JPH0720664B2 - Method for producing low density polyethylene biaxially stretched film - Google Patents
Method for producing low density polyethylene biaxially stretched filmInfo
- Publication number
- JPH0720664B2 JPH0720664B2 JP60115580A JP11558085A JPH0720664B2 JP H0720664 B2 JPH0720664 B2 JP H0720664B2 JP 60115580 A JP60115580 A JP 60115580A JP 11558085 A JP11558085 A JP 11558085A JP H0720664 B2 JPH0720664 B2 JP H0720664B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- density polyethylene
- stretching
- biaxially stretched
- low density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920001684 low density polyethylene Polymers 0.000 title claims description 23
- 239000004702 low-density polyethylene Substances 0.000 title claims description 23
- 238000004519 manufacturing process Methods 0.000 title description 6
- 229920000092 linear low density polyethylene Polymers 0.000 claims description 22
- 239000004707 linear low-density polyethylene Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- 239000000155 melt Substances 0.000 claims description 13
- 238000009826 distribution Methods 0.000 claims description 10
- 239000011342 resin composition Substances 0.000 claims description 10
- 229920013716 polyethylene resin Polymers 0.000 claims description 8
- 238000000465 moulding Methods 0.000 description 9
- 238000007334 copolymerization reaction Methods 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 5
- 239000005977 Ethylene Substances 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004711 α-olefin Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006353 environmental stress Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低密度ポリエチレンの二軸延伸フイルムの製造
方法に関するものである。The present invention relates to a method for producing a biaxially stretched film of low density polyethylene.
詳しくは、本発明は特定の線状低密度ポリエチレンと分
岐状低密度ポリエチレンからなる組成物から二軸延伸フ
イルムを製造する方法に関する。More specifically, the present invention relates to a method for producing a biaxially stretched film from a composition comprising a specific linear low density polyethylene and a branched low density polyethylene.
エチレンとα−オレフインの共重合によって製造される
分岐の少ない線状低密度ポリエチレンは高温高圧下でラ
ジカル重合により製造される高圧法低密度ポリエチレン
に比べて引張り強さ、衝撃強度、剛性等の強度特性、耐
環境応力亀裂性(ESCR)、耐熱性、ヒートシール性等に
優れた特性を有しており、近年様々な分野で用いられて
いる。特にフイルム分野では、その物性上の優位性から
高圧法低密度ポリエチレンから線状低密度ポリエチレン
への代替が急速に進んでいる。Linear low-density polyethylene with less branching produced by copolymerization of ethylene and α-olefin is stronger in tensile strength, impact strength, rigidity, etc. than high-pressure low-density polyethylene produced by radical polymerization under high temperature and high pressure. It has excellent properties, such as environmental stress crack resistance (ESCR), heat resistance, and heat sealability, and has been used in various fields in recent years. Particularly in the field of film, the substitution of high-pressure low density polyethylene for linear low density polyethylene is rapidly advancing because of its superior physical properties.
しかしながら、上記した優れた特性を有する線状低密度
ポリエチレンは高圧法低密度ポリエチレンに比較し、透
明性が悪く、外観的に商品価値が劣り、ま溶融張力が小
いことから、例えばインフレーションフイルム成形時に
バブルが不安定となったり、T−ダイフイルム成形時に
はネックインが大きくなったりする現象が生ずる等フイ
ルム成形条件を狭い条件に調整しなけれならない等の問
題点がある。また、上記の透明性を改良するために、フ
イルムを延伸処理する試みが提案されるが、一軸延伸処
理ではフイルム物性の異方向、特に縦方向(延伸方向)
の耐引裂き強度に問題が残る。そこで、フイルム原反を
二軸延伸処理することが考えられるが、線状低密度ポリ
エチレン樹脂は本質的には結晶性ポリマーであるため、
従来の高密度ポリエチレン樹脂と同様に二軸延伸が困難
であり、強いて二軸延伸としても、フイルムに延伸斑が
発生したり、透明性が低下する等の外観上の問題が発生
するうえ、強度的にも実用に供せる延伸フイルムは得ら
れていない。さらに、上記した二軸延伸処理の欠点を改
良する方法、すなわち、線状低密度ポリエチレンの未延
伸フイルムを特定の条件下で、二軸延伸する方法が提案
されている。(特開昭58−90924号) 〔発明が解決しようとする問題点〕 しかしながら、上記提案も線状低密度ポリエチレンの未
延伸フイルムを二軸延伸する際の延伸操作性が悪く、得
られる延伸フイルムの厚みムラが大きく、また透明性の
改良も十分でなく、十分に商品価値のある二軸延伸フイ
ルムを提供し得るものであるとは云えない。However, the linear low-density polyethylene having the above-mentioned excellent properties has poor transparency, inferior commercial value in appearance, and low melt tension as compared with the high-pressure low-density polyethylene. At times, there are problems such as instability of bubbles and a phenomenon that the neck-in becomes large at the time of T-die film forming, and film forming conditions must be adjusted to narrow conditions. Further, in order to improve the transparency, an attempt to stretch the film is proposed, but in the uniaxial stretching treatment, the physical properties of the film are different from each other, particularly in the longitudinal direction (stretching direction).
