JPH0720366B2 - 直流電圧形成用回路 - Google Patents
直流電圧形成用回路Info
- Publication number
- JPH0720366B2 JPH0720366B2 JP61277785A JP27778586A JPH0720366B2 JP H0720366 B2 JPH0720366 B2 JP H0720366B2 JP 61277785 A JP61277785 A JP 61277785A JP 27778586 A JP27778586 A JP 27778586A JP H0720366 B2 JPH0720366 B2 JP H0720366B2
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- circuit
- frequency
- transistor
- pulse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims description 26
- 238000010586 diagram Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/42—Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
- H02M1/4208—Arrangements for improving power factor of AC input
- H02M1/4225—Arrangements for improving power factor of AC input using a non-isolated boost converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of DC power input into DC power output
- H02M3/02—Conversion of DC power input into DC power output without intermediate conversion into AC
- H02M3/04—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
- H02M3/10—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Power Conversion In General (AREA)
- Inverter Devices (AREA)
Description
【発明の詳細な説明】 本発明は高周波妨害信号抑制用フィルタと; ダイオード、コイル、コンデンサ及びトランジスタから
成り、整流器を介して前記フィルタに結合されると共
に、これらの各素子を前記トランジスタの導通状態にお
いては前記ダイオードがカット・オフされて、コイル電
流が少なくとも前記トランジスタを経て流れ、かつ前記
トランジスタのカット・オフ状態においてはコイル電流
が前記ダイオード及び負荷と前記コンデンサとの並列回
路を経て流れるように配置したスイッチドモードの給電
部と; 周波数が整流入力電圧の最大値での最小周波数と整流入
力電圧の最小値での最大周波数との間にて時間の経過と
共に均一に変化する前記トランジスタ用のスイッチング
パルスを入力電圧から形成するパルス発生器; とを具えており、本来正弦波状の入力電圧から直流電圧
を形成するための回路に関するものである。
成り、整流器を介して前記フィルタに結合されると共
に、これらの各素子を前記トランジスタの導通状態にお
いては前記ダイオードがカット・オフされて、コイル電
流が少なくとも前記トランジスタを経て流れ、かつ前記
トランジスタのカット・オフ状態においてはコイル電流
が前記ダイオード及び負荷と前記コンデンサとの並列回
路を経て流れるように配置したスイッチドモードの給電
部と; 周波数が整流入力電圧の最大値での最小周波数と整流入
力電圧の最小値での最大周波数との間にて時間の経過と
共に均一に変化する前記トランジスタ用のスイッチング
パルスを入力電圧から形成するパルス発生器; とを具えており、本来正弦波状の入力電圧から直流電圧
を形成するための回路に関するものである。
斯種の回路は西独国特許公開公報第2652275号から既知
であり、これは例えばガス放電ランプ用の安定器として
用いることができる。フィルタは交流電圧幹線に接続さ
れ、その幹線からほぼ正弦状の電流を取出す。トランジ
スタは過渡期間が一定となるように、即ちコイル電流が
ゼロ値に達する際にトランジスタが再びスイッチ・オン
されるように制御される。トランジスタを制御するパル
スの周波数は、入力電圧の半サイクルの期間中に放物線
状に変化する。斯かる周波数は入力電圧の最小値にて最
大となり、また斯かる周波数は入力電圧の最大値にて最
小値に達する。
であり、これは例えばガス放電ランプ用の安定器として
用いることができる。フィルタは交流電圧幹線に接続さ
れ、その幹線からほぼ正弦状の電流を取出す。トランジ
スタは過渡期間が一定となるように、即ちコイル電流が
ゼロ値に達する際にトランジスタが再びスイッチ・オン
されるように制御される。トランジスタを制御するパル
スの周波数は、入力電圧の半サイクルの期間中に放物線
状に変化する。斯かる周波数は入力電圧の最小値にて最
大となり、また斯かる周波数は入力電圧の最大値にて最
小値に達する。
スイッチドモードの給電部でのスイッチング処理に応じ
て交流電圧には妨害電圧が重畳される。これらの妨害電
圧はトランジスタを制御するパルスの最小周波数以上に
て生じ、これらは特に低周波範囲では明らかに厄介なも
のとなる。斯様な妨害電圧は回路の入力端子と整流器と
の間にフィルタを接続することによって所定の許容値に
まで低減される。一般に斯種のフィルタはコイルとコン
デンサとで構成する。
て交流電圧には妨害電圧が重畳される。これらの妨害電
圧はトランジスタを制御するパルスの最小周波数以上に
て生じ、これらは特に低周波範囲では明らかに厄介なも
のとなる。斯様な妨害電圧は回路の入力端子と整流器と
の間にフィルタを接続することによって所定の許容値に
まで低減される。一般に斯種のフィルタはコイルとコン
デンサとで構成する。
斯様な妨害電圧に対する許容値はVDE標準規格0871にて
規定されている。このVDE標準規格0871にて規定されて
いる最大妨害電圧に対してはフィルタを調和させるよう
に考慮する必要がある。特に低周波での妨害電圧はフィ
ルタのコイルの大きさを決定することを確めた。
規定されている。このVDE標準規格0871にて規定されて
いる最大妨害電圧に対してはフィルタを調和させるよう
に考慮する必要がある。特に低周波での妨害電圧はフィ
ルタのコイルの大きさを決定することを確めた。
本発明の目的は低周波での妨害電圧を低減することにあ
る。
る。
本発明は斯かる目的を達成するために、前記パルス発生
器が電圧−周波数変換器を具え、該変換器は前記入力電
圧から始動パルスを形成し、これらの始動パルスは前記
スイッチングパルスの開始時点を決定すると共に、前記
スイッチングパルスの周波数を前記両極限値間にて、時
間に関して前記スイッチングパルスの周波数の第2導関
数が常にゼロ又は負となるように変化させ、かつ前記パ
ルス発生器が、前記整流器の出力電圧に比例する積分出
力信号を発生すると共に時定数が前記最小周波数の逆数
値よりも大きい第1積分器と、整流入力電圧に比例する
信号と前記第1積分器の出力信号との差を形成する重畳
回路と、前記整流器の出力電流に比例する信号が前記重
畳回路の出力信号以上となる際にスイッチングパルスの
発生を終了させる信号を発生する第1比較回路とを具え
るようにしたことを特徴とする。
器が電圧−周波数変換器を具え、該変換器は前記入力電
圧から始動パルスを形成し、これらの始動パルスは前記
スイッチングパルスの開始時点を決定すると共に、前記
スイッチングパルスの周波数を前記両極限値間にて、時
間に関して前記スイッチングパルスの周波数の第2導関
数が常にゼロ又は負となるように変化させ、かつ前記パ
ルス発生器が、前記整流器の出力電圧に比例する積分出
力信号を発生すると共に時定数が前記最小周波数の逆数
値よりも大きい第1積分器と、整流入力電圧に比例する
信号と前記第1積分器の出力信号との差を形成する重畳
回路と、前記整流器の出力電流に比例する信号が前記重
畳回路の出力信号以上となる際にスイッチングパルスの
発生を終了させる信号を発生する第1比較回路とを具え
るようにしたことを特徴とする。
本発明による回路では、スイッチングパルスの最大周波
