrite type duplex stainless steels, a so-called “solution treatment material” is selected which contains Cu in particular and precipitates such as carbides and σ phase in the matrix structure. If this is subjected to the specified strong cold working, then rapidly heated to an appropriate temperature range and rapidly cooled, ultrafine recrystallized grains in which carbides and σ phase are formed as a solid solution are obtained. When proper warm working is performed so that precipitation of carbides and σ phase is not observed, strength is significantly improved by superposition of fine structure and warm working strain, and further Cu precipitation during warm working. To do.

【0015】2) そして、このようにして得られる材料
は、更に一層大きな強度を付与するために冷間加工する
とき、その加工量は通常の再加熱溶体化処理材をベ−ス
としたものに比べて大幅な低減が可能であり、従って分
圧で1気圧程度以下の微量のH2S含有環境下での耐食性
の劣化を防止することができる。
2) When the material thus obtained is cold-worked in order to impart even greater strength, the working amount is based on the usual reheat solution heat-treated material. It is possible to significantly reduce the corrosion resistance, and thus it is possible to prevent the corrosion resistance from deteriorating in an environment containing a minute amount of H 2 S at a partial pressure of about 1 atm or less.

【0016】3) 更に、上記冷間加工に続いて時効処理
を行えば、微細組織,凍結されていた温間加工歪及び温
間加工時に析出したCuの作用、更には冷間加工歪の作用
とが時効により析出するCuの作用と重畳し、極めて大き
く材料強度が上昇する。従って、この場合、所要強度を
得るための冷間での加工量は通常の再加熱溶体化処理材
をベ−スとしたものに比べて大幅に低減できることとな
り、耐食性の劣化は殆んど生じない。
3) Further, if an aging treatment is performed after the cold working, the microstructure, the warm working strain that has been frozen, the action of Cu precipitated during the warm working, and the action of the cold working strain are performed. And superimpose with the action of Cu that precipitates by aging, and the material strength increases significantly. Therefore, in this case, the cold working amount for obtaining the required strength can be significantly reduced as compared with the case where the normal reheat solution treatment material is used as the base, and deterioration of the corrosion resistance hardly occurs. Absent.

【0017】ところで、上述のような思想の下に完成さ
れた本発明法が適用対象とする“オ−ステナイト・フェ
ライト系2相ステンレス鋼”は、Cuを含有するものであ
ればその種類が格別に制限されるものではないが、Cu含
有量は強度並びに耐食性を向上させるために 0.2重量%
以上とするのが好ましく、一方、熱間加工性の劣化を考
慮すればその上限は 3.0重量%が適当であると言える。
By the way, the "austenitic-ferrite duplex stainless steel" to which the method of the present invention, which has been completed under the above-described concept, is applicable is of a type that is special if it contains Cu. The Cu content is not limited to 0.2% by weight in order to improve strength and corrosion resistance.
It is preferable that the above amount be satisfied. On the other hand, considering the deterioration of the hot workability, the upper limit of 3.0% by weight is appropriate.

【0018】また、CO2 −H2S−Cl- 環境下での優れ
た耐SCC性と耐選択腐食性を得るためには、Crを20重
量%以上、Moを 1.5重量%以上、Niを6重量%以上、そ
してNを 0.1重量%以上含んだものであることが好まし
く、逆にMn量は 1.5重量%以下であることが望ましい。
Further, in order to obtain excellent SCC resistance and selective corrosion resistance in a CO 2 -H 2 S-Cl - environment, Cr is 20 wt% or more, Mo is 1.5 wt% or more, and Ni is 1.5 wt% or more. It is preferable that the content of Nn is 6 wt% or more and the content of N is 0.1 wt% or more, and conversely, the amount of Mn is preferably 1.5 wt% or less.

【0019】更に、オ−ステナイト・フェライト系2相
ステンレス鋼がWを含む場合には一層良好な耐SCC性
と耐選択腐食性を発揮するが、Wの多量添加は熱間加工
性を劣化させるのでその上限は4重量%程度とすること
が好ましい。C量については、所望の耐SCC性が得ら
れるように 0.1重量%未満(好ましくは0.03重量%以
下)とするのが望ましい。そして、Si含有量は、脱酸に
十分であってしかも延性に害を及ぼすことがなく耐食性
も確保できるところの、1重量%以下の必要最小限の量
に抑えるのが望ましい。
Further, when the austenitic-ferritic duplex stainless steel contains W, it exhibits better SCC resistance and selective corrosion resistance, but the addition of a large amount of W deteriorates the hot workability. Therefore, the upper limit is preferably about 4% by weight. The amount of C is preferably less than 0.1% by weight (preferably 0.03% by weight or less) so that the desired SCC resistance can be obtained. The Si content is preferably controlled to a necessary minimum amount of 1% by weight or less, which is sufficient for deoxidation, does not impair the ductility, and ensures corrosion resistance.

