JPH07207254A - Cutting blade obtained by electrodeposition of abrasive grain - Google Patents
Cutting blade obtained by electrodeposition of abrasive grainInfo
- Publication number
- JPH07207254A JPH07207254A JP5457193A JP5457193A JPH07207254A JP H07207254 A JPH07207254 A JP H07207254A JP 5457193 A JP5457193 A JP 5457193A JP 5457193 A JP5457193 A JP 5457193A JP H07207254 A JPH07207254 A JP H07207254A
- Authority
- JP
- Japan
- Prior art keywords
- abrasive grains
- blade
- cutting
- base metal
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006061 abrasive grain Substances 0.000 title claims abstract description 103
- 238000005520 cutting process Methods 0.000 title claims abstract description 54
- 238000004070 electrodeposition Methods 0.000 title claims abstract description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 22
- 238000007772 electroless plating Methods 0.000 claims abstract description 12
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 11
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 3
- 238000009713 electroplating Methods 0.000 claims abstract description 3
- 229910000531 Co alloy Inorganic materials 0.000 claims abstract 4
- 239000010941 cobalt Substances 0.000 claims abstract 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract 4
- 229910017052 cobalt Inorganic materials 0.000 claims abstract 3
- 239000010953 base metal Substances 0.000 claims description 40
- 238000005219 brazing Methods 0.000 claims description 18
- 239000000126 substance Substances 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims 2
- 229910052802 copper Inorganic materials 0.000 claims 2
- 239000010949 copper Substances 0.000 claims 2
- 238000007747 plating Methods 0.000 abstract description 31
- 239000000696 magnetic material Substances 0.000 abstract description 13
- 239000002990 reinforced plastic Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 4
- 239000002184 metal Substances 0.000 abstract description 4
- 239000011152 fibreglass Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 229910003460 diamond Inorganic materials 0.000 description 5
- 239000010432 diamond Substances 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 230000005415 magnetization Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000004907 flux Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 230000005389 magnetism Effects 0.000 description 3
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002659 electrodeposit Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- GSJBKPNSLRKRNR-UHFFFAOYSA-N $l^{2}-stannanylidenetin Chemical compound [Sn].[Sn] GSJBKPNSLRKRNR-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003286 Ni-Mn Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910020813 Sn-C Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020938 Sn-Ni Inorganic materials 0.000 description 1
- 229910018732 Sn—C Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910008937 Sn—Ni Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- ALKZAGKDWUSJED-UHFFFAOYSA-N dinuclear copper ion Chemical compound [Cu].[Cu] ALKZAGKDWUSJED-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000010438 granite Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- XIKYYQJBTPYKSG-UHFFFAOYSA-N nickel Chemical compound [Ni].[Ni] XIKYYQJBTPYKSG-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
Landscapes
- Polishing Bodies And Polishing Tools (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シリコン・セラミック
ス・ガラス・石材・グラスファイバー入りの強化プラス
チック・カーボンファイバー入りの強化プラスチック・
セラミックファイバー入りの強化プラスチック等の硬脆
材料を、切断加工する切断刃物に関するものである。[Field of Industrial Application] The present invention relates to silicon, ceramics, glass, stone, reinforced plastic containing glass fiber, reinforced plastic containing carbon fiber,
The present invention relates to a cutting blade for cutting and processing hard and brittle materials such as reinforced plastic containing ceramic fibers.
【0002】[0002]
【従来の技術】従来、シリコン・セラミックス・各種フ
ァイバー入りの強化プラスチック等の硬脆材料の切断加
工には、円板形状のブレードソーはその台金の全外周
に、帯形状のバンドソーは その台金の片側刃先部全長
に、ダイヤモンド・立方窒化ほう素・炭化珪素・ほう化
チタン・アルミナ・その他の砥粒又は複合粒子の砥粒
を、メッキ法により一層に電着で固着させた切断刃が使
用されている。この切断刃の製造方法は次のようであ
る。 (イ)切断刃の台金をメッキ浴槽の底部に置く。 (ロ)メッキ浴中に砥粒をけん濁させ、そのけん濁して
いる砥粒を台金の上に自重により重力沈積させる。 (ハ)沈積した砥粒を切断刃として、適した形状と量に
するために余分の砥粒を払い落す。 (ニ)メッキ電流を短時間流して砥粒を軽く固着し仮付
けし刃先を形成する。 (ホ)砥粒で刃先形成された台金を取り出して反転し砥
粒が電着されていない下面を上に向けてメッキ浴槽の底
部に置く。 (ヘ)イ〜ニの操作を繰返して、その下面に砥粒の刃先
形成をする。 (ト)仮付けされた台金をメッキ浴槽から取り出して、
砥粒部を満足な刃先の形状にする。 (チ)刃先形成された仮付けの砥粒を、より強力に固着
するために、再度メッキ浴槽に浸漬して、メッキ電流を
大きくして長時間メッキをする。 このプロセスで製造された切断刃は 砥粒の層が一層で
台金の刃先側面に電着される。又、メッキは主にニッケ