数と最小周波数との間にそのパルスの周波数が時間の関
数として直線的か、又は凹面状に変化するようにスイッ
チングパルスの周波数を変化させる。従ってスイッチン
グパルスの周波数は両極限値間にて、時間に関してのス
イッチングパルスの周波数の第2導関数が不変的に0と
なるか、又は負となるように変化する。このことはスイ
ッチングパルスの周波数をfとする場合に、0wtπ
/2に対して、 ffmax−(fmax−fmin)*2wt/π (1) が成立し、またπ/2wtπに対して ffmin+(fmax−fmin)*2(wt−π/2) (2) が成立することを意味し、ここにfminは最小周波数、fm
axは最大周波数、w角速度、tは時間である。斯かる回
路では時間の関数としての周波数変化が、最小周波数範
囲においては従来回路によるよりも一層速くなるため、
特に低周波範囲での妨害電圧は低減される。従って、フ
ィルタのコイルの寸法を小さな値、即ちコイルのインダ
クタンスを低減させることができる。
数と最小周波数との間にそのパルスの周波数が時間の関
数として直線的か、又は凹面状に変化するようにスイッ
チングパルスの周波数を変化させる。従ってスイッチン
グパルスの周波数は両極限値間にて、時間に関してのス
イッチングパルスの周波数の第2導関数が不変的に0と
なるか、又は負となるように変化する。このことはスイ
ッチングパルスの周波数をfとする場合に、0wtπ
/2に対して、 ffmax−(fmax−fmin)*2wt/π (1) が成立し、またπ/2wtπに対して ffmin+(fmax−fmin)*2(wt−π/2) (2) が成立することを意味し、ここにfminは最小周波数、fm
axは最大周波数、w角速度、tは時間である。斯かる回
路では時間の関数としての周波数変化が、最小周波数範
囲においては従来回路によるよりも一層速くなるため、
特に低周波範囲での妨害電圧は低減される。従って、フ
ィルタのコイルの寸法を小さな値、即ちコイルのインダ
クタンスを低減させることができる。
第1積分器、重畳回路及び第1比較回路によってトラン
ジスタのスイッチング・オフ瞬時が決定されるため、概
して正弦波電流は幹線から取出される。第1積分器はト
ランジスタのスイッチング動作により発生される整流器
の出力電流に比例する信号の高周波成分の平均値を形成
する。重畳回路では第1積分器の出力信号と整流した入
力電圧に比例する信号との差から比較信号を形成する。
重畳回路の出力信号は第1比較回路にて整流器の出力電
流に比例する信号と比較される。整流器の出力電流に比
例する信号が重畳回路の出力信号以上になると、第1比
較回路が信号を発生し、この信号がトランジスタ11を導
通状態からカット・オフ状態にする。
ジスタのスイッチング・オフ瞬時が決定されるため、概
して正弦波電流は幹線から取出される。第1積分器はト
ランジスタのスイッチング動作により発生される整流器
の出力電流に比例する信号の高周波成分の平均値を形成
する。重畳回路では第1積分器の出力信号と整流した入
力電圧に比例する信号との差から比較信号を形成する。
重畳回路の出力信号は第1比較回路にて整流器の出力電
流に比例する信号と比較される。整流器の出力電流に比
例する信号が重畳回路の出力信号以上になると、第1比
較回路が信号を発生し、この信号がトランジスタ11を導
通状態からカット・オフ状態にする。
さらに、高周波回路、例えばレーダ送信機に直流電圧を
供給し、かつパルス発生器によって制御されるスイッチ
ドモードの給電部については米国特許第4190882号明細
書から既知である。この場合のパルス周波数は9kHzと11
kHzとの間にて時間と共に直線的に変化する。しかし、
この周波数変動はスイッチドモードの給電部の入力電圧
に無関係である。さらにこの場合の直流電圧形成用回路
は、スイッチドモードの給電部におけるスイッチング動
作によって発生される妨害電圧が伝送すべき信号中に重
畳されるのを低減させる必要がある。
供給し、かつパルス発生器によって制御されるスイッチ
ドモードの給電部については米国特許第4190882号明細
書から既知である。この場合のパルス周波数は9kHzと11
kHzとの間にて時間と共に直線的に変化する。しかし、
この周波数変動はスイッチドモードの給電部の入力電圧
に無関係である。さらにこの場合の直流電圧形成用回路
は、スイッチドモードの給電部におけるスイッチング動
作によって発生される妨害電圧が伝送すべき信号中に重
畳されるのを低減させる必要がある。
本発明の好適例では前記電圧−周波数変換器が、基準電
圧を整流入力電圧に比例する電圧と比較する第2比較回
路と、基準電圧が大きい場合に前記第2比較回路によっ
て作動される単安定トリガ素子と、該単安定トリガ素子
の出力信号を積分し、かつ時定数が前記入力電圧の周波
数の逆数値よりも大きい第2積分器と、該第2積分器に
よって制御され、かつ始動パルスを発生する電圧−制御
発振器とを具えるようにする。
圧を整流入力電圧に比例する電圧と比較する第2比較回
路と、基準電圧が大きい場合に前記第2比較回路によっ
て作動される単安定トリガ素子と、該単安定トリガ素子
の出力信号を積分し、かつ時定数が前記入力電圧の周波
数の逆数値よりも大きい第2積分器と、該第2積分器に
よって制御され、かつ始動パルスを発生する電圧−制御
発振器とを具えるようにする。
このようにすれば、スイッチングパルスの周波数が最大
値と最小値との間にて時間と共に直線的に変化する。こ
の場合には前式(1)及び(2)にて等式が成立する。
従って、フィルタとしてはコイルとコンデンサとを組合
せたものが用いられる。多段フィルタ、即ちコイルとコ
ンデンサとから成る簡単なフィルタのチェーン回路の場
合には、周波数特性が時間と共に凹面状となるようにす
る必要がある。この場合には前式(1)及び(2)にお
ける等式は成立しなくなる。
値と最小値との間にて時間と共に直線的に変化する。こ
の場合には前式(1)及び(2)にて等式が成立する。
従って、フィルタとしてはコイルとコンデンサとを組合
せたものが用いられる。多段フィルタ、即ちコイルとコ
ンデンサとから成る簡単なフィルタのチェーン回路の場
合には、周波数特性が時間と共に凹面状となるようにす
る必要がある。この場合には前式(1)及び(2)にお
ける等式は成立しなくなる。
パルス発生器で発生させるスイッチングパルスは、始動
パルス及び第1比較回路の信号を受信するトリガ素子に
供給することができる。
パルス及び第1比較回路の信号を受信するトリガ素子に
供給することができる。
重畳回路は、それが増幅器を成すように構成することが
でき、この増幅器の非反転入力端子には整流入力電圧に
比例する信号を供給せしめ、増幅器の反転入力端子は重
畳回路の出力端子に接続される第1抵抗と、第1積分器
の出力端子に接続される第2抵抗とに接続する。斯かる
増幅器は第1積分器の出力信号に対しては反転増幅器と
して作用し、またその増幅器は整流入力電圧に比例する
信号に対しては非反転増幅器として作用する。整流入力
電圧に比例する信号及び積分器の出力信号を第1及び第
2抵抗によって重み付けして比較信号を発生させ、これ
らの信号間の差を形成する。比較回路に供給される重畳
回路の出力信号を正確に調整するために、重畳回路と第
1比較回路との間には分圧器を配置する。
でき、この増幅器の非反転入力端子には整流入力電圧に
比例する信号を供給せしめ、増幅器の反転入力端子は重
畳回路の出力端子に接続される第1抵抗と、第1積分器
の出力端子に接続される第2抵抗とに接続する。斯かる
増幅器は第1積分器の出力信号に対しては反転増幅器と
して作用し、またその増幅器は整流入力電圧に比例する
信号に対しては非反転増幅器として作用する。整流入力
電圧に比例する信号及び積分器の出力信号を第1及び第
2抵抗によって重み付けして比較信号を発生させ、これ
らの信号間の差を形成する。比較回路に供給される重畳
回路の出力信号を正確に調整するために、重畳回路と第
1比較回路との間には分圧器を配置する。
斯かる直流電圧形成用回路にはスイッチドモードの給電
部として3つのタイプのものを用いることができる。先
ず最初の例はコイルの一端を整流器に接続し、他端をダ
イオードを介して負荷とコンデンサとの並列回路に接続
して、逓昇電圧変換器を構成するようにしたものであ
る。この逓昇電圧変換器では、出力電圧が常に入力電圧
よりも大きくなる。第2例は逓降電圧変換器を構成する
ものであり、この場合には出力電圧が入力電圧よりも小
さくなる。このスイッチドモードの給電部では、トラン
ジスタを一方では整流器に、他方ではダイオードに接続
すると共にコイルを介して負荷とコンデンサとの並列回
路に接続する。第3例は逓昇/逓降電圧変換器とするも