There is still a problem with the tear resistance of. Therefore, it is conceivable to subject the raw film to biaxial stretching, but since the linear low-density polyethylene resin is essentially a crystalline polymer,
Like conventional high-density polyethylene resin, it is difficult to biaxially stretch, and even if it is strongly biaxially stretched, appearance problems such as stretch unevenness in the film and deterioration of transparency occur, and strength is also increased. In particular, a stretched film that can be put to practical use has not been obtained. Further, a method for improving the above-mentioned drawbacks of the biaxial stretching treatment, that is, a method for biaxially stretching an unstretched linear low-density polyethylene film under specific conditions has been proposed. (JP-A-58-90924) [Problems to be solved by the invention] However, the above-mentioned proposal also has poor drawing operability when biaxially drawing an unstretched film of linear low-density polyethylene, resulting in a stretched film to be obtained. However, it cannot be said that a biaxially stretched film having a sufficient commercial value can be provided because the thickness unevenness is large and the transparency is not sufficiently improved.
本発明者等はかかる従来技術に鑑み、線状低密度ポリエ
チレンの有する上記した諸特性を損なわずに未延伸フイ
ルム成形性、二軸延伸フイルムの延伸操作性を改善し、
透明性の著しく改良された二軸延伸フイルムを得るべく
鋭意検討を重ねた結果、線状低密度ポリエチレンに特定
の物性を有する分岐状低密度ポリエチレンを特定量配合
したものを用いて未延伸フイルムを成形し、次いでこれ
を特定の条件で二軸延伸処理することによって目的が達
成されることを見出し、本発明を完成するに至った。In view of such prior art, the present inventors have improved the unstretched film formability without impairing the above-mentioned various properties of the linear low-density polyethylene, and the stretching operability of the biaxially stretched film,
As a result of repeated intensive studies to obtain a biaxially stretched film with significantly improved transparency, an unstretched film was prepared using a mixture of linear low density polyethylene with a specific amount of branched low density polyethylene having specific physical properties. It was found that the object can be achieved by molding and then subjecting this to biaxial stretching under specific conditions, and completed the present invention.
すなわち、本発明の要旨はメルトインデックスが0.3〜4
g/10分の線状低密度ポリエチレン97〜55重量部とメルト
インデックスが0.3〜4g/10分、分子量分布指数が3〜15
の分岐状低密度ポリエチレン3〜45重量部とからなる分
子量分布指数が1〜10のポリエチレン樹脂組成物を用い
て未延伸フイルムまたはシートを成形し、次いで該フイ
ルムまたはシートを縦方向に1.1〜2倍及び横方向に4
〜7倍の延伸倍率で二軸延伸してなることを特徴とする
低密度ポリエチレン二軸延伸フイルムの製造法に存す
る。That is, the gist of the present invention is that the melt index is 0.3 to 4
97 to 55 parts by weight of linear low-density polyethylene of g / 10 minutes, melt index of 0.3 to 4 g / 10 minutes, and molecular weight distribution index of 3 to 15
Of a branched low-density polyethylene of 3 to 45 parts by weight and a polyethylene resin composition having a molecular weight distribution index of 1 to 10 are used to form an unstretched film or sheet, and the film or sheet is then stretched in a longitudinal direction of 1.1 to 2 4 times in the horizontal direction
It exists in the manufacturing method of the low density polyethylene biaxially stretched film characterized by being biaxially stretched at a draw ratio of up to 7 times.
本発明を詳細に説明するに、本発明に用いられる線状低
密度ポリエチレンとは、エチレンと他のα−オレフイン
との共重合物であり、従来の高圧法により製造された低
密度ポリエチレン樹脂とは異なる。線状低密度ポリエチ
レンは、例えばエチレンと、他のα−オレフインとして
ブテン、ヘキセン、オクテン、デセン、4−メチルペン
テン−1等を4〜17重量%程度、好ましくは5〜15重量
%程度共重合したものであり中低圧法高密度ポリエチレ
ン製造に用いられるチーグラー型触媒又はフイリップス
型触媒を用いて製造されたものであり、従来の高密度ポ
リエチレンを共重合成分により短い枝分かれ構造とし、
密度もこの短鎖枝分れを利用して適当に低下させ0.91〜
0.95g/cm3程度としたものであり、従来の低密度ポリエ
チレンより直鎖性があり、高密度ポリエチレンより枝分
かれが多い構造のポリエチレンである。To explain the present invention in detail, the linear low-density polyethylene used in the present invention is a copolymer of ethylene and other α-olefin, and is a low-density polyethylene resin produced by a conventional high-pressure method. Is different. The linear low-density polyethylene is, for example, copolymerized with ethylene and other α-olefins such as butene, hexene, octene, decene, 4-methylpentene-1 in an amount of about 4 to 17% by weight, preferably about 5 to 15% by weight. It was produced using a Ziegler type catalyst or Phillips type catalyst used in the medium and low pressure method high density polyethylene production, and a conventional high density polyethylene with a short branched structure by a copolymerization component,
The density is also appropriately reduced by utilizing this short chain branching to 0.91 ~
It is about 0.95 g / cm 3 and is a polyethylene having a structure that is more linear than conventional low density polyethylene and more branched than high density polyethylene.