ルメッキが使用されている。2. Description of the Related Art Conventionally, for cutting hard and brittle materials such as silicon, ceramics, and reinforced plastics containing various fibers, a disk-shaped blade saw is on the entire circumference of the base metal, and a band-shaped band saw is the base. A cutting blade in which diamond, cubic boron nitride, silicon carbide, titanium boride, alumina, or other abrasive grains or composite grains are fixed to the entire length of the blade edge on one side by electroplating by the plating method. It is used. The manufacturing method of this cutting blade is as follows. (A) Place the base metal of the cutting blade on the bottom of the plating bath. (B) Abrasive grains are suspended in the plating bath, and the suspended abrasive grains are gravity deposited on the base metal by their own weight. (C) Using the accumulated abrasive grains as a cutting blade, excess abrasive grains are blown off to obtain a suitable shape and amount. (D) Apply a plating current for a short time to lightly fix the abrasive grains and temporarily attach them to form the cutting edge. (E) The base metal having a cutting edge formed of abrasive grains is taken out, inverted, and placed on the bottom of the plating bath with the lower surface on which the abrasive grains are not electrodeposited facing upward. (F) The operations of a to d are repeated to form the cutting edge of the abrasive grains on the lower surface thereof. (G) Take out the temporarily attached base metal from the plating bath,
Make the abrasive grain part a satisfactory edge shape. (H) In order to more strongly fix the temporary abrasive grains formed with the blade edge, the temporary abrasive grains are immersed again in the plating bath to increase the plating current and perform plating for a long time. The cutting blade manufactured by this process has a single layer of abrasive grains and is electro-deposited on the side of the edge of the base metal. Nickel plating is mainly used for plating.
【0003】[0003]
(リ)砥粒電着刃先の問題 砥粒の沈漬を利用する従来の製法では、刃先の上下両側
面(1),(2)に電着されるが、刃先として必要な端
面(3)には電着されない。そのため切断するのに必要
な刃先端面(3)として性能が発揮できない。 (ヌ)刃物寿命の問題 砥粒が一層のみ電着される従来の製造方法は、砥粒の突
出しはよく切味がよい利点ははあるが この砥粒がなく
なれば刃物の寿命となる。このため台金が未だ十分使用
できる状態で刃物寿命になること、又刃物の取替え回数
が増加して作業能率が低下するなどの問題があった。 (ル)砥粒の自生作用の問題 従来の製造方法では 砥粒同志の結合と台金に接着する
ためにニッケルメッキが適しているとのことで一般に使
用されている。そのため砥粒の結合力・台金への接着力
はニッケルメッキの強度となり一定である。これは切断
される材料によつて砥粒の自生作用が変わるので、ニッ
ケルメッキの強度が高すぎて砥石の目詰まりが発生した
り、低すぎて砥粒の脱落が早くおこる。従って、限られ
た材料範囲でしか最適の自生作用が得られなかった。各
種の材料を切断加工する砥粒電着式刃物としては、ニッ
ケルメッキで固定強度が問題であった。 (オ)刃物の高い製造原価の問題 従来の製造方法では、台金の両面共 同時に砥粒を電着
し固定することができない。又、電着メッキは仮付けと
本付けの3工程を必要とする。そのため、砥粒の電着作
業にかかる長い時間が、製造原価を高くし問題であっ
た。(I) Problem of Electrodeposited Abrasive Grains In the conventional manufacturing method utilizing immersion of abrasive grains, the upper and lower side surfaces (1) and (2) of the blade edge are electrodeposited, but the end surface (3) required as a blade edge. Is not electrodeposited on. Therefore, the performance cannot be exhibited as the blade tip surface (3) necessary for cutting. (B) Problem of blade life The conventional manufacturing method, in which only one layer of abrasive grains is electrodeposited, has the advantage that the protrusion of the abrasive grains is good and the sharpness is good, but the life of the blade will be extended if these grains are eliminated. For this reason, there have been problems that the tool life is reached while the base metal is still in a sufficiently usable state, and that the number of times the tool is replaced increases and work efficiency decreases. (L) Problem of self-reaction of abrasive grains In the conventional manufacturing method, nickel plating is generally used because it is suitable for bonding the abrasive grains together and adhering to the base metal. Therefore, the binding force of the abrasive grains and the adhesive force to the base metal are the same as the nickel plating strength and are constant. This is because the autogenous action of the abrasive grains changes depending on the material to be cut, so that the strength of nickel plating is too high to cause clogging of the grindstone, or too low to cause the abrasive grains to fall off quickly. Therefore, the optimum autogenic effect was obtained only in a limited material range. As an abrasive grain electrodeposition blade for cutting various materials, nickel plating has a problem in fixing strength. (E) Problem of high manufacturing cost of blades With conventional manufacturing methods, it is not possible to electrodeposit and fix abrasive grains on both sides of the base metal at the same time. Further, electrodeposition plating requires three steps of temporary attachment and permanent attachment. Therefore, the long time required for the electrodeposition work of the abrasive grains raises the manufacturing cost, which is a problem.