のであり、この場合にはトランジスタを一方では整流器
に、他方ではコイルに接続すると共にダイオードを介し
てコンデンサと負荷との並列回路に接続する。このよう
にすれば、出力電圧は入力電圧よりも大きくなったり、
又は小さくなったりする。
部として3つのタイプのものを用いることができる。先
ず最初の例はコイルの一端を整流器に接続し、他端をダ
イオードを介して負荷とコンデンサとの並列回路に接続
して、逓昇電圧変換器を構成するようにしたものであ
る。この逓昇電圧変換器では、出力電圧が常に入力電圧
よりも大きくなる。第2例は逓降電圧変換器を構成する
ものであり、この場合には出力電圧が入力電圧よりも小
さくなる。このスイッチドモードの給電部では、トラン
ジスタを一方では整流器に、他方ではダイオードに接続
すると共にコイルを介して負荷とコンデンサとの並列回
路に接続する。第3例は逓昇/逓降電圧変換器とするも
のであり、この場合にはトランジスタを一方では整流器
に、他方ではコイルに接続すると共にダイオードを介し
てコンデンサと負荷との並列回路に接続する。このよう
にすれば、出力電圧は入力電圧よりも大きくなったり、
又は小さくなったりする。
以下図面につき本発明を説明する。
第1図に示す本発明による直流電圧形成用回路では、実
効値が例えば220Vで、しかも周波数が50Hzの正弦波入力
電圧をコイル2とコンデンサ3とから成るフィルタ1に
供給する。コイル2の一端は入力端子に接続し、他端は
フィルタ1の出力端子に並列に接続されるコンデンサ3
に接続する。フィルタ1の出力端子は整流ブリッジ4に
接続する。この整流ブリッジ4は4個のダイオードをも
って構成し、このブリッジの出力端子は逓昇電圧変換器
5(スイッチドモードの給電部)と、この変換器5を制
御するのに用いられるパルス発生器6とに接続する。逓
昇電圧変換器5は整流器4の正の出力端子7に接続され
るコイル10を具えている。さらに変換器5はnpnトラン
ジスタ11、ダイオード12及びコンデンサ13も具えてい
る。トランジスタ11のコレクタと、ダイオード12の陽極
と、コイル10の整流器4とは反対側の端子は互いに相互
接続する。コンデンサ13には、それに並列に負荷14、例
えば所要の回路を伴なうガス放電ランプを接続し、この
コンデンサ13をダイオード12の陰極とトランジスタ11の
エミッタとの間に配置する。パルス発生器6からのスイ
ッチングパルスはトランジスタ11のベースに供給し、こ
れらのパルスによりトランジスタ11を導通させる。トラ
ンジスタ11は電界効果トランジスタとすることもでき
る。
効値が例えば220Vで、しかも周波数が50Hzの正弦波入力
電圧をコイル2とコンデンサ3とから成るフィルタ1に
供給する。コイル2の一端は入力端子に接続し、他端は
フィルタ1の出力端子に並列に接続されるコンデンサ3
に接続する。フィルタ1の出力端子は整流ブリッジ4に
接続する。この整流ブリッジ4は4個のダイオードをも
って構成し、このブリッジの出力端子は逓昇電圧変換器
5(スイッチドモードの給電部)と、この変換器5を制
御するのに用いられるパルス発生器6とに接続する。逓
昇電圧変換器5は整流器4の正の出力端子7に接続され
るコイル10を具えている。さらに変換器5はnpnトラン
ジスタ11、ダイオード12及びコンデンサ13も具えてい
る。トランジスタ11のコレクタと、ダイオード12の陽極
と、コイル10の整流器4とは反対側の端子は互いに相互
接続する。コンデンサ13には、それに並列に負荷14、例
えば所要の回路を伴なうガス放電ランプを接続し、この
コンデンサ13をダイオード12の陰極とトランジスタ11の
エミッタとの間に配置する。パルス発生器6からのスイ
ッチングパルスはトランジスタ11のベースに供給し、こ
れらのパルスによりトランジスタ11を導通させる。トラ
ンジスタ11は電界効果トランジスタとすることもでき
る。
パルス発生器6は6個の抵抗51〜56と、電圧−周波数変
換器25と、RSトリガ素子26と、第1比較回路27と、第1
積分器28と、重畳回路29とで構成する。抵抗51の一端は
整流器4の出力端子7に接続し、他端は整流器4の他方
の出力端子8に接続される抵抗52と、抵抗54を経て同じ
く整流器4の他方の出力端子8に接続される抵抗53と、
電圧−周波数変換器25の入力端子30とに接続する。電圧
−周波数変換器25は第2比較回路31と、単安定トリガ素
子32と、第2積分器33と、電圧−制御発振器34とで構成
する。第2比較回路31は、例えばその反転入力端子が電
圧−周波数変換器25の入力端子でもある比較器とするこ
とができる。比較回路31の非反転入力端子には基準電圧
Urefを供給する。比較回路31の出力信号は単安定トリガ
素子32を介して積分器33に供給する。この積分器33は例
えば抵抗とコンデンサをもって構成し、この積分器の時
定数は正弦波入力信号の周波数の逆数値よりも大きくす
る必要がある。積分器33の後方に配置する電圧−制御発
振器34が発生するパルスは電圧−周波数変換器25の出力
端子35を経てRSトリガ素子26のセット入力端子に供給す
る。RSトリガ素子26の出力端子はトランジスタ11のベー
スに接続する。
換器25と、RSトリガ素子26と、第1比較回路27と、第1
積分器28と、重畳回路29とで構成する。抵抗51の一端は
整流器4の出力端子7に接続し、他端は整流器4の他方
の出力端子8に接続される抵抗52と、抵抗54を経て同じ
く整流器4の他方の出力端子8に接続される抵抗53と、
電圧−周波数変換器25の入力端子30とに接続する。電圧
−周波数変換器25は第2比較回路31と、単安定トリガ素
子32と、第2積分器33と、電圧−制御発振器34とで構成
する。第2比較回路31は、例えばその反転入力端子が電
圧−周波数変換器25の入力端子でもある比較器とするこ
とができる。比較回路31の非反転入力端子には基準電圧
Urefを供給する。比較回路31の出力信号は単安定トリガ
素子32を介して積分器33に供給する。この積分器33は例
えば抵抗とコンデンサをもって構成し、この積分器の時
定数は正弦波入力信号の周波数の逆数値よりも大きくす
る必要がある。積分器33の後方に配置する電圧−制御発
振器34が発生するパルスは電圧−周波数変換器25の出力
端子35を経てRSトリガ素子26のセット入力端子に供給す
る。RSトリガ素子26の出力端子はトランジスタ11のベー
スに接続する。
測定抵抗16を抵抗40とコンデンサ41との直列回路に並列
に接続し、かつこの測定抵抗16を整流器4の出力端子8
とトランジスタ11のエミッタとの間に接続する。抵抗40
とコンデンサ41は第1積分器28を形成し、この時定数は
トランジスタ11のスイッチングパルスの最小周波数の逆
数値よりも大きくする必要がある。コンデンサ41と抵抗
40との間の接続点は重畳回路29の入力端子60に接続す
る。この重畳回路29の他方の入力端子61は抵抗53と54と
の接続点に接続する。
に接続し、かつこの測定抵抗16を整流器4の出力端子8
とトランジスタ11のエミッタとの間に接続する。抵抗40
とコンデンサ41は第1積分器28を形成し、この時定数は
トランジスタ11のスイッチングパルスの最小周波数の逆
数値よりも大きくする必要がある。コンデンサ41と抵抗
40との間の接続点は重畳回路29の入力端子60に接続す
る。この重畳回路29の他方の入力端子61は抵抗53と54と
の接続点に接続する。
重畳回路29は増幅器62と2個の抵抗63及び64とで構成す
る。入力端子60に接続される抵抗63及び増幅器62の出力
端子に接続される抵抗64は増幅器62の反転入力端子に接
続する。重畳回路29の入力端子61は増幅器62の非反転入
力端子とする。増幅器62の出力端子である重畳回路29の
出力端子65は抵抗55を経て第1比較回路27(これは比較
器とすることもできる)に接続する。比較器27の反転入
力端子に接続する抵抗55は、整流器4の出力端子8と比
較器27の反転入力端子との間に配置する抵抗56と相俟っ
て分圧器を構成する。比較回路27の非反転入力端子はト
ランジスタ11のエミッタに接続する。比較回路27の出力
信号はトリガ素子26のリセット入力端子に供給する。
る。入力端子60に接続される抵抗63及び増幅器62の出力
端子に接続される抵抗64は増幅器62の反転入力端子に接
続する。重畳回路29の入力端子61は増幅器62の非反転入
力端子とする。増幅器62の出力端子である重畳回路29の
出力端子65は抵抗55を経て第1比較回路27(これは比較
器とすることもできる)に接続する。比較器27の反転入
力端子に接続する抵抗55は、整流器4の出力端子8と比
較器27の反転入力端子との間に配置する抵抗56と相俟っ