【0020】続いて、本発明において鋼材の製造条件を
前記の如くに限定した理由を詳述する。まず、急速加熱
・急冷処理に先立ってオ−ステナイト・フェライト系2
相ステンレス鋼溶体化処理材に施す冷間加工の加工量を
断面減少率で35%以上としたのは、これを下回る冷間
加工量では次の急速加熱・急冷処理で整細粒の再結晶組
織が得られず、耐SCC性や耐選択腐食性の劣化を招く
ためである。なお、冷間加工量の上限量は特に定める必
要はなく、設備面から決まるものである。
Next, the reason why the manufacturing conditions of the steel material are limited as described above in the present invention will be described in detail. First, prior to the rapid heating / quenching treatment, the austenite / ferrite type 2
The reduction amount of the cross-section reduction rate applied to the duplex stainless steel solution treated material was set to 35% or more because the cold-working amount lower than this amount was the recrystallization of fine grains in the next rapid heating / quenching treatment. This is because the structure cannot be obtained and the SCC resistance and the selective corrosion resistance are deteriorated. The upper limit of the cold working amount does not have to be specified in particular, and is determined from the aspect of equipment.

【0021】ところで、上記溶体化処理材は、通常の再
加熱溶体化処理材は勿論のこと、熱間加工の後で直ちに
急冷処理した直接溶体化処理材であっても構わない。ま
た、本発明で言う「断面減少率」とは次式で定義される
ものである。 断面減少率(%)={(S0−S1)/S0}×100 但し、S1:加工された鋼材の主加工方向に直角をなす断
面の面積,S0:素材の主加工方向に直角をなす断面の面
積。
By the way, the solution heat treated material may be not only a normal reheat solution heat treated material but also a direct solution heat treated material immediately quenched after hot working. Further, the “area reduction rate” referred to in the present invention is defined by the following equation. Area reduction rate (%) = {(S 0 −S 1 ) / S 0 } × 100, where S 1 is the area of the cross section perpendicular to the main processing direction of the processed steel, S 0 is the main processing direction of the material. The area of the cross section perpendicular to.

【0022】次に、溶体化処理材を冷間加工した後の急
速加熱処理における加熱速度を50℃/sec以上としたの
は、これを下回る加熱速度では再結晶粒が成長して粗大
化し高強度化に有効でなくなることに加えて、耐SCC
性や耐選択腐食性の劣化を生じるためである。なお、こ
の加熱速度の上限も特に定める必要はなく、やはり設備
面から決まるものである。
Next, the heating rate in the rapid heat treatment after cold working of the solution heat treated material is set to 50 ° C./sec or more, because the recrystallized grains grow and coarsen at a heating rate lower than this. In addition to not being effective for strengthening, SCC resistance
This is because the deterioration of corrosion resistance and selective corrosion resistance occurs. The upper limit of the heating rate does not have to be set in particular, either, and is also determined from the aspect of equipment.

【0023】そして、上記急速加熱処理での加熱温度を
800〜1150℃に限定した理由は、800℃を下回
る温度では冷間加工組織がそのまま残ったり再結晶が不
十分となることに加え、炭化物やσ相が析出する場合が
あって耐SCC性並びに耐選択腐食性の劣化を来たすた
めであり、一方、1150℃を超える温度では再結晶粒
が粗大化してやはり高強度化に有効でなくなり、更に耐
SCC性や耐選択腐食性の劣化を生じるためである。な
お、800〜1150℃での保持は、微細組織を得るた
めに20秒以内とすることが望ましい。
The reason why the heating temperature in the above rapid heat treatment is limited to 800 to 1150 ° C. is that the cold worked structure remains as it is or the recrystallization becomes insufficient at a temperature below 800 ° C. Or σ phase may be precipitated, resulting in deterioration of SCC resistance and selective corrosion resistance. On the other hand, at a temperature higher than 1150 ° C., recrystallized grains are coarsened and are no longer effective for high strength. Further, the SCC resistance and the selective corrosion resistance are deteriorated. It is desirable that the holding at 800 to 1150 ° C. be within 20 seconds in order to obtain a fine structure.