【0004】[0004]
(リ)砥粒電着刃先については、その砥粒を磁性体化す
る。切断刃に用いる砥粒には、ダイヤモンド・立方窒化
ほう素・炭化ほう素・ほう化チタン・アルミナが使用さ
れているが、非磁性体のため磁化しても磁気を帯びず磁
気による吸着はしない。このため、無電解メッキで軟磁
性メッキ皮膜又は硬磁性メッキ皮膜を形成して磁性体に
する。この磁性体にすることによって磁極に吸着された
り、磁化された後の残留磁気で磁気吸着されるようにす
る。軟磁性メッキ皮膜には Ni−Fe又はNi−Fe
−Coが好ましいが、Ni又はFe−Niでもよい。硬
磁性メッキ皮膜は Co−Ni−P・Co−P・Co−
Niが好ましく、Co−Ni−Mn−P・Co−Mn−
Re−P・Co−Ni−Re−Pでもよい。皮膜の厚さ
は 砥粒が小さくて軽いものは薄くても磁化により磁気
吸着するが、大きく重いものは厚くして磁気の力を大き
くとれるようにする。このため砥粒の大きさ・重さ・磁
性皮膜の材質によって厚さを決める。(リ)砥粒電着刃
先については、磁気吸引力を利用する。 軟磁性メツキ皮膜を形成した砥粒の場合 表面に軟磁性メッキ皮膜が形成された砥粒は、軟磁性体
としての特性を持っている。(図−3)(図−4)にし
めすように砥粒をけん濁させた無電解メッキ浴槽の中に
台金(6)を浸漬する。浸漬後、台金の刃先面(1)
(2)(3)が磁極になるように電磁コイル(4)で磁
化する。その磁化によって磁極となった台金の刃先面
(1)(2)(3)へ、無電解メッキ浴中に浮遊してい
た砥粒が吸引されて磁気吸着される。磁気吸着された砥
粒は無電解メッキ浴によって、砥粒と砥粒・砥粒と台金
とが電着され固定される。ことに円板形状のブレードソ
ーは(図−3)に示す矢印方向に回転させれば全円周に
砥粒を電着で固定出来る。砥粒の希望する量を台金の刃
先面(1)(2)(3)に固定して、台金をメッキ浴槽
から取り出して台金の刃先面に電着された砥粒を刃先に
適した形状に修正をする。ことに(図−3)のような円
板形状では液面から外にでている所へ、刃先に適した凹
形状の治具をセットし修正工程を省くことができる。そ
の台金を砥粒の浮遊していない無電解メッキ浴槽に浸漬
して、砥粒と砥粒・砥粒と台金が強固に固着させるよう
に長時間メッキをする。 硬磁性メッキ皮膜を形成した砥粒の場合 表面に硬磁性メッキ皮膜が形成された砥粒は、硬磁性体
としての特性を持っている。(図−5)(図−6)に示
すように砥粒(8)の中に、台金を挿入する。挿入した
台金の刃先面(1)(2)(3)が磁極になるように電
磁コイル(4)で磁化をする。その磁化によって磁極と
なった台金の刃先面に磁気吸着されて砥粒が付着する。
付着された後、電磁コイル(4)の電流を切って、台金
を電磁コイル(4)と砥粒(8)の中から取り出す。砥
粒は硬磁性体なので磁化された後は、残留磁気が大きく
残っていて台金の刃先面に付着したままになっている。
その台金の刃先(1)(2)(3)に付着した砥粒が、
刃先として適した形状になるように修正をする。刃先の
形状修正された台金を無電解メッキ浴槽に浸漬して、砥
粒と砥粒・砥粒と台金とが強固に固着するように長時間
メッキをする。電着で固定された砥粒の結合力は、切断
加工をする材料の切削条件によって変えなければ最適条
件とならない。そのため大きい結合力を必要としないも
のは銅・銅系合金で、例えば Cu−Zn・Cu−Sn
・Cu−Ni 又は錫・錫系合金で、例えば Sn−C
o・Sn−Cu・Sn−Ni等が適している。大きい結
合力を必要とするものはニッケル・ニッケル系合金で、
Ni−W・Ni−P・Ni−Co・Ni−Mn・Ni−
Fe等が適している。このように砥粒の結合力を変える
ことによって、砥粒の目詰まりや脱落を防ぎ刃先の自生
作用と摩耗に対して最適条件が得られるものである。 (ヌ)刃物寿命に関しては、台金の刃先部と砥粒を低温
ロー付接着をする。切断速度を速くすることは 重切削
となって砥粒に大きな力がかかる。その砥粒と台金の接
着力が弱いと速く剥離して脱落するので、重切削が出来
ない。この接着力を強くするために、台金の刃先端面
(1)(2)(3)にセルフフラッシングタイプの低融
点ロー材の皮膜を形成する。このロー材皮膜の上に砥粒
を電着で固着し、台金の刃先端面(1)(2)(3)を
ロー付温度まで加熱して、ロー材を溶融し砥粒を台金に
ロー付接着し、接着力を強化する。このセルフフラッシ
ングタイプの低融点ロー材は下表のものが適している。 このロー付接着によって長時間の重切削による切断加工
をしても、砥粒の台金への接着力不足によって砥粒が脱
落して支障を来すことは無くなる。又、このロー材皮膜
は低融点でセルフフラッシングタイプなので、ロー付温
度も低くロー付用フラックスも必要としない。ダイヤモ
ンドのような砥粒でも加熱による変質もなく、フラック
ス除去のための洗浄、残留フラックスによる腐食もな
い。しかし、フラックスを使用する一般の低融点ロー材
も使用出来る。ロー付用の加熱としては、高周波誘導加
熱のように刃先端面(1)(2)(3)に集中して加熱
できる方法が好ましいが、火炎加熱でも可能である。(I) Abrasive grains With respect to the electrodeposited blade edge, the abrasive grains are made magnetic. Diamond, cubic boron nitride, boron carbide, titanium boride, and alumina are used for the abrasive grains used for the cutting blade, but they are non-magnetic and do not become magnetic even when magnetized, so they are not attracted by magnetism. . Therefore, a soft magnetic plating film or a hard magnetic plating film is formed by electroless plating to obtain a magnetic material. By using this magnetic material, it is attracted to the magnetic poles or magnetically attracted by the residual magnetism after being magnetized. Ni-Fe or Ni-Fe for soft magnetic plating film
-Co is preferred, but Ni or Fe-Ni may be used. Hard magnetic plating film is Co-Ni-P / Co-P / Co-
Ni is preferred and Co-Ni-Mn-P.Co-Mn-