て分圧器を構成する。比較回路27の非反転入力端子はト
ランジスタ11のエミッタに接続する。比較回路27の出力
信号はトリガ素子26のリセット入力端子に供給する。
トランジスタ11が導通している場合、即ちトランジスタ
11のベースが電流を受電している場合には、ダイオード
12がカット・オフされ、コイル10に流れる電流Iはトラ
ンジスタ11のコレクタ−エミッタ通路を経て出力端子8
に流れる。トランジスタ11がカット・オフされる場合、
即ちトランジスタ11のベースに電流が供給されない場合
には、ダイオード12が導通し、電流Iがコンデンサ13と
負荷14との並列回路に流れる。トランジスタ11を切換え
る周波数は20kHzよりも高くするため、整流器4の出力
端子7と8との間の電圧は一定、即ちトランジスタ11が
導通している期間中には電流Iが時間の経過に伴ない直
線的に増大し、またトランジスタ11がカット・オフされ
ている期間中には電流Iが時間と共に低下するものと見
なすことができる。
11のベースが電流を受電している場合には、ダイオード
12がカット・オフされ、コイル10に流れる電流Iはトラ
ンジスタ11のコレクタ−エミッタ通路を経て出力端子8
に流れる。トランジスタ11がカット・オフされる場合、
即ちトランジスタ11のベースに電流が供給されない場合
には、ダイオード12が導通し、電流Iがコンデンサ13と
負荷14との並列回路に流れる。トランジスタ11を切換え
る周波数は20kHzよりも高くするため、整流器4の出力
端子7と8との間の電圧は一定、即ちトランジスタ11が
導通している期間中には電流Iが時間の経過に伴ない直
線的に増大し、またトランジスタ11がカット・オフされ
ている期間中には電流Iが時間と共に低下するものと見
なすことができる。
パルス発生器6は整流器4の出力端子の電圧から電流パ
ルスを発生し、これらのパルスはトランジスタ11のベー
スに供給され、これらパルスの周波数の整流した入力電
圧の値に依存する。つぎに第2図を参照してパルス発生
器6の作動を説明する。
ルスを発生し、これらのパルスはトランジスタ11のベー
スに供給され、これらパルスの周波数の整流した入力電
圧の値に依存する。つぎに第2図を参照してパルス発生
器6の作動を説明する。
第2A図に示す電圧U1は整流器4の出力端子7及び8に現
れる電圧に比例する電圧であり、この電圧が電圧−周波
数変換器25の入力端子30でもある比較回路31の反転入力
端子に供給される。抵抗51〜54から成る分圧器によって
決定される斯かる比例電圧U1と、比較回路31の非反転入
力端子における基準電圧Urefとがこの比較回路31にて比
較され、反転入力端子における電圧U1が基準電圧Urefよ
りも小さくなると、比較回路31は信号を発生し、これに
より単安定トリガ素子32がパルスを発生し、このパルス
は予定時間、即ちホールド時間後に終了する。単安定ト
リガ素子32によって発生されるパルスは入力電圧の1周
期当り2度発生し、これらのパルスは積分器33にて積分
される。積分器33の三角波出力信号U2を第2B図に示す。
この出力電圧U2は電圧−制御発振器34用の周波数決定制
御信号であり、この発振器34の出力信号U3はトリガ素子
26用の始動パルス形成する。電圧U2に比例する周波数の
変化を第2C図に示す。
れる電圧に比例する電圧であり、この電圧が電圧−周波
数変換器25の入力端子30でもある比較回路31の反転入力
端子に供給される。抵抗51〜54から成る分圧器によって
決定される斯かる比例電圧U1と、比較回路31の非反転入
力端子における基準電圧Urefとがこの比較回路31にて比
較され、反転入力端子における電圧U1が基準電圧Urefよ
りも小さくなると、比較回路31は信号を発生し、これに
より単安定トリガ素子32がパルスを発生し、このパルス
は予定時間、即ちホールド時間後に終了する。単安定ト
リガ素子32によって発生されるパルスは入力電圧の1周
期当り2度発生し、これらのパルスは積分器33にて積分
される。積分器33の三角波出力信号U2を第2B図に示す。
この出力電圧U2は電圧−制御発振器34用の周波数決定制
御信号であり、この発振器34の出力信号U3はトリガ素子
26用の始動パルス形成する。電圧U2に比例する周波数の
変化を第2C図に示す。
整流器4の整流出力電圧に比例する電圧U1の最小値で
は、電圧U2従って始動パルスの周波数は最大値を呈し、
また電圧U1の最大値では、電圧U2、従って始動パルスの
周波数は最小となる。始動パルスの周波数はこれらの極
限値の間で時間と共に直線的に変化し、従ってスイッチ
ングパルスの周波数fに対して次式が成立する。即ち、 0wtπ/2に対しては、 f=fmax−(fmax−fmin)*2wt/π (3) が成立し、また π/2wtπに対しては、 f=fmin+(fmax−fmin)*2(wt−π/2)π (4) が成立し、ここにfmaxは最大周波数、fminは最小周波
数、wは角速度、tは時間である。
は、電圧U2従って始動パルスの周波数は最大値を呈し、
また電圧U1の最大値では、電圧U2、従って始動パルスの
周波数は最小となる。始動パルスの周波数はこれらの極
限値の間で時間と共に直線的に変化し、従ってスイッチ
ングパルスの周波数fに対して次式が成立する。即ち、 0wtπ/2に対しては、 f=fmax−(fmax−fmin)*2wt/π (3) が成立し、また π/2wtπに対しては、 f=fmin+(fmax−fmin)*2(wt−π/2)π (4) が成立し、ここにfmaxは最大周波数、fminは最小周波
数、wは角速度、tは時間である。
単安定トリガ素子32は、周波数が50Hzの正弦波入力信号
にてホールド状態が5ミリ秒継続し、かつこのトリガ素
子が5ミリ毎秒に再びセットされるように調整する必要
がある。比較回路31の非反転入力端子に供給する基準値
Urefは、最大周波数値が入力電圧の対応するゼロ値にで
きるだけ近づくように制定する必要がある。始動パルス
の最大及び最小周波数はそれぞれ積分器33の時定数によ
って規定される。
にてホールド状態が5ミリ秒継続し、かつこのトリガ素
子が5ミリ毎秒に再びセットされるように調整する必要
がある。比較回路31の非反転入力端子に供給する基準値
Urefは、最大周波数値が入力電圧の対応するゼロ値にで
きるだけ近づくように制定する必要がある。始動パルス
の最大及び最小周波数はそれぞれ積分器33の時定数によ
って規定される。
トリガ素子26は電圧−周波数変換器25のパルスによって
セットされて、電流パルスを発生し、この電流パルスが
トランジスタ11を導通させる。整流器4の出力電流I
は、それに比例する電圧を測定抵抗16に発生し、この電
圧は積分器28にて積分される。積分器28ではトランジス
タ11のスイッチング動作によって発生される抵抗16にお
ける電圧の高周波成分の平均値が形成される。従って積
分器28の出力信号と、整流入力電圧に比例し、かつ抵抗
51〜54によって決定される信号電圧との差が重畳回路29
の出力端子65に現われる。
セットされて、電流パルスを発生し、この電流パルスが
トランジスタ11を導通させる。整流器4の出力電流I
は、それに比例する電圧を測定抵抗16に発生し、この電
圧は積分器28にて積分される。積分器28ではトランジス
タ11のスイッチング動作によって発生される抵抗16にお
ける電圧の高周波成分の平均値が形成される。従って積
分器28の出力信号と、整流入力電圧に比例し、かつ抵抗
51〜54によって決定される信号電圧との差が重畳回路29
の出力端子65に現われる。
比較回路27に発生するパルスは測定抵抗16における電圧
が抵抗55と56とから成る分圧器を経た重畳回路29の出力
信号以上となる 際にトリガ素子26をリセットする。第2D図は測定抵抗16
における高周波電圧U4の包絡線を示す。比較信号は抵抗
53〜56及び63と64とによって、コンデンサ41間における
電圧U5(第2E図に示す)が入力正弦波をほぼ整流したも
のとなるように調整する必要がある。
が抵抗55と56とから成る分圧器を経た重畳回路29の出力
信号以上となる 際にトリガ素子26をリセットする。第2D図は測定抵抗16
における高周波電圧U4の包絡線を示す。比較信号は抵抗
53〜56及び63と64とによって、コンデンサ41間における
電圧U5(第2E図に示す)が入力正弦波をほぼ整流したも
のとなるように調整する必要がある。
VDE標準規格0871を満足させなければならないと云う仮
定の下では、スイッチングパルス周波数の経時的な直線
的変化が30kHzと115kHzとの間にて起るようにする場合
フィルタ1におけるコイル2のインダクタンスに対する
最小値はコイル10のインダスタンスを5mHとする場合に