【0024】急速加熱処理後に急冷するのは、微細再結
晶組織を維持して高強度化を図ると共に、冷却時に炭化
物やσ相等の析出を防止して耐SCC性や耐選択腐食性
の劣化を防ぐためである。急冷手段としては、上記目的
が達成できるものであれば水冷,油冷等の何れによって
も良い。
The rapid cooling after the rapid heat treatment is intended to maintain the fine recrystallized structure to increase the strength and prevent the precipitation of carbides and σ phase during cooling to prevent the deterioration of SCC resistance and selective corrosion resistance. This is to prevent it. The quenching means may be water cooling, oil cooling or the like as long as the above object can be achieved.

【0025】温間加工は300〜700℃の温度域で行
うが、これは、300℃を下回る温度域での温間加工で
は冷間加工した場合と同様に集合組織が発達して耐SC
C性や耐選択腐食性が劣化するためであり、一方、70
0℃を超える温度域での温間加工では温間加工歪が解放
されてしまうことに加えて、温間加工時に析出するCuが
粗大化して高強度化に有効でなくなるからである。
The warm working is carried out in the temperature range of 300 to 700 ° C. In the warm working in the temperature range of less than 300 ° C., the texture develops and the SC resistance is improved as in the case of the cold working.
This is because the C property and the selective corrosion resistance are deteriorated.
This is because the warm working strain is released in the warm working in the temperature range exceeding 0 ° C., and Cu precipitated during the warm working becomes coarse and is not effective for increasing the strength.

【0026】更に、必要により実施される時効処理は4
50〜700℃の温度域で行なわれる。これは、450
℃を下回る温度での時効処理ではCuの析出が十分でな
く、一方、700℃を超える温度での時効処理では、析
出したCuが粗大化することに加えて、温間加工歪や冷間
加工歪が解放されるために高強度化に有効でなくなるか
らである。しかも、700℃を超える温度で長時間時効
処理を行うと、粗大な炭化物やσ相の析出が生じて耐S
CC性,耐選択腐食性も劣化する。
Furthermore, the aging treatment carried out as required is 4
It is performed in a temperature range of 50 to 700 ° C. This is 450
Precipitation of Cu is not sufficient in the aging treatment at a temperature lower than ℃, while in the aging treatment at a temperature higher than 700 ℃, in addition to coarsening of the precipitated Cu, warm working strain and cold working This is because the strain is released and it is no longer effective for increasing the strength. Moreover, if the aging treatment is carried out at a temperature higher than 700 ° C. for a long time, coarse carbides and σ phase are precipitated and the S resistance is increased.
CC property and selective corrosion resistance also deteriorate.

【0027】ところで、本発明法における“温間加工後
の冷間加工”での加工量は、従来の再加熱溶体化処理し
たものに冷間加工を施して同一強度レベルを得る場合に
比べて著しく小さくすることができるので、耐食性の劣
化を防止する上で極めて有効となる。
By the way, the processing amount in the "cold working after warm working" in the method of the present invention is higher than that in the case where the conventional reheated solution treatment is subjected to cold working to obtain the same strength level. Since it can be made extremely small, it is extremely effective in preventing deterioration of corrosion resistance.

【0028】次いで、実施例によって本発明を比較例と
対比しながら説明する。
Next, the present invention will be described with reference to Examples in comparison with Comparative Examples.

【実施例】【Example】

〔試験例1〕まず、表1に示される成分組成のオ−ステ
ナイト・フェライト系2相ステンレス鋼(A〜Cの3
種)の外径:8.5mmの再加熱溶体化仕上線材を準備した。
[Test Example 1] First, an austenitic / ferritic duplex stainless steel (A to C 3) having the composition shown in Table 1 was prepared.
A reheated solution-finished wire rod having an outer diameter of 8.5 mm was prepared.

【0029】[0029]

【表1】 [Table 1]

【0030】次に、これらの線材に対して表2に示す加
工・熱処理を施し、それぞれ引張強さを測定した。表2
に、加工・熱処理の条件と共に、引張強さの測定結果を
示す。
Next, the processing and heat treatment shown in Table 2 were applied to these wire rods, and the tensile strengths were measured. Table 2
The results of tensile strength measurements are shown in Fig. 1 along with the conditions of processing and heat treatment.