本発明で使用される線状低密度ポリエチレンとしては、
メルトインデックスが0.3〜4g/10分、好ましくは0.5〜3
g/10分の範囲であり、且つ、密度が0.915〜0.935g/c
m3、好ましくは0.918〜0.925g/cm3の範囲のものが好適
に用いられる。メルトインデックスが0.3g/10分未満で
はテンター法による二軸延伸操作開始時、フイルム張力
が過大となり、テンター温度を融点近傍迄昇温させる必
要があり、この場合フイルムの一部がテンター内で溶融
され、延伸操作性が低下する。また、4g/10分より大き
いと延伸時フイルムの切断が生じ易く、延伸されてもフ
イルム中央部からの伸びが過大となり、且つ横方向の均
一延伸性(厚みムラ)が不良となるので好ましくない。
さらに密度が0.915g/cm3未満ではメルトインデックスが
4g/10分より大きい場合と同様の現象が生じ、また、0.9
35g/cm3より大きいとメルトインデックスが0.3g/10分未
満のものと同様の現象が生ずるので望ましくない。As the linear low density polyethylene used in the present invention,
Melt index is 0.3-4g / 10min, preferably 0.5-3
It is in the range of g / 10 minutes and the density is 0.915 to 0.935 g / c.
m 3, preferably is preferably used in the range of 0.918~0.925g / cm 3. If the melt index is less than 0.3 g / 10 min, the film tension becomes excessive at the start of the biaxial stretching operation by the tenter method, and it is necessary to raise the tenter temperature to near the melting point.In this case, part of the film melts in the tenter. As a result, the drawing operability is reduced. Further, if it is larger than 4 g / 10 min, the film is likely to be cut during stretching, the elongation from the center of the film becomes excessive even when stretched, and the uniform stretching property in the transverse direction (thickness unevenness) becomes poor, which is not preferable. .
Furthermore, if the density is less than 0.915 g / cm 3 , the melt index will be
The same phenomenon occurs as when it is larger than 4g / 10 minutes, and 0.9
If it is larger than 35 g / cm 3, the same phenomenon as that of the case where the melt index is less than 0.3 g / 10 minutes occurs, which is not desirable.
上記線状低密度ポリエチレンに配合される分岐状低密度
ポリエチレンとしては通常の高圧法ポリエチレン、すな
わち、有機過酸化物又は酸素等のラジカル発生剤を用い
て、圧力1000〜3000kg/cm2、温度150〜400℃の条件下で
エチレンを単独重合またはエチレンと他の共重合成分と
を共重合させて得られたものが使用される。共重合成分
としては、プロピレン、ブテン、ヘキセン、オクテン、
4−メチルペンテン−1等のα−オレフイン、酢酸ビニ
ル、エチルアクリレート、メチルアクリレート等のビニ
ル化合物等が挙げられる。共重合成分の共重合量として
は0.5〜18重量%、好ましくは2〜10重量%程度であ
る。As the branched low-density polyethylene to be blended with the linear low-density polyethylene, a normal high-pressure method polyethylene, that is, using a radical generator such as organic peroxide or oxygen, pressure 1000 to 3000 kg / cm 2 , temperature 150 Those obtained by homopolymerizing ethylene or copolymerizing ethylene with another copolymerization component under the condition of up to 400 ° C are used. As the copolymerization component, propylene, butene, hexene, octene,
Examples include α-olefin such as 4-methylpentene-1 and vinyl compounds such as vinyl acetate, ethyl acrylate and methyl acrylate. The copolymerization amount of the copolymerization component is 0.5 to 18% by weight, preferably about 2 to 10% by weight.
上記分岐状低密度ポリエチレンとしてはメルトインデッ
クスが0.3〜4g/10分、好ましくは0.53g/10分の範囲であ
り、且つ、密度が0.915〜0.930g/cm3、好ましくは0.918
〜0.930g/cm3の範囲である。メルトインデックスが0.3g
/10分未満では高温延伸を必要とし、この場合、フイル
ムの一部がテンター内で溶融され、延伸操作性の低下に
つながる。また、4g/10分より大きいと延伸時フイルム
の切断が生じやすく、延伸されても横方向の厚みムラが
過大となり、且つ、フイルム強度が低下するので好まし
くない。また、上記した密度が0.915g/cm3未満では、メ
ルトインデックスが4g/10分未満のものと様の現象が生
じまた、0.930g/cm3より大きいと、メルトインデックス
が0.3g/10分未満のものと同様の現象を生ずることとな
るので望ましくない。The branched low density polyethylene has a melt index of 0.3 to 4 g / 10 minutes, preferably 0.53 g / 10 minutes, and a density of 0.915 to 0.930 g / cm 3 , preferably 0.918.