得られる。この場合、妨害電圧は特に低周波範囲で一層
低下する。
定の下では、スイッチングパルス周波数の経時的な直線
的変化が30kHzと115kHzとの間にて起るようにする場合
フィルタ1におけるコイル2のインダクタンスに対する
最小値はコイル10のインダスタンスを5mHとする場合に
得られる。この場合、妨害電圧は特に低周波範囲で一層
低下する。
第1図に示す回路には第3及び4図に示す2通りの別の
スイッチング回路部を用いることもできる。第3図は逓
降電圧変換器を示し、この変換器ではパルス発生器6に
よって制御すべきトランジスタ70のコレクタを整流器4
の出力端子7に接続し、エミッタをダイオード71の陰極
とコイル72とに接続する。このコイルの他端は接続端子
8に接続されるコンデンサ73と負荷74との並列回路に接
続する。同様に、ダイオード71の陽極は接続端子8に接
続する。
スイッチング回路部を用いることもできる。第3図は逓
降電圧変換器を示し、この変換器ではパルス発生器6に
よって制御すべきトランジスタ70のコレクタを整流器4
の出力端子7に接続し、エミッタをダイオード71の陰極
とコイル72とに接続する。このコイルの他端は接続端子
8に接続されるコンデンサ73と負荷74との並列回路に接
続する。同様に、ダイオード71の陽極は接続端子8に接
続する。
第4図は逓昇/逓降電圧変換器を示し、これもトランジ
スタ75で構成し、このトランジスタのコレクタは整流器
4の出力端子7に接続し、ベースにはパルス発生器6か
らのスイッチンクパルスを供給し、エミッタはダイオー
ド76の陰極とコイル77の一端とに接続する。ダイオード
76の陽極は端子8に接続されるコンデンサ78と負荷79と
の並列回路に接続する。コイル77の他端も整流器4の出
力端子8に接続する。
スタ75で構成し、このトランジスタのコレクタは整流器
4の出力端子7に接続し、ベースにはパルス発生器6か
らのスイッチンクパルスを供給し、エミッタはダイオー
ド76の陰極とコイル77の一端とに接続する。ダイオード
76の陽極は端子8に接続されるコンデンサ78と負荷79と
の並列回路に接続する。コイル77の他端も整流器4の出
力端子8に接続する。
第1図は本発明回路の第1例を示す回路図、 第2図は第1図の回路作動を説明するための電圧及び周
波数特性図、 第3及び4図は第1図の回路における給電部の変形例を
それぞれ示す回路図である。 1……フィルタ、4……整流器 5……スイッチドモード給電部 6……パルス発生器、10……コイル 11……npnトランジスタ、12……ダイオード 13……コンデンサ、14……負荷 16……測定抵抗、25……電圧−周波数変換器 27……第1比較回路、28……第1積分器 29……重畳回路、31……第2比較回路 32……単安定トリガ素子、33……第2積分器 34……電圧−制御発振器、40……抵抗 41……コンデンサ、51〜56……抵抗 62……増幅器、63,64……抵抗 70,75……トランジスタ、71,76……ダイオード 72,77……コイル、73,78……コンデンサ 74,79……負荷
波数特性図、 第3及び4図は第1図の回路における給電部の変形例を
それぞれ示す回路図である。 1……フィルタ、4……整流器 5……スイッチドモード給電部 6……パルス発生器、10……コイル 11……npnトランジスタ、12……ダイオード 13……コンデンサ、14……負荷 16……測定抵抗、25……電圧−周波数変換器 27……第1比較回路、28……第1積分器 29……重畳回路、31……第2比較回路 32……単安定トリガ素子、33……第2積分器 34……電圧−制御発振器、40……抵抗 41……コンデンサ、51〜56……抵抗 62……増幅器、63,64……抵抗 70,75……トランジスタ、71,76……ダイオード 72,77……コイル、73,78……コンデンサ 74,79……負荷
Claims (8)
- 【請求項1】高周波妨害信号抑制用フィルタと; ダイオード、コイル、コンデンサ及びトランジスタから
成り、整流器を介して前記フィルタに結合されると共
に、これらの各素子を前記トランジスタの導通状態にお
いては前記ダイオードがカット・オフされて、コイル電
流が少なくとも前記トランジスタを経て流れ、かつ前記
トランジスタのカット・オフ状態においてはコイル電流
が前記ダイオード及び負荷と前記コンデンサとの並列回
路を経て流れるように配置したスイッチドモードの給電
部と; 周波数が整流入力電圧の最大値での最小周波数と整流入
力電圧の最小値での最大周波数との間にて時間の経過と
共に均一に変化する前記トランジスタ用のスイッチング
パルスを入力電圧から形成するパルス発生器; とを具えており、本来正弦波状の入力電圧から直流電圧
を形成するための回路において、前記パルス発生器が電
圧−周波数変換器を具え、該変換器は前記入力電圧から
始動パルスを形成し、これらの始動パルスは前記スイッ
チングパルスの開始時点を決定すると共に、前記スイッ
チングパルスの周波数を前記両極限値間にて、時間に関
して前記スイッチングパルスの周波数の第2導関数が常
にゼロ又は負となるように変化させ、かつ前記パルス発
生器が、前記整流器の出力電圧に比例する積分出力信号
を発生すると共に時定数が前記最小周波数の逆数値より
も大きい第1積分器と、整流入力電圧に比例する信号と
前記第1積分器の出力信号との差を形成する重畳回路
と、前記整流器の出力電流に比例する信号が前記重畳回
路の出力信号以上となる際にスイッチングパルスの発生
を終了させる信号を発生する第1比較回路とを具えるよ
うにしたことを特徴とする直流電圧形成用回路。 - 【請求項2】前記電圧−周波数変換器が、基準電圧を整
流入力電圧に比例する電圧と比較する第2比較回路と、
基準電圧が大きい場合に前記第2比較回路によって作動
される単安定トリガ素子と、該単安定トリガ素子の出力
信号を積分し、かつ時定数が前記入力電圧の周波数の逆
数値よりも大きい第2積分器と、該第2積分器によって
制御され、かつ始動パルスを発生する電圧−制御発振器
とを具えることを特徴とする特許請求の範囲第1項に記
載の直流電圧形成用回路。 - 【請求項3】前記パルス発生器が前記スイッチングパル
スを発生するトリガ素子を具え、該トリガ素子に前記始
動パルス及び前記第1比較回路の信号を供給するように
したことを特徴とする特許請求の範囲第1又は2項のい
ずれか一項に記載の直流電圧形成用回路。 - 【請求項4】前記重畳回路が増幅器を具え、該増幅器の
非反転入力端子に前記整流入力電圧に比例する信号を供
給し、前記増幅器の反転入力端子を前記重畳回路の出力
端子に接続される第1抵抗と、前記第1積分器の出力端
子に接続される第2抵抗とに接続したことを特徴とする
特許請求の範囲第1〜3項のいずれか一項に記載の直流
電圧形成用回路。 - 【請求項5】前記重畳回路と前記第1比較回路との間に
分圧器を配置したことを特徴とする特許請求の範囲第1
〜4項のいずれか一項に記載の直流電圧形成用回路。 - 【請求項6】前記コイルの一端を前記整流器に接続し、
かつ他端を前記トランジスタに接続すると共に前記ダイ
オードを介して前記負荷と前記コンデンサとの並列回路
に接続するようにしたことを特徴とする特許請求の範囲
第1〜5項のいずれか一項に記載の直流電圧形成用回
路。 - 【請求項7】前記トランジスタを一方では前記整流器に
接続し、かつ他方では前記ダイオードに接続すると共に
前記コイルを介して前記負荷と前記コンデンサとの並列
回路にも接続するようにしたことを特徴とする特許請求
の範囲第1〜5項のいずれか一項に記載の直流電圧形成
用回路。 - 【請求項8】前記トランジスタを一方では前記整流器に
接続し、かつ他方では前記コイルに接続すると共に前記
ダイオードを介して前記コンデンサと前記負荷との並列
回路にも接続するようにしたことを特徴とする特許請求
の範囲第1〜5項のいずれか一項に記載の直流電圧形成
用回路。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3541307A DE3541307C1 (en) | 1985-11-22 | 1985-11-22 | DC power supply generator e.g. for gas discharge lamp - obtains regulated DC voltage from mains supply giving sinusoidal input to filter and rectifier |
DE3541307.7 | 1985-11-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62131760A JPS62131760A (ja) | 1987-06-15 |