【0031】[0031]

【表2】 [Table 2]

【0032】表2に示される結果からは、本発明に係る
処理によってオ−ステナイト・フェライト系2相ステン
レス鋼の著しい高強度化がなされることや、また小さな
冷間加工量で“従来の再加熱溶体化処理材に大きな冷間
加工量を施したもの”に匹敵する高強度の線材を得られ
ることが確認できる。
The results shown in Table 2 indicate that the treatment according to the present invention significantly strengthens the austenite-ferrite duplex stainless steel, and that the amount of cold work is "conventional". It can be confirmed that it is possible to obtain a wire rod having a high strength comparable to that obtained by subjecting a heat-solution treated material to a large cold working amount.

【0033】〔試験例2〕前記表1のA鋼から成る再加
熱溶体化仕上線材(外径:7.5mm)を準備し、表3に示す
加工・熱処理を施してから、それぞれ引張強さを測定し
た。表3に、加工・熱処理の条件と共に、引張強さの測
定結果を示す。
[Test Example 2] A reheated solution-annealed finish wire (outer diameter: 7.5 mm) made of the steel A in Table 1 was prepared, and after the working and heat treatment shown in Table 3 were performed, the tensile strength of each wire was measured. It was measured. Table 3 shows the measurement results of the tensile strength together with the processing and heat treatment conditions.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示される結果からも、本発明に係る
処理によりオ−ステナイト・フェライト系2相ステンレ
ス鋼の著しい高強度化が安定してなされ、高強度の線材
を容易に得られることが明らかである。
From the results shown in Table 3, it can be seen that the treatment according to the present invention can stably significantly increase the strength of the austenite-ferrite duplex stainless steel, and easily obtain a high-strength wire. it is obvious.

【0036】〔試験例3〕前記表1中のC鋼から成る再
加熱溶体化仕上板材(板厚6〜30mm)を準備し、表4に
示す加工・熱処理を施してから、それぞれ引張強さを測
定した。更に、加工・熱処理後の板材から圧延方向と直
角に“2mm厚×10mm幅×75mm長”の試験片を採取し
て耐食性試験を実施した。
[Test Example 3] A reheated solution-finished sheet material (sheet thickness 6 to 30 mm) made of the C steel in Table 1 above was prepared and subjected to the processing and heat treatment shown in Table 4 and then the tensile strengths thereof, respectively. Was measured. Further, a test piece of "2 mm thickness x 10 mm width x 75 mm length" was taken from the plate material after processing / heat treatment at right angles to the rolling direction, and a corrosion resistance test was carried out.

【0037】[0037]

【表4】 [Table 4]

【0038】なお、耐食性試験は、図1に示すように試
験片1 を4つの支持点2,2,…で支持する4点支持ビ−ム
治具3 を用い、前記試験片1 にT型ネジ4 で引張強さの
65%に相当する応力を負荷した状態で“H2S分圧を種
々に変えたH2S-5気圧CO2-5%NaCl(液温210℃)”
中に120時間浸漬し、SCC及び/又はフェライト域
の選択腐食の有無を調査する方法によった。
In the corrosion resistance test, as shown in FIG. 1, a T-shaped test piece 1 was used by using a 4-point support beam jig 3 for supporting the test piece 1 at four support points 2, 2, .... "H 2 S-5 atmospheric pressure CO 2 -5% NaCl (liquid temperature 210 ° C) with various H 2 S partial pressures" with a stress equivalent to 65% of the tensile strength being applied with the screw 4.
It was immersed in the solution for 120 hours, and the presence or absence of selective corrosion in the SCC and / or ferrite region was investigated.

【0039】この耐食性試験結果を、引張強さと共に表
4にまとめて示す。表4に示される結果からも、本発明
法に従った処理を施したものは高強度を有しており、ま
た同一強度レベルである従来の“再加熱溶体化処理+強
冷間加工処理材”に比べても耐食性が良好なことを確認
できる。
The results of this corrosion resistance test are summarized in Table 4 together with the tensile strength. The results shown in Table 4 also show that the material subjected to the treatment according to the method of the present invention has a high strength, and has the same strength level as the conventional "reheat solution treatment + strong cold work treatment material". It can be confirmed that the corrosion resistance is better than that of ".