The range is from 0.930 g / cm 3 . Melt index is 0.3g
If it is less than / 10 minutes, high-temperature stretching is required, and in this case, a part of the film is melted in the tenter, which leads to a reduction in stretching operability. On the other hand, if it is larger than 4 g / 10 minutes, the film is likely to be cut during stretching, and even if it is stretched, the thickness unevenness in the transverse direction becomes excessive, and the film strength decreases, which is not preferable. Further, when the above-mentioned density is less than 0.915 g / cm 3 , a phenomenon similar to that with a melt index of less than 4 g / 10 min occurs, and when it is more than 0.930 g / cm 3 , the melt index is less than 0.3 g / 10 min. This is not desirable because it causes a phenomenon similar to that of the above.
さらに、上記した分岐状低密度ポリエチレンとして、
(メルトインデックスの値)×(溶融張力の値)で表わ
される分子量分布指数(以下αと略称する)が、3〜15
の範囲のものであることが延伸操作性の点から必要であ
る。上記のαが3未満では分子量分布がシャープとな
り、延伸時に横方向の均一延伸性(厚みムラ)が不良と
なり、また15より大きいと延伸時の応力が過大となり、
横方向の延伸時にフイルム原反が切断しやすくなるので
望ましくない。Furthermore, as the branched low-density polyethylene described above,
The molecular weight distribution index (hereinafter abbreviated as α) represented by (value of melt index) × (value of melt tension) is 3 to 15
It is necessary that it be in the range of from the viewpoint of stretching operability. When the above α is less than 3, the molecular weight distribution becomes sharp, the uniform stretchability in the transverse direction (thickness unevenness) becomes poor at the time of stretching, and when it is more than 15, the stress at the time of stretching becomes excessive,
This is not desirable because the original film of the film is easily cut during the stretching in the transverse direction.
本発明においてメルトインデックスはJIS K6760に準拠
し190℃で測定した値(g/10分)であり、また溶融張力
とはVIS K6760におけるメルトインデックス測定に用い
るノズルから160℃、0.25g/minの速度で押出し、1.52m/
minの速度で引取ったときのノズルから25cm離れた位置
で測定した張力(g)であり、さらに密度とはJIS K67
60に準拠して測定した値(g/cm3)である。In the present invention, the melt index is a value measured at 190 ° C. according to JIS K6760 (g / 10 minutes), and the melt tension is 160 ° C. from a nozzle used for measuring the melt index in VIS K6760, a speed of 0.25 g / min. Extruded at 1.52m /
It is the tension (g) measured at a position 25 cm away from the nozzle when it was taken at a speed of min, and the density was JIS K67.
It is the value measured according to 60 (g / cm 3 ).
上記線状低密度ポリエチレンと分岐状低密度ポリエチレ
ンの配合割合は、線状低密度ポリエチレン97〜55重量
部、好ましくは95〜60重量部に対して分岐状低密度ポリ
エチレン3〜45重量部、好ましくは5〜40重量部の範囲
内で用いられる。分岐状低密度ポリエチレンが上記範囲
未満では、均一延伸性はもとより、所定延伸倍率に延伸
することが極めて困難であり、また、上記範囲より多い
場合には、著しい延伸ムラ(厚みムラ)を生じることと
なるので好ましくない。The blending ratio of the linear low-density polyethylene and the branched low-density polyethylene is 97 to 55 parts by weight of the linear low-density polyethylene, preferably 95 to 60 parts by weight, and the branched low-density polyethylene is 3 to 45 parts by weight, preferably Is used within the range of 5 to 40 parts by weight. When the branched low-density polyethylene is less than the above range, it is extremely difficult to draw at a predetermined draw ratio as well as uniform drawability, and when it is more than the above range, remarkable stretching unevenness (thickness unevenness) may occur. Is not preferable.
本発明に使用するポリエチレン樹脂組成物は上記した線
状低密度ポリエチレンと分岐状低密度ポリエチレンをブ
レンダーなどでドライブレンドするか、或いはドライブ
レンドした後、通常の溶融混練法、例えば、バンバリー
ミキサー、コンテイニュアスミキサー、ミキシングロー
ル、混練押出機等で溶融混合し、ペレット化することに
より得られる。The polyethylene resin composition used in the present invention may be obtained by dry blending the above-described linear low density polyethylene and branched low density polyethylene with a blender, or after dry blending, an ordinary melt kneading method, for example, Banbury mixer, container. It can be obtained by melt-mixing with an intimate mixer, a mixing roll, a kneading extruder, etc. and pelletizing.
上記のようにして得られたポリエチレン樹脂組成物とし
て、(メルトインデックスの値)×(溶融張力の値)で
表わされる分子量分布指数(以下αと略称する)が、1
〜10の範囲のものであることが延伸操作性の点から必要
である。上記のαが1未満では分子量分布がシャープと
なり、延伸時に横方向の均一延伸性(厚みムラ)が不良
となり、また10より大きいと延伸時の応力が過大とな
り、横方向の延伸時にフイルム原反が切断しやすくなる
ので望ましくない。The polyethylene resin composition obtained as described above has a molecular weight distribution index (hereinafter abbreviated as α) represented by (value of melt index) × (value of melt tension) of 1
It is necessary to be in the range of -10 from the viewpoint of stretching operability. When the above α is less than 1, the molecular weight distribution becomes sharp and the uniform stretchability (thickness unevenness) in the transverse direction during stretching becomes poor. Is easy to cut, which is not desirable.