JPH0720366B2 true JPH0720366B2 (ja) | 1995-03-06 |
Family
ID=6286561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61277785A Expired - Lifetime JPH0720366B2 (ja) | 1985-11-22 | 1986-11-20 | 直流電圧形成用回路 |
Country Status (4)
Country | Link |
---|---|
US (1) | US4719552A (ja) |
EP (1) | EP0223316B1 (ja) |
JP (1) | JPH0720366B2 (ja) |
DE (2) | DE3541307C1 (ja) |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3612147A1 (de) * | 1986-04-10 | 1987-10-15 | Philips Patentverwaltung | Schaltungsanordnung zur erzeugung einer gleichspannung aus einer sinusfoermigen eingangsspannung |
DE3868803D1 (de) * | 1987-09-16 | 1992-04-09 | Hitachi Ltd | Leistungsquelleneinrichtung. |
WO1989003608A1 (en) * | 1987-10-15 | 1989-04-20 | Ascom Hasler Ag | Process and device for preventing interference of transients in a buck cell |
US4891744A (en) * | 1987-11-20 | 1990-01-02 | Mitsubishi Denki Kaubshiki Kaisha | Power converter control circuit |
US4943902A (en) * | 1987-11-23 | 1990-07-24 | Viteq Corporation | AC to DC power converter and method with integrated line current control for improving power factor |
US4816982A (en) * | 1987-11-23 | 1989-03-28 | Viteq Corporation | AC to DC power converter with integrated line current control for improving power factor |
US4974141A (en) * | 1988-05-18 | 1990-11-27 | Viteq Corporation | AC to DC power converter with input current waveform control for buck-boost regualtion of output |
US4964029A (en) * | 1988-05-18 | 1990-10-16 | Viteq Corporation | AC to DC power converter with input current waveform control for buck-boost regulation of output |
US4956600A (en) * | 1988-07-01 | 1990-09-11 | Viteq Corporation | High frequency current detector for a low frequency line |
GB8817684D0 (en) * | 1988-07-25 | 1988-09-01 | Astec Int Ltd | Power factor improvement |
US5221887A (en) * | 1988-08-08 | 1993-06-22 | Zdzislaw Gulczynski | Synchronous switching power supply comprising boost or flyback converter |
DE3828816A1 (de) * | 1988-08-25 | 1989-10-19 | Ant Nachrichtentech | Verfahren zum betreiben eines schaltreglers |
US4914539A (en) * | 1989-03-15 | 1990-04-03 | The Boeing Company | Regulator for inductively coupled power distribution system |
JP3002235B2 (ja) * | 1990-06-18 | 2000-01-24 | 有限会社 吉野精機 | 壁面補修工法 |
US5357418A (en) * | 1991-05-02 | 1994-10-18 | Robert Clavel | Hybrid power supply for converting an alternating input signal into a direct output signal |
JP3164838B2 (ja) * | 1991-06-19 | 2001-05-14 | 株式会社日立製作所 | スイッチング回路及びそれを用いた変換装置、力率改善電源装置 |
US5416687A (en) * | 1992-06-23 | 1995-05-16 | Delta Coventry Corporation | Power factor correction circuit for AC to DC power supply |
JP2763479B2 (ja) * | 1992-08-06 | 1998-06-11 | 三菱電機株式会社 | 直流電源装置 |
US5367247A (en) * | 1992-08-10 | 1994-11-22 | International Business Machines Corporation | Critically continuous boost converter |
US5345164A (en) * | 1993-04-27 | 1994-09-06 | Metcal, Inc. | Power factor corrected DC power supply |
US5420780A (en) * | 1993-12-30 | 1995-05-30 | Omega Power Systems | Apparatus for limiting inrush current |
US5909106A (en) * | 1994-11-06 | 1999-06-01 | U.S. Philips Corporation | Control signal for a voltage generator for an LCD screen control circuit |
US5587650A (en) * | 1994-12-13 | 1996-12-24 | Intel Corporation | High precision switching regulator circuit |
CA2169519A1 (en) * | 1995-02-15 | 1996-08-16 | John H. Covington | Techniques for controlling remote lamp loads |
EP0732797B1 (en) * | 1995-03-16 | 2002-02-13 | FRANKLIN ELECTRIC Co., Inc. | Power factor correction |
JPH09172779A (ja) * | 1995-07-11 | 1997-06-30 | Meidensha Corp | 正弦波入力コンバータ回路 |
US5598093A (en) * | 1995-07-26 | 1997-01-28 | Acatrinei; Beniamin | Low dissipation controllable electron valve for controlling energy delivered to a load and method therefor |