Re-P / Co-Ni-Re-P may be used. The thickness of the coating is small for light and thin abrasive grains, but it is magnetically attracted by magnetization even if it is thin, but for large and heavy ones, it is thick so that the magnetic force can be increased. Therefore, the thickness is determined by the size and weight of the abrasive grains and the material of the magnetic film. (I) The magnetic attraction force is used for the abrasive grain electrodeposition blade edge. In the case of abrasive grains having a soft magnetic plating film formed The abrasive grains having a soft magnetic plating film formed on the surface have characteristics as a soft magnetic material. The base metal (6) is immersed in an electroless plating bath in which abrasive grains are suspended as shown in (Fig. 3) and (Fig. 4). After immersion, the blade edge surface of the base metal (1)
(2) Magnetization is performed by the electromagnetic coil (4) so that (3) becomes a magnetic pole. Abrasive grains floating in the electroless plating bath are attracted and magnetically attracted to the blade edge surfaces (1), (2) and (3) of the base metal that have become magnetic poles due to the magnetization. The magnetically adsorbed abrasive grains are fixed by electrodeposition of the abrasive grains, the abrasive grains, and the abrasive grains and the base metal by the electroless plating bath. In particular, the disc-shaped blade saw can be fixed in the entire circumference by electrodeposition by rotating the blade saw in the direction of the arrow shown in (Fig. 3). The desired amount of abrasive grains is fixed to the blade tip surface (1) (2) (3) of the base metal, the base metal is taken out from the plating bath, and the abrasive grain electrodeposited on the base metal blade surface is suitable for the blade tip. Correct the shape. In particular, in the case of a disc shape as shown in (Fig. 3), a concave jig suitable for the cutting edge can be set at a place protruding from the liquid surface to omit the correction step. The base metal is immersed in an electroless plating bath in which no abrasive grains are floating, and plating is performed for a long time so that the abrasive grains and the abrasive grains and the abrasive grains and the base metal are firmly fixed. In the case of abrasive particles having a hard magnetic plating film formed thereon The abrasive particles having a hard magnetic plating film formed on the surface have characteristics as a hard magnetic material. As shown in (Fig. 5) and (Fig. 6), a base metal is inserted into the abrasive grains (8). Magnetization is performed by the electromagnetic coil (4) so that the blade edges (1), (2) and (3) of the inserted base metal serve as magnetic poles. Due to the magnetization, the abrasive grains are magnetically attracted to the blade edge surface of the base metal that has become a magnetic pole.
After being attached, the electromagnetic coil (4) is turned off, and the base metal is taken out of the electromagnetic coil (4) and the abrasive grains (8). Since the abrasive grains are a hard magnetic substance, a large residual magnetism remains after being magnetized and remains attached to the edge surface of the base metal.