なお、上記のポリエチレン樹脂組成物には、必要に応じ
て抗酸化剤、紫外線吸収剤、帯電防止剤、滑剤等通常ポ
リエチレンに使用される公知の添加剤を添加してもよ
い。It should be noted that, if necessary, known additives generally used for polyethylene such as an antioxidant, an ultraviolet absorber, an antistatic agent and a lubricant may be added to the above polyethylene resin composition.
本発明においては、上記で得られたポリエチレン樹脂組
成物を用いて未延伸フイルムまたはシートを成形し、次
いで該未延伸フイルムまたはシートを特定の条件下で二
軸延伸して二軸延伸フイルムを製造する。In the present invention, an unstretched film or sheet is molded using the polyethylene resin composition obtained above, and then the unstretched film or sheet is biaxially stretched under specific conditions to produce a biaxially stretched film. To do.
未延伸フイルムまたはシートの成形は通常のフイルムま
たはシートの成形装置及び成形方法、たとえば円形ダイ
によるインフレーション成形法、TダイによるTダイ成
形法等を採用し、上記の組成物物を樹脂温度150〜250
℃、ドラフト率2〜100の範囲の成形条件で行なわれ
る。The unstretched film or sheet is formed by using a usual film or sheet forming apparatus and forming method, for example, an inflation forming method using a circular die, a T die forming method using a T die, and the like. 250
The molding is carried out under the molding conditions of ℃ and draft ratio of 2 to 100.
インフレーション成形する場合にはブローアップ比を1.
5〜4.0、ドラフト率を2〜100の範囲の条件で行なうの
が望ましい。Inflation molding has a blow-up ratio of 1.
It is desirable to carry out under the conditions of 5 to 4.0 and a draft rate of 2 to 100.
なお、本発明においてドラフト率とは下記によって得ら
れる。In the present invention, the draft rate is obtained as follows.
式中、記号は下記の通り なお、Tダイ成形の場合はBUR=1として表わされる。 In the formula, the symbols are as follows In the case of T-die molding, it is expressed as BUR = 1.
ドラフト率が2未満の場合には製膜フイルムの光学物性
が不良となり、また、100より大きい場合には延伸時に
縦裂けし易くなるので好ましくない。If the draft ratio is less than 2, the optical properties of the film-forming film will be poor, and if it is greater than 100, longitudinal tearing will tend to occur during stretching, such being undesirable.
上記のようにして得られた未延伸フイルムは次いで二軸
延伸処理される。二軸延伸処理はTダイまたはインフレ
ーション法により得られた未延伸フイルムをそのまま或
いは所定の幅にスリットしたものを逐次二軸延伸または
同時二軸延伸することにより行なわれる。逐次二軸延伸
は縦方向(フイルムの引取り方向)に延伸後に横方向
(フイルムの引取り方向と直行する方向)の延伸を行な
うか、またはその逆の順序のいずれかで行なわれる。ま
た同時二軸延伸は縦方向と横方向の延伸の時間的配分は
任意であり、例えば横方向の延伸が完了するまでに縦方
向も徐々に延伸を継続するか、或いは延伸開始は縦方向
と横方向を同時にさせるが、縦方向を先に完了させるな
どの方法で行なわれる。The unstretched film obtained as described above is then biaxially stretched. The biaxial stretching treatment is carried out by subjecting an unstretched film obtained by a T-die or an inflation method as it is or slitting it into a predetermined width and sequentially biaxially stretching or simultaneously biaxially stretching it. Sequential biaxial stretching is carried out either in the longitudinal direction (film take-up direction) and then in the transverse direction (direction orthogonal to the film take-up direction) or vice versa. Further, in the simultaneous biaxial stretching, temporal distribution of stretching in the machine direction and the transverse direction is arbitrary, and for example, the stretching is gradually continued in the machine direction until the stretching in the machine direction is completed, or the start of stretching is in the machine direction. The horizontal direction is performed at the same time, but the vertical direction is completed first.
本発明においてはテンター法逐次二軸延伸、チューブラ
ー法同時二軸延伸法等の採用が可能であるが、特にテン
ター法逐次二軸延伸法を採用した場合には、透明性が著
しく改良されるので好ましい。In the present invention, it is possible to employ a tenter method sequential biaxial stretching, a tubular method simultaneous biaxial stretching method, or the like, but particularly when the tenter method sequential biaxial stretching method is adopted, transparency is remarkably improved. Therefore, it is preferable.
本発明における二軸延伸処理は延伸温度、延伸速度及び
延伸倍率を下記条件で行なう。The biaxial stretching treatment in the present invention is performed under the following conditions of stretching temperature, stretching speed and stretching ratio.