US5694310A (en) * | 1995-08-14 | 1997-12-02 | International Business Machines Corporation | Three phase input boost converter |
US5661645A (en) | 1996-06-27 | 1997-08-26 | Hochstein; Peter A. | Power supply for light emitting diode array |
AT405703B (de) * | 1996-07-23 | 1999-11-25 | Siemens Ag Oesterreich | Netzgerät |
DE19635355C2 (de) * | 1996-08-31 | 2000-05-11 | Fuld Ingenieurgesellschaft Mbh | Schaltung zur Ansteuerung von getakteten Energiewandlern mit netzabhängig veränderlicher Schaltfrequenz |
JPH1098875A (ja) * | 1996-09-20 | 1998-04-14 | Mitsumi Electric Co Ltd | スイッチングレギュレータ |
US5929620A (en) * | 1996-11-07 | 1999-07-27 | Linear Technology Corporation | Switching regulators having a synchronizable oscillator frequency with constant ramp amplitude |
US6150771A (en) * | 1997-06-11 | 2000-11-21 | Precision Solar Controls Inc. | Circuit for interfacing between a conventional traffic signal conflict monitor and light emitting diodes replacing a conventional incandescent bulb in the signal |
WO1999005776A1 (de) * | 1997-07-25 | 1999-02-04 | Siemens Ag Österreich | Schaltwandler |
US5894216A (en) * | 1998-03-17 | 1999-04-13 | Lambda Electronics Incorporated | Solid-state saturable reactor emulator |
US6281658B1 (en) * | 1999-01-08 | 2001-08-28 | Lg Electronics Inc. | Power factor compensation device for motor driving inverter system |
DE19942794A1 (de) * | 1999-09-08 | 2001-03-15 | Philips Corp Intellectual Pty | Konverter mit Hochsetzstelleranordnung |
US6501236B1 (en) | 2000-09-28 | 2002-12-31 | Tim Simon, Inc. | Variable switch with reduced noise interference |
US6465990B2 (en) | 2001-03-15 | 2002-10-15 | Bensys Corporation | Power factor correction circuit |
US6476589B2 (en) * | 2001-04-06 | 2002-11-05 | Linear Technology Corporation | Circuits and methods for synchronizing non-constant frequency switching regulators with a phase locked loop |
JP2005086843A (ja) * | 2003-09-04 | 2005-03-31 | Taiyo Yuden Co Ltd | 電力供給源の出力制御装置 |
WO2005041393A2 (en) | 2003-10-24 | 2005-05-06 | Pf1, Inc. | Method and system for power factor correction |
DE102008007211B4 (de) * | 2008-02-01 | 2017-10-26 | Continental Automotive Gmbh | Schaltungsanordnung zum Ansteuern einer induktiven Last und Verwendung einer solchen Schaltungsanordnung |
US7923973B2 (en) * | 2008-09-15 | 2011-04-12 | Power Integrations, Inc. | Method and apparatus to reduce line current harmonics from a power supply |
US8614595B2 (en) * | 2008-11-14 | 2013-12-24 | Beniamin Acatrinei | Low cost ultra versatile mixed signal controller circuit |
CN102474182B (zh) | 2009-07-16 | 2015-03-25 | 飞思卡尔半导体公司 | 包括电压调制电路的集成电路及其方法 |
US9419538B2 (en) | 2011-02-24 | 2016-08-16 | Crane Electronics, Inc. | AC/DC power conversion system and method of manufacture of same |
US9831768B2 (en) | 2014-07-17 | 2017-11-28 | Crane Electronics, Inc. | Dynamic maneuvering configuration for multiple control modes in a unified servo system |
US9230726B1 (en) | 2015-02-20 | 2016-01-05 | Crane Electronics, Inc. | Transformer-based power converters with 3D printed microchannel heat sink |
US9160228B1 (en) * | 2015-02-26 | 2015-10-13 | Crane Electronics, Inc. | Integrated tri-state electromagnetic interference filter and line conditioning module |
US9293999B1 (en) | 2015-07-17 | 2016-03-22 | Crane Electronics, Inc. | Automatic enhanced self-driven synchronous rectification for power converters |
US9780635B1 (en) | 2016-06-10 | 2017-10-03 | Crane Electronics, Inc. | Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters |
US9735566B1 (en) | 2016-12-12 | 2017-08-15 | Crane Electronics, Inc. | Proactively operational over-voltage protection circuit |
US9742183B1 (en) | 2016-12-09 | 2017-08-22 | Crane Electronics, Inc. | Proactively operational over-voltage protection circuit |