【0040】[0040]

【効果の総括】以上に説明した如く、この発明によれ
ば、湿潤なCO2 ,H2S,Cl- 等の腐食性物質を含む深
層油井,ガス井用の油井検層線等としても十分に満足で
きる優れた耐食性と高強度を備えたオ−ステナイト・フ
ェライト系2相ステンレス鋼材を安定製造することが可
能となるなど、産業上有用な効果がもたらされる。
As described above [Summary of effects] According to the present invention, wet CO 2, H 2 S, Cl - deep oil wells containing corrosive substances such as, as oil well logging lines and the like for gas well enough It is possible to stably produce an austenitic / ferrite-based duplex stainless steel material having excellent corrosion resistance and high strength, and industrially useful effects are brought about.

【図面の簡単な説明】[Brief description of drawings]

【図1】4点曲げ腐食試験の説明図である。FIG. 1 is an explanatory diagram of a 4-point bending corrosion test.

【符号の説明】[Explanation of symbols]

1 試験片 2 支持点 3 4点支持ビ−ム治具 4 T型ネジ 1 Test piece 2 Support point 3 4 point support beam jig 4 T type screw

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼の溶体化処理材に、断面減少率3
5%以上の冷間加工を施した後、一旦50℃/sec以上の
加熱速度で800〜1150℃の温度域まで加熱してか
らこれを急冷し、次いで300〜700℃での温間加工
を施した後に再び冷間加工を施すことを特徴とする、高
強度2相ステンレス鋼材の製造方法。
1. A cross-section reduction rate of 3 is applied to a solution-treated material of austenite / ferrite duplex stainless steel containing Cu.
After performing cold working of 5% or more, once heat at a heating rate of 50 ° C / sec or more to a temperature range of 800 to 1150 ° C, quench it, and then warm work at 300 to 700 ° C. A method for producing a high-strength duplex stainless steel material, characterized by performing cold working again after the hot working.
【請求項2】 Cuを含有するオ−ステナイト・フェライ
ト系2相ステンレス鋼の溶体化処理材に、断面減少率3
5%以上の冷間加工を施した後、一旦50℃/sec以上の
加熱速度で800〜1150℃の温度域まで加熱してか
らこれを急冷し、次いで300〜700℃での温間加工
を施した後に再び冷間加工を施し、その後450〜70
0℃で時効処理することを特徴とする、高強度2相ステ
ンレス鋼材の製造方法。
2. A cross-section reduction ratio of 3 is applied to a solution-treated material of austenite / ferrite duplex stainless steel containing Cu.
After performing cold working of 5% or more, once heat at a heating rate of 50 ° C / sec or more to a temperature range of 800 to 1150 ° C, quench it, and then warm work at 300 to 700 ° C. After that, cold working is performed again, and then 450 to 70
A method for producing a high-strength duplex stainless steel material, characterized by performing an aging treatment at 0 ° C.
JP6021993A 1994-01-21 1994-01-21 Method for producing high strength duplex stainless steel Pending JPH07207337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6021993A JPH07207337A (en) 1994-01-21 1994-01-21 Method for producing high strength duplex stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6021993A JPH07207337A (en) 1994-01-21 1994-01-21 Method for producing high strength duplex stainless steel

Publications (1)

Publication Number Publication Date
JPH07207337A true JPH07207337A (en) 1995-08-08

Family

ID=12070554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6021993A Pending JPH07207337A (en) 1994-01-21 1994-01-21 Method for producing high strength duplex stainless steel

Country Status (1)

Country Link
JP (1) JPH07207337A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014001A1 (en) 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. Process for production of duplex stainless steel tubes
WO2010082395A1 (en) 2009-01-19 2010-07-22 住友金属工業株式会社 Process for production of duplex stainless steel pipe
JP2012188727A (en) * 2011-03-14 2012-10-04 Nippon Steel & Sumikin Stainless Steel Corp High-strength high-corrosion resistance stainless steel bolt excellent in stress corrosion crack resistance, and its manufacturing method
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
WO2018131412A1 (en) 2017-01-10 2018-07-19 Jfeスチール株式会社 Duplex stainless steel and method for producing same
US10544476B2 (en) 2014-11-27 2020-01-28 Jfe Steel Corporation Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
EP3978641A4 (en) * 2019-05-29 2022-10-26 JFE Steel Corporation Duplex stainless steel and method for manufacturing same, and duplex stainless steel pipe