Abrasive grains attached to the cutting edges (1) (2) (3) of the base metal are
Modify so that the shape is suitable for the cutting edge. A base metal whose blade shape has been modified is immersed in an electroless plating bath, and plating is performed for a long time so that the abrasive grains and the abrasive grains and the abrasive grains and the base metal are firmly fixed to each other. The binding force of the abrasive grains fixed by electrodeposition is not optimum unless it is changed according to the cutting conditions of the material to be cut. Therefore, those that do not require a large bonding force are copper-copper alloys, such as Cu-Zn-Cu-Sn.
-Cu-Ni or tin-tin based alloy, for example Sn-C
o.Sn-Cu.Sn-Ni and the like are suitable. The ones that require a large bonding force are nickel-nickel alloys,
Ni-W / Ni-P / Ni-Co / Ni-Mn / Ni-
Fe or the like is suitable. By changing the binding force of the abrasive grains in this way, it is possible to prevent clogging and falling of the abrasive grains and obtain optimum conditions for the self-generated action and wear of the cutting edge. (G) Regarding the life of the blade, the blade edge of the base metal and the abrasive grains are bonded by low-temperature brazing. Increasing the cutting speed results in heavy cutting and a large force is applied to the abrasive grains. If the adhesive force between the abrasive grains and the base metal is weak, it peels off quickly and falls off, making heavy cutting impossible. In order to increase this adhesive force, a film of a self-flushing low melting point brazing material is formed on the blade tip surfaces (1), (2) and (3) of the base metal. Abrasive grains are fixed to this brazing material film by electrodeposition, and the blade tip surfaces (1), (2) and (3) of the base metal are heated to the brazing temperature to melt the brazing material and use the abrasive grains as the base metal. Adhesive with brazing to strengthen the adhesive force. The self-flushing type low melting point brazing material shown in the table below is suitable. Even if a cutting process by heavy cutting for a long time is performed by the bonding with brazing, there is no problem in that the abrasive grains fall off due to the insufficient adhesive force of the abrasive grains to the base metal. Further, since this brazing material film has a low melting point and is a self-flushing type, the brazing temperature is low and no brazing flux is required. Abrasive grains such as diamond do not deteriorate due to heating, cleaning for flux removal, and corrosion due to residual flux. However, a general low melting point brazing material using flux can also be used. As the heating for brazing, a method capable of concentrating and heating on the blade tip surfaces (1), (2) and (3) is preferable like high frequency induction heating, but flame heating is also possible.
【0005】[0005]
【作 用】砥粒を磁性体化し磁気吸着現象を利用するこ
とによって、従来砥粒の電着が困難であった刃先端面
(3)への電着が可能・砥粒の電着が一層しか出来なか
ったが多層化出来・刃先端面(1)(2)(3)へ砥粒
の付着が3回の工程であったものが1工程で同時付着が
可能となった。これによって、砥粒電着刃先の改善・刃
物寿命の向上・刃物の製造原価低減が解決することが出
来た。多層に磁気吸着された砥粒を結合する電着メッキ
の材質により、砥粒間の結合力の強弱を変え得る。ここ
の結合力を変えることによって、砥粒間の目づまりや砥
粒の脱落を最適化して、多層砥粒の電着式切断刃の自生
作用を可能にした。多層砥粒の電着に供なう刃物の長寿
命化によって、刃物の長時間使用中に、起こる砥粒と台
金の剥離をロー付接着で防ぐ事が可能となった。これら
によって、優れた切断性能を持ち長寿命の多層砥粒の電
着式切断刃を可能にしたものである。[Operation] By making the abrasive grains magnetic and utilizing the magnetic adsorption phenomenon, it is possible to electrodeposit the abrasive grains on the blade tip surface (3), which was difficult previously. Although it could not be done, it was possible to make multiple layers. It was possible to simultaneously attach the abrasive grains to the blade tip surfaces (1), (2) and (3) in one process, which was a process of three times. As a result, we were able to solve the problems of improving the electrodeposition of abrasive grain electrodeposition, extending the life of the blade, and reducing the manufacturing cost of the blade. The strength of the bonding force between the abrasive grains can be changed depending on the material of the electrodeposition plating that bonds the abrasive grains magnetically attracted in multiple layers. By changing the bonding force here, the clogging between the abrasive grains and the dropping of the abrasive grains were optimized, and the self-propelled action of the electrodeposition type cutting blade of multilayer abrasive grains was made possible. By prolonging the service life of blades used for electrodeposition of multi-layered abrasive grains, it becomes possible to prevent the peeling of the abrasive grains and the base metal that occurs during long-term use of the blades by brazing. These enable an electrodeposition type cutting blade of multilayer abrasive grains having excellent cutting performance and long life.