US9979285B1 (en) | 2017-10-17 | 2018-05-22 | Crane Electronics, Inc. | Radiation tolerant, analog latch peak current mode control for power converters |
US10425080B1 (en) | 2018-11-06 | 2019-09-24 | Crane Electronics, Inc. | Magnetic peak current mode control for radiation tolerant active driven synchronous power converters |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2652275A1 (de) * | 1976-11-17 | 1978-05-18 | Boehringer Andreas | Einrichtung ohne prinzipbedingte verluste zur entnahme von praktisch rein sinusfoermigem, netzfrequentem strom aus wechsel- oder drehspannungsnetzen und zur ueberfuehrung der entnommenen elektrischen energie in galvanisch verbundene gleichspannungssysteme oder gleichspannungszwischensysteme |
US4190882A (en) * | 1977-05-05 | 1980-02-26 | Hughes Aircraft Company | System for reducing the effects of power supply switching |
DE2852275A1 (de) * | 1978-12-02 | 1980-06-19 | Basf Ag | Neue ester zur schaedlingsbekaempfung |
US4251752A (en) * | 1979-05-07 | 1981-02-17 | Synergetics, Inc. | Solid state electronic ballast system for fluorescent lamps |
US4562383A (en) * | 1981-07-31 | 1985-12-31 | Siemens Aktiengesellschaft | Converter |
US4481460A (en) * | 1982-02-08 | 1984-11-06 | Siemens Aktiengesellschaft | Inverter with charging regulator having a variable keying ratio |
DE3301632A1 (de) * | 1983-01-19 | 1984-07-26 | Siemens AG, 1000 Berlin und 8000 München | Umrichter |
JPH0789743B2 (ja) * | 1983-04-26 | 1995-09-27 | 株式会社東芝 | 整流電源回路 |
NZ209570A (en) * | 1983-09-19 | 1988-03-30 | Minitronics Pty Ltd | Switching regulator |
-
1985
- 1985-11-22 DE DE3541307A patent/DE3541307C1/de not_active Expired
-
1986
- 1986-11-14 US US06/930,821 patent/US4719552A/en not_active Expired - Fee Related
- 1986-11-20 DE DE8686202051T patent/DE3669241D1/de not_active Expired - Lifetime
- 1986-11-20 EP EP86202051A patent/EP0223316B1/de not_active Expired - Lifetime
- 1986-11-20 JP JP61277785A patent/JPH0720366B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0223316A2 (de) | 1987-05-27 |
DE3669241D1 (de) | 1990-04-05 |
JPS62131760A (ja) | 1987-06-15 |
US4719552A (en) | 1988-01-12 |
DE3541307C1 (en) | 1987-02-05 |
EP0223316B1 (de) | 1990-02-28 |
EP0223316A3 (en) | 1987-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0720366B2 (ja) | 直流電圧形成用回路 | |
US4712169A (en) | Circuit arrangement for forming a direct voltage from a sinusoidal input voltage | |
US4538101A (en) | Power supply device | |
US3890537A (en) | Solid state chopper ballast for gaseous discharge lamps | |
US4471269A (en) | Circuit arrangement for operating a high-pressure gas discharge lamp | |
US4890214A (en) | Start circuit for adapting a constant current generator to a wide variety of loads | |
EP0482705B1 (en) | Circuit arrangement | |
EP0186931B1 (en) | Frequency stabilized automatic gain controlled ballast system | |
US4126891A (en) | Switching regulator with feedback system for regulating output current | |
JPS58117691A (ja) | 可変高周波安定器回路 | |
AU614165B2 (en) | Cuk type direct/direct voltage converter and mains supply with direct conversion achieved with a converter such as this | |
US4074344A (en) | High power factor ac to dc converter circuit | |
US5751567A (en) | AC-DC converter | |
EP0102796B1 (en) | Induction heating apparatus utilizing output energy for powering switching operation | |
US4233558A (en) | Regulated dual DC power supply | |
US5239453A (en) | DC to DC converter employing a free-running single stage blocking oscillator | |
US4392093A (en) | Electronic control and regulating system | |
RU2832859C1 (ru) | Стабилизатор переменного напряжения | |
JP3230026B2 (ja) | スイッチング電源装置 | |
KR0114418Y1 (ko) | 인버터 장치 | |
JPH0435937Y2 (ja) | ||
JP2961851B2 (ja) | 圧電トランスを用いた電源回路 | |
JPH05219728A (ja) | スイッチングレギュレータ | |
JPS61219268A (ja) | 電源回路装置 | |
JPH044832B2 (ja) |