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333851B2 (en) 2007-07-20 2012-12-18 Sumitomo Metal Industries, Ltd. Method for producing two-phase stainless steel pipe
WO2009014001A1 (en) 2007-07-20 2009-01-29 Sumitomo Metal Industries, Ltd. Process for production of duplex stainless steel tubes
WO2010082395A1 (en) 2009-01-19 2010-07-22 住友金属工業株式会社 Process for production of duplex stainless steel pipe
US8293037B2 (en) 2009-01-19 2012-10-23 Sumitomo Metal Industries, Ltd. Method for producing duplex stainless steel pipe
JP2012188727A (en) * 2011-03-14 2012-10-04 Nippon Steel & Sumikin Stainless Steel Corp High-strength high-corrosion resistance stainless steel bolt excellent in stress corrosion crack resistance, and its manufacturing method
US10544476B2 (en) 2014-11-27 2020-01-28 Jfe Steel Corporation Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
US11821051B2 (en) 2014-11-27 2023-11-21 Jfe Steel Corporation Apparatus line for manufacturing seamless steel pipe and tube and method of manufacturing duplex seamless stainless steel pipe
US10837073B2 (en) 2015-02-20 2020-11-17 Jfe Steel Corporation High-strength heavy-walled stainless steel seamless tube or pipe and method of manufacturing the same
US11566301B2 (en) 2016-09-02 2023-01-31 Jfe Steel Corporation Dual-phase stainless steel, and method of production thereof
WO2018043214A1 (en) 2016-09-02 2018-03-08 Jfeスチール株式会社 Duplex stainless steel and method for manufacturing same
JP6369662B1 (en) * 2017-01-10 2018-08-08 Jfeスチール株式会社 Duplex stainless steel and manufacturing method thereof
WO2018131412A1 (en) 2017-01-10 2018-07-19 Jfeスチール株式会社 Duplex stainless steel and method for producing same
US11655526B2 (en) 2017-01-10 2023-05-23 Jfe Steel Corporation Duplex stainless steel and method for producing same
EP3978641A4 (en) * 2019-05-29 2022-10-26 JFE Steel Corporation Duplex stainless steel and method for manufacturing same, and duplex stainless steel pipe

Similar Documents

Publication Publication Date Title
KR100264494B1 (en) Precipitation hardenable martensitic stainless steel
JP2826974B2 (en) Corrosion resistant duplex stainless steel
JP2002146479A (en) Wire rod for wire drawing having excellent twisting characteristic and its production method
JP4291480B2 (en) Structural steel with excellent corrosion resistance and corrosion fatigue resistance
JP2952929B2 (en) Duplex stainless steel and method for producing the same
JPH07207337A (en) Method for producing high strength duplex stainless steel
JP2861024B2 (en) Martensitic stainless steel for oil well and its production method
JP3241263B2 (en) Manufacturing method of high strength duplex stainless steel pipe
JPH0375337A (en) Martensitic stainless steel with high strength and excellent corrosion resistance
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH02217444A (en) High-strength martensitic stainless steel with excellent corrosion resistance and stress corrosion cracking resistance, and its manufacturing method
JPH07179943A (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPH0375336A (en) Martensitic stainless steel with excellent corrosion resistance and its manufacturing method
JP3417016B2 (en) Manufacturing method of high toughness martensitic stainless steel seamless steel pipe with excellent hot workability and corrosion resistance
JPH07188740A (en) Manufacturing method of high strength and high corrosion resistance austenitic metal material
JPS61227129A (en) Manufacture of high strength steel having superior resistance to sulfide stress corrosion cracking
JP3285179B2 (en) Ferritic stainless steel sheet and its manufacturing method
JPH04191320A (en) Method for manufacturing low carbon martensitic stainless steel oil country tubular goods
JPH06136442A (en) Production of high strength and high corrosion resistant austenitic wire rod
JPS6123713A (en) Production of high-strength two phase stainless steel
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JPH06271939A (en) Production of high strength duplex stainless steel wire rod
JPH0867950A (en) Martensitic stainless steel excellent in strength and toughness and its production
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081020

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081020

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091020

LAPS Cancellation because of no payment of annual fees