【0006】[0006]
(実施例−1) 切断刃形式 :ダイヤモンド砥粒電着タイプ(全円周付
着) 形状 :外径4in×板厚2.1mm 台金 :炭素工具鋼(SK−5) 切断材材質 :御影石 形状 :厚さ15mm×幅500mm×長さ1000m
m 切断条件潤滑:ドライ切断 速度:送り15mm/min×周速度0.47mm/m
in 切断用機械 :木工用丸鋸盤 上記により、幅100mm×長さ1000mmに切断加
工した。その結果、本発明の切断刃は砥粒層の厚さ
(2.5mm)・砥粒間の強度・砥粒と台金の接着強度
により、刃物寿命が約7.5倍になった。又、刃物寿命
が尽きる最後の切断面は、荒さが不揃いの切断痕跡も無
く奇麗で、目づまりも起きなかった。 (実施例−2) 切断刃形式 :ダイヤモンド砥粒電着タイプ(全円周付
着) 形状 :外径4in×板厚1.8mm 台金 :炭素工具鋼(SK−5) 切断材材質 :コンクリート 形状 :床面厚さ15mm 切断条件潤滑:ドライ切断 速度:送り15mm/min×周速度1m/min 切断用機械 :床切断加工機 上記により、床面を溝堀の切断加工をした。その結果、
本発明の切断刃は砥粒層の厚さ(5.0mm)・砥粒間
の強度・砥粒と台金の接着強度により、刃物寿命が約9
倍になった。又、刃物寿命が尽きる最後でも、刃先面の
振れ・砥粒の部分的脱落・蛇行目づまりもなく、本来の
砥粒の脱落損耗によって寿命となった。(Example-1) Cutting blade type: Diamond abrasive grain electrodeposition type (whole circumference adhesion) Shape: Outer diameter 4 in x plate thickness 2.1 mm Base metal: Carbon tool steel (SK-5) Cutting material: Granite shape : Thickness 15 mm x width 500 mm x length 1000 m
m Cutting conditions Lubrication: Dry cutting Speed: Feed 15 mm / min × peripheral speed 0.47 mm / m
in Cutting Machine: Circular Saw Machine for Woodworking The above was cut into a width of 100 mm and a length of 1000 mm. As a result, the cutting blade of the present invention has a blade life of about 7.5 times longer due to the thickness (2.5 mm) of the abrasive grain layer, the strength between the abrasive grains, and the adhesive strength between the abrasive grains and the base metal. In addition, the last cut surface where the life of the blade was exhausted was clean without any trace of uneven roughness and no clogging occurred. (Example-2) Cutting blade type: Diamond abrasive grain electrodeposition type (whole circumference attachment) Shape: Outer diameter 4 in x plate thickness 1.8 mm Base metal: Carbon tool steel (SK-5) Cutting material: Concrete shape : Floor surface thickness 15 mm Cutting condition lubrication: Dry cutting Speed: Feeding 15 mm / min x peripheral speed 1 m / min Cutting machine: Floor cutting machine The floor surface was cut into grooves as described above. as a result,
The cutting blade of the present invention has a blade life of about 9 depending on the thickness of the abrasive grain layer (5.0 mm), the strength between the abrasive grains, and the adhesive strength between the abrasive grains and the base metal.
Doubled. Further, even at the end of the life of the blade, there was no run-out of the cutting edge surface, partial drop of abrasive grains, or clogging of meandering.
【0007】[0007]
【発明の効果】砥粒の表面を磁性体メッキ皮膜で被覆し
て磁性体にするので、その磁性体の磁気吸着現象を利用
出来る。これによって従来不可能であった切断刃先とし
て必要な刃先端面を磁極化して刃先の全面に付着する。
又、刃先端面の磁気の強さを変えることで、一層から多
層まで希望する任意の厚さに砥粒を付着出来る。磁気吸
引力で吸着している砥粒間の結合力を、メッキの材質に
よって変えられるので、被切断材の材質と切断条件に合
わせて最適な刃先の自生作用と刃物寿命の長いものが得
られる。多層電着された砥粒・刃先全面に電着された砥
粒・最適な自生作用を可能にした電着砥粒を、台金にロ
ー付接着することによって砥粒電着刃物としての重切削
化を可能にした。これらによって 刃物品質の改善・刃
物の長寿命化・刃物のコストダウンが出来るようにな
る。Since the surface of the abrasive grains is coated with the magnetic substance plating film to form the magnetic substance, the magnetic attraction phenomenon of the magnetic substance can be utilized. As a result, the blade tip surface required as a cutting blade tip, which has been impossible in the past, is made into a magnetic pole and attached to the entire surface of the blade tip.
Further, by changing the magnetic strength of the blade tip surface, the abrasive grains can be attached to any desired thickness from one layer to multiple layers. The binding force between the abrasive grains that are attracted by magnetic attraction can be changed depending on the plating material, so the optimum self-supporting action of the cutting edge and long tool life can be obtained according to the material of the material to be cut and the cutting conditions. . Heavy cutting as abrasive grain electrodeposited blade by brazing multi-layer electrodeposited abrasive grain, electrodeposited abrasive grain on the entire surface of the blade, and electrodeposited abrasive grain enabling optimum self-reaction Made possible. By doing so, it will be possible to improve the quality of the blade, extend the life of the blade, and reduce the cost of the blade.
