[go: up one dir, main page]

JPH07198894A - Method for treating radioactive waste liquid - Google Patents

Method for treating radioactive waste liquid

Info

Publication number
JPH07198894A
JPH07198894A JP39094A JP39094A JPH07198894A JP H07198894 A JPH07198894 A JP H07198894A JP 39094 A JP39094 A JP 39094A JP 39094 A JP39094 A JP 39094A JP H07198894 A JPH07198894 A JP H07198894A
Authority
JP
Japan
Prior art keywords
compound
waste liquid
uranium
solution
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP39094A
Other languages
Japanese (ja)
Inventor
Masafusa Ouchi
正房 大内
Tsuneo Watanabe
恒雄 渡辺
Toshiyuki Kai
俊行 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP39094A priority Critical patent/JPH07198894A/en
Priority to FR9415972A priority patent/FR2714995B1/en
Priority to GB9500279A priority patent/GB2285534B/en
Publication of JPH07198894A publication Critical patent/JPH07198894A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To reduce the concentration of each element included in waste liquid to below an exhaust water monitoring standard by removing such alpha and/of betadecay species as uranium, UD (radioactive decay species of uranium), FP (nuclear fission products), TRU (transuranium elements) and fluorine out of radioactive waste liquid. CONSTITUTION:Calcium compound and iron chloride are added to alkaline radioactive waste liquid including uranium, UD, FP, and TRU and besides fluorine and stirred, and the precipitation agglomerated by the stirring is filtered and removed from the stirred liquid. This filtrate is controlled to have pH of 3 or less by adding nitric acid and to this pH-controlled liquid, selected one or two kinds of compound out of the group consisting of lathanoid compound, titanium compound, zirconium compound and hafnium compound are added to dissolve or mix the compound. After controlling the pH to 9 or more by adding alkaline solution to this solution or mixture liquid, the precipitate agglomerated by the pH-control is filtered and removed from the pH-controlled liquid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、それぞれα及び/又は
β崩壊核種であるウラン、ウランの放射性崩壊核種(以
下、UDという)、核分裂生成物(以下、FPという)
及び超ウラン元素(以下、TRUという)とフッ素とを
含有するアルカリ性放射性廃液からウラン、UD、FP
及びTRUとフッ素とを除去して、廃液中