延伸温度は前記ポリエチレン樹脂組成物の融点−20℃〜
融点の範囲、好ましは分子鎖の運動性が乏しいため、延
伸時に切断しやすく、たとえ延伸できても延伸倍率が上
がらず、物性のすぐれた延伸フイルムを得ることができ
ない。また融点より高い温度では該樹脂組成物が一部溶
けかかり延伸配向を起すことができず、見かけ上延伸さ
れても延伸斑がひどく、また透明性も損なわれてしま
い、商品価値のあるフイルムとはならない。The stretching temperature is the melting point of the polyethylene resin composition −20 ° C.
The melting point range, preferably the mobility of the molecular chain is poor, so that the film is easily cut during stretching, and even if it can be stretched, the stretching ratio does not increase and a stretched film having excellent physical properties cannot be obtained. In addition, at a temperature higher than the melting point, the resin composition is partially melted and stretch orientation cannot occur, and even if apparently stretched, stretch unevenness is severe, transparency is also impaired, and the film has commercial value. Don't
延伸速度は2〜40%/秒の範囲、好ましくは10〜20%/
秒の範囲である。延伸速が2%/秒より遅いと延伸途中
の配向結晶化により延伸性が阻害されやすく、また40%
/秒より速いとポリマーの変形が延伸速度に追随しきれ
なくなって延伸切れを起こすようになる。Stretching speed is in the range of 2-40% / sec, preferably 10-20% /
It is in the range of seconds. If the stretching speed is slower than 2% / sec, the stretchability is apt to be hindered by oriented crystallization during stretching, and 40%
If it is faster than / sec, the deformation of the polymer cannot keep up with the stretching speed and the stretch will be broken.
延伸倍率は延伸操作性(延伸しやすさ)および得られた
二軸延伸フイルムの物性の点で、フイルムの縦方向に1.
1〜2倍の範囲であって、且つ、横方向に4〜7倍の範
囲である。縦方向への延伸倍率が2倍より大きいと延伸
操作性が悪化し、満足した延伸フイルムが得られずま
た、横方向への延伸倍率が4倍未満では得られる延伸フ
イルムの厚みムラが大きくなり均一な延伸フイルムが得
られず、さらに7倍より大きいと延伸操作性が悪化し、
満足した延伸フイルムが得られないので好ましくない。The stretching ratio is 1. in the machine direction of the film in terms of stretching operability (ease of stretching) and physical properties of the obtained biaxially stretched film.
The range is 1 to 2 times and the range is 4 to 7 times in the lateral direction. If the stretching ratio in the machine direction is more than 2 times, the stretching operability is deteriorated, and a satisfactory stretched film cannot be obtained. Further, if the stretching ratio in the transverse direction is less than 4, the thickness unevenness of the obtained stretched film becomes large. A uniform stretched film cannot be obtained, and if it is more than 7 times, the stretch operability deteriorates,
It is not preferable because a satisfactory stretched film cannot be obtained.
実施例1 線状低密度ポリエチレン(メルトインデックス(以下、
MIと略称する。):0.5g/10分、密度:0.920g/cm3、流動
比:20、共重合成分:ブテン−1、共重合量:10重量%)
85重量部に分岐状低密度ポリエチレン(高圧法ポリエチ
レン、MI:1.3g/10分、密度:0.923g/cm3)15重量部をド
ライブレンドした後、シリンダー径40mmφの単軸押出機
で190℃の温度で溶融混練して押出ペレット化した。Example 1 Linear low density polyethylene (melt index (hereinafter,
Abbreviated as MI. ): 0.5 g / 10 minutes, density: 0.920 g / cm 3 , flow ratio: 20, copolymerization component: butene-1, copolymerization amount: 10% by weight)
After 85 parts by weight of 15 parts by weight of branched low-density polyethylene (high-pressure polyethylene, MI: 1.3 g / 10 minutes, density: 0.923 g / cm 3 ) was dry-blended, a single-screw extruder with a cylinder diameter of 40 mmφ at 190 ° C The mixture was melt-kneaded at the temperature of and extruded into pellets.
得られたポリエチレン樹脂組成物(融点120℃)をTダ
イフイルム装置を用い樹脂温度(ダイ温度)200℃、冷
却ロール温度15℃、巻取速度30m/分、ドラフト率5の条
件で190μの厚さの未延伸フイルム原反を成形した。こ
のフイルム原反をテンター法逐次二軸延伸装置を用いて
延伸温度110℃、延伸速度フイルム原反をテンター法逐
次二軸延伸装置を用いて延伸温度110℃、延伸速度10%
/秒、延伸倍率(縦方向1.25倍及び横方向5.0倍)の条
件で30μの厚さの二軸延伸フイルムを製造した。得られ
た二軸延伸フイルムにつき、下記評価方法でフイルム物
性試験を行ない、表1の結果を得た。The obtained polyethylene resin composition (melting point: 120 ° C.) is 190 μm thick under the conditions of a resin temperature (die temperature) of 200 ° C., a cooling roll temperature of 15 ° C., a winding speed of 30 m / min, and a draft rate of 5 using a T-die film apparatus. An unstretched raw film of Sano was formed. This film stock is stretched at a temperature of 110 ° C. using a tenter sequential biaxial stretching device, and the stretching speed is 110 ° C. at a stretching speed of 10% using a tenter sequential biaxial stretching device.