【図1】従来のブレードソーの正面図と断面図である。FIG. 1 is a front view and a sectional view of a conventional blade saw.
【図2】従来のバンドソーの正面図と断面図である。FIG. 2 is a front view and a sectional view of a conventional band saw.
【図3】本発明のブレードソー刃先軟磁性体製法図であ
る。FIG. 3 is a method of manufacturing a blade saw blade soft magnetic material of the present invention.
【図4】本発明のバンドソー刃先軟磁性体用製法図であ
る。FIG. 4 is a manufacturing method diagram for a band saw blade soft magnetic material of the present invention.
【図5】本発明のブレードソー刃先硬磁性体製法図であ
る。FIG. 5 is a method of manufacturing a blade saw blade hard magnetic material of the present invention.
【図6】本発明のバンドソー刃先硬磁性体製法図であ
る。FIG. 6 is a method of manufacturing a band saw blade hard magnetic material of the present invention.
1 台金刃先側面 2 台金刃先側面 3 台金刃先端面 4 電磁コイル 5 砥粒を含む無電解メッキ浴槽 6 硬磁性体被覆の粉体浴槽 1 unit metal blade tip side surface 2 unit metal blade tip side surface 3 unit metal blade tip surface 4 electromagnetic coil 5 electroless plating bath containing abrasive grains 6 powder bath coated with hard magnetic material
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B24D 5/12 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location B24D 5/12 Z
Claims (3)
金等軟磁性皮膜・コバルト又はコバルト合金等の硬磁性
皮膜を電気メッキ又は無電解メッキで形成させて磁性体
にした砥粒。1. An abrasive grain in which a magnetic substance is formed by forming a soft magnetic coating such as nickel or a nickel alloy or a hard magnetic coating such as cobalt or a cobalt alloy on the surface of the abrasive grain by electroplating or electroless plating.
粒を、銅又は銅系合金・ニッケル又はニッケル系合金・
錫又は錫系合金・コバルト又はコバルト系合金等の、無
電解メッキで強固に結合させた砥粒刃先セグメント。2. A magnetic substance abrasive grain adsorbed by a magnetic attraction force is replaced with copper or copper-based alloy / nickel or nickel-based alloy /
Abrasive cutting edge segment made of tin, tin-based alloy, cobalt or cobalt-based alloy, etc., firmly bonded by electroless plating.
2)により切断刃の台金の刃先部に、吸着結合させ、切
断刃の台金刃先面に被覆したロー材皮膜を、ロー材にし
てロー付接着した多層砥粒電着式切断刃。3. The brazing material film obtained by adsorbing and bonding the abrasive grains according to (claim 1) to the blade tip portion of the base metal of the cutting blade according to (claim 2), and coating the base metal blade tip surface of the cutting blade, Multi-layer abrasive grain electrodeposition type cutting blade made of brazing material and bonded with brazing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5457193A JPH07207254A (en) | 1993-02-03 | 1993-02-03 | Cutting blade obtained by electrodeposition of abrasive grain |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5457193A JPH07207254A (en) | 1993-02-03 | 1993-02-03 | Cutting blade obtained by electrodeposition of abrasive grain |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07207254A true JPH07207254A (en) | 1995-08-08 |
Family
ID=12974384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5457193A Pending JPH07207254A (en) | 1993-02-03 | 1993-02-03 | Cutting blade obtained by electrodeposition of abrasive grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07207254A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009026776A1 (en) * | 2007-08-28 | 2009-03-05 | Jiaxiang Hou | Method for arranging abrasive particles of a grind tool orderly |
EP2075092A2 (en) | 2007-12-28 | 2009-07-01 | Shinetsu Chemical Co., Ltd. | Cutting wheels, their manufacture and use |
KR20100119730A (en) | 2009-05-01 | 2010-11-10 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Method and jig assembly for manufacturing outer blade cutting wheel |
US20110088330A1 (en) * | 2009-10-20 | 2011-04-21 | Beekman William A | Abrasive Tool |
WO2012073854A1 (en) | 2010-11-29 | 2012-06-07 | 信越化学工業株式会社 | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
WO2012073855A1 (en) | 2010-11-29 | 2012-06-07 | 信越化学工業株式会社 | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
EP2543478A2 (en) | 2011-07-04 | 2013-01-09 | Shin-Etsu Chemical Co., Ltd. | Cemented carbide base outer blade cutting wheel and making method |
CN104099656A (en) * | 2013-05-09 | 2014-10-15 | 吴红平 | Method for producing diamond wire by using production apparatus for diamond wire |
EP2612728A3 (en) * | 2012-01-06 | 2016-06-01 | Shin-Etsu Chemical Co., Ltd. | Dressing and manufacture of outer blade cutting wheel |
CN113150743A (en) * | 2021-04-19 | 2021-07-23 | 山东理工大学 | Method for preparing fast-setting magnetic abrasive by combining brazing enhanced plasma molten metal micro-droplets and abrasive powder |
-
1993
- 1993-02-03 JP JP5457193A patent/JPH07207254A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009026776A1 (en) * | 2007-08-28 | 2009-03-05 | Jiaxiang Hou | Method for arranging abrasive particles of a grind tool orderly |
EP2075092A2 (en) | 2007-12-28 | 2009-07-01 | Shinetsu Chemical Co., Ltd. | Cutting wheels, their manufacture and use |
US11364591B2 (en) | 2007-12-28 | 2022-06-21 | Shin-Etsu Chemical Co., Ltd. | Outer blade cutting wheel and making method |
CN105773457A (en) * | 2007-12-28 | 2016-07-20 | 信越化学工业株式会社 | Outer blade cutting wheel and manufacturing method thereof |
US8459246B2 (en) | 2007-12-28 | 2013-06-11 | Shin-Etsu Chemical Co., Ltd. | Outer blade cutting wheel and making method |
US8733336B2 (en) | 2007-12-28 | 2014-05-27 | Shin-Etsu Chemical Co., Ltd. | Outer blade cutting wheel and making method |
EP2735404A2 (en) | 2007-12-28 | 2014-05-28 | Shin-Etsu Chemical Co., Ltd. | Cutting wheels, their manufacture and use |
US8753412B2 (en) | 2009-05-01 | 2014-06-17 | Shin-Etsu Chemical Co., Ltd. | Method and jig assembly for manufacturing outer blade cutting wheel |
KR20100119730A (en) | 2009-05-01 | 2010-11-10 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Method and jig assembly for manufacturing outer blade cutting wheel |
EP2260963A1 (en) | 2009-05-01 | 2010-12-15 | Shin-Etsu Chemical Co., Ltd. | Method and jig assembly for manufacturing outer blade cutting wheel |
US9156098B2 (en) | 2009-05-01 | 2015-10-13 | Shin-Etsu Chemical Co., Ltd. | Method and jig assembly for manufacturing outer blade cutting wheel |
US20110088330A1 (en) * | 2009-10-20 | 2011-04-21 | Beekman William A | Abrasive Tool |
WO2012073854A1 (en) | 2010-11-29 | 2012-06-07 | 信越化学工業株式会社 | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
US9517547B2 (en) | 2010-11-29 | 2016-12-13 | Shin-Etsu Chemical Co., Ltd. | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
EP2647470B1 (en) * | 2010-11-29 | 2020-06-10 | Shin-Etsu Chemical Co., Ltd. | Cemented carbide base outer-diameter blade cutting wheel and manufacturing method thereof |
WO2012073855A1 (en) | 2010-11-29 | 2012-06-07 | 信越化学工業株式会社 | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof |
KR20130004886A (en) | 2011-07-04 | 2013-01-14 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Cemented carbide base outer blade cutting wheel and making method |
EP2543478A2 (en) | 2011-07-04 | 2013-01-09 | Shin-Etsu Chemical Co., Ltd. | Cemented carbide base outer blade cutting wheel and making method |
EP2612728A3 (en) * | 2012-01-06 | 2016-06-01 | Shin-Etsu Chemical Co., Ltd. | Dressing and manufacture of outer blade cutting wheel |
CN104099656A (en) * | 2013-05-09 | 2014-10-15 | 吴红平 | Method for producing diamond wire by using production apparatus for diamond wire |
CN113150743A (en) * | 2021-04-19 | 2021-07-23 | 山东理工大学 | Method for preparing fast-setting magnetic abrasive by combining brazing enhanced plasma molten metal micro-droplets and abrasive powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5051399B2 (en) | Peripheral cutting blade manufacturing method and outer peripheral cutting blade manufacturing jig | |
CN103459091B (en) | Super hard alloy baseplate outer circumference cutting blade and manufacturing method thereof | |
KR101758562B1 (en) | Outer blade cutting wheel and making method | |
JP5975138B2 (en) | Cemented carbide base plate outer cutting blade manufacturing method | |
JP5967250B2 (en) | Cemented carbide base plate outer cutting blade manufacturing method | |
KR101720228B1 (en) | Cemented Carbide Base Outer Blade Cutting Wheel and Making Method | |
JP5967249B2 (en) | Cemented carbide base plate cutting blade | |
CN103313825B (en) | Cement carbide substrate outside cutting wheel and manufacture method thereof | |
TW200800504A (en) | Electroplated abrasive tools, methods, and molds | |
JPH07207254A (en) | Cutting blade obtained by electrodeposition of abrasive grain | |
EP0395644A1 (en) | Abrasive tool and a method of making said tool | |
JP5880652B2 (en) | Cemented carbide base plate outer peripheral cutting blade and manufacturing method thereof | |
JPH0771789B2 (en) | Whetstone | |
JP5975137B2 (en) | Cemented carbide base plate cutting blade | |
JPS59142067A (en) | Resinoid grindstone for cutting work |