/ Sec and a stretching ratio (1.25 times in the longitudinal direction and 5.0 times in the lateral direction), a biaxially stretched film having a thickness of 30 μm was produced. The obtained biaxially stretched film was subjected to a film physical property test by the following evaluation methods, and the results shown in Table 1 were obtained.
成形安定性 〇 1時間以上連続して安定延伸出来る。 Molding stability ○ Stable stretching can be continuously performed for 1 hour or more.
△ 20分以上連結して安定延伸出来る。△ Can be stably stretched by connecting for 20 minutes or more.
× 二軸延伸開始点で切断(タテ裂け)が生じる。C. Cutting (vertical tear) occurs at the start point of biaxial stretching.
フイルムの厚みムラ 最小目盛1μのダイヤルゲージにフイルム幅方向3cm間
隔で測定、 平均厚みに対する厚みムラを+及び−側で百分率表示 透明性(Haze) ASTM D1003に準拠 剛性 ASTM D882に準拠 衝撃強度 ASTM D1709−67に準拠 引裂強度 JIS P8116−73に準拠 タテ裂け 流れ方向にノッチを入れ引裂いた強度 ヨコ裂け フイルム幅方向にノッチを入れ引裂いた強度 実施例2〜9及び比較例1〜7 実施例1において、線状低密度ポリエチレン及び分岐状
低密度ポリエチレンの物性及び配合量、未延伸フイルム
成形条件ならびに二軸延伸条件を第1表のように変化さ
せたこと以外は実施例1と同様に行った。その結果を第
1表及び第2表に示す。Film thickness unevenness A dial gauge with a minimum scale of 1μ is measured at 3cm intervals in the film width direction, and the thickness unevenness relative to the average thickness is displayed as a percentage on the + and-sides. -67 Tear strength JIS P8116-73 vertical length Tear notched in the flow direction Tear strength Horizontal tear film Notched tear strength in the width direction Examples 2-9 and Comparative Examples 1-7 In Example 1 The same procedure as in Example 1 was repeated except that the physical properties and blending amounts of the linear low-density polyethylene and the branched low-density polyethylene, the unstretched film molding conditions, and the biaxial stretching conditions were changed as shown in Table 1. The results are shown in Tables 1 and 2.
実施例10〜12及び比較例8〜10 実施例1において、線状低密度ポリエチレン及び分岐状
低密度ポリエチレンの物性及び配合量を第3表のように
変化させ、且つ、未延伸フイルムの成形をTダイ法のか
わりにインフレーション成形法(成形条件は第3表に示
す。)により行ない、得られた未延伸フイルムをそのま
ま(2枚同時に)二軸延伸したこと以外は実施例1と同
様に行った。その結果を第3表に示す。 Examples 10 to 12 and Comparative Examples 8 to 10 In Example 1, the physical properties and blending amounts of the linear low density polyethylene and the branched low density polyethylene were changed as shown in Table 3, and the unstretched film was formed. The same procedure as in Example 1 was carried out by an inflation molding method (molding conditions are shown in Table 3) instead of the T-die method, and the obtained unstretched film was biaxially stretched as it was (two sheets at the same time). It was The results are shown in Table 3.
比較例11 比較例10において、LLDの使用割合およびLDの種類、使
用割合を下記に示すように代えた以外同様にして分子量
分布指数が11.0の樹脂組成物を得た。次いで、実施例1
と同様にして未延伸フイルム原反を成形し、テンター法
逐次二軸延伸装置を使用して二軸延伸した。しかしなが
ら、二軸延伸操作において、横方向へ延伸したところフ
イルムに縦裂けが発生して良好なフイルムを成形するこ
とができなかった。その結果を第4表に示す。 Comparative Example 11 A resin composition having a molecular weight distribution index of 11.0 was obtained in the same manner as in Comparative Example 10, except that the usage rate of LLD, the type of LD, and the usage rate were changed as shown below. Then, Example 1
An unstretched film original fabric was formed in the same manner as above, and biaxially stretched using a tenter method sequential biaxial stretching device. However, in the biaxial stretching operation, when the film was stretched in the transverse direction, longitudinal tearing occurred in the film, and a good film could not be formed. The results are shown in Table 4.
〔発明の効果〕 本発明の製造方法によれば従来難しかった線状低密度ポ
リエチレンを用いた二軸延伸フイルムが安定して高能率
に得られ、得られたフイルムは透明性に優れ、均一な厚
さを有し、強度的に大変優れたものである。 [Effects of the Invention] According to the production method of the present invention, a biaxially stretched film using linear low density polyethylene, which has been difficult in the past, can be stably obtained with high efficiency, and the obtained film is excellent in transparency and uniform. It has thickness and is very excellent in strength.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 幸一 岡山県倉敷市潮通3丁目10番地 三菱化成 工業株式会社水島工場内 (56)参考文献 特開 昭57−181828(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Hasegawa, Koichi Hasegawa, 3-10-10, Shiodotsu, Kurashiki-shi, Okayama Mitsubishi Kasei Kogyo Co., Ltd. Mizushima Plant (56) Reference JP-A-57-181828 (JP, A)
Claims (1)
低密度ポリエチレン97〜55重量部とメルトインデックス
が0.3〜4g/10分、分子量分布指数が3〜15の分岐状低密
度ポリエチレン3〜45重量部とからなる分子量分布指数
が1〜10のポリエチレン樹脂組成物を用いて未延伸フイ
ルムまたはシートを成形し、次いで該フイルムまたはシ
ートを縦方向に1.1〜2倍及び横方向に4〜7倍の延伸
倍率で二軸延伸してなることを特徴とする低密度ポリエ
チレン二軸延伸フイルムの製造法。1. A linear low density polyethylene having a melt index of 0.3 to 4 g / 10 minutes 97 to 55 parts by weight, a branched low density polyethylene 3 having a melt index of 0.3 to 4 g / 10 minutes and a molecular weight distribution index of 3 to 15. To 45 parts by weight of a polyethylene resin composition having a molecular weight distribution index of 1 to 10 is used to form an unstretched film or sheet, and the film or sheet is then stretched 1.1 to 2 times in the machine direction and 4 to 4 times in the cross direction. A process for producing a low-density polyethylene biaxially stretched film, which comprises biaxially stretching at a stretch ratio of 7 times.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60115580A JPH0720664B2 (en) | 1985-05-29 | 1985-05-29 | Method for producing low density polyethylene biaxially stretched film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60115580A JPH0720664B2 (en) | 1985-05-29 | 1985-05-29 | Method for producing low density polyethylene biaxially stretched film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61273930A JPS61273930A (en) | 1986-12-04 |
JPH0720664B2 true JPH0720664B2 (en) | 1995-03-08 |
Family
ID=14666103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60115580A Expired - Fee Related JPH0720664B2 (en) | 1985-05-29 | 1985-05-29 | Method for producing low density polyethylene biaxially stretched film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0720664B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4780264A (en) * | 1987-05-22 | 1988-10-25 | The Dow Chemical Company | Linear low density polyethylene cast film |
EP0299750B1 (en) * | 1987-07-13 | 1994-09-28 | Mitsubishi Kasei Corporation | Linear polyethylene film and process for producing the same |
US5904964A (en) * | 1989-12-18 | 1999-05-18 | E. I. Du Pont De Nemours And Company | Process for manufacturing heat-shrinkable polyethylene film |
MY165454A (en) * | 2011-08-26 | 2018-03-22 | Dow Global Technologies Llc | Bioriented polyethylene film |
CN112442223B (en) * | 2019-09-04 | 2023-02-28 | 中国石油化工股份有限公司 | Polyethylene composition and polyethylene film |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1174423A (en) * | 1981-04-23 | 1984-09-18 | Ralph C. Golike | Shrink films of ethylene/alpha-olefin copolymers |
-
1985
- 1985-05-29 JP JP60115580A patent/JPH0720664B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS61273930A (en) | 1986-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6204335B1 (en) | Compositions of linear ultra low density polyethylene and propylene polymers and films therefrom | |
JP2001162737A (en) | Multilayer film for packaging | |
US5110870A (en) | Extensible film or sheet and process for producing the same | |
JPH07216120A (en) | Porous film or sheet and method for producing the same | |
JPS6210150A (en) | Resin composition for inflation film | |
JPH0720664B2 (en) | Method for producing low density polyethylene biaxially stretched film | |
JP2974198B2 (en) | Polyolefin-based shrink laminated film and method for producing the same | |
JP2003011297A (en) | Packaging polypropylene oriented film | |
JP3876619B2 (en) | Packaging film | |
JPH07216119A (en) | Porous film or sheet and method for producing the same | |
JPH0825460A (en) | Surface protection film and method for producing the same | |
JP2772655B2 (en) | Polyolefin resin composition | |
JP2002187245A (en) | Polyolefin resin heat shrinkable multilayer film | |
JP3189174B2 (en) | Composite stretched film | |
JP3507114B2 (en) | Porous film or sheet and method for producing the same | |
CA2032272C (en) | Improved heat shrinkable polyolefin film | |
JP2836156B2 (en) | Method for producing stretched polyethylene film | |
JP2859356B2 (en) | Porous film | |
JP3755923B2 (en) | Polyolefin resin multilayer shrink film | |
JP3581412B2 (en) | Method for producing polyethylene resin composition for forming blown film | |
JPH0519448B2 (en) | ||
JP2859346B2 (en) | Porous film | |
AU1371197A (en) | Lldpe-based thermoshrinkable films | |
JPH0772239B2 (en) | Twisted packaging film | |
JPS59109543A (en) | Improved ethylene copolymer resin composition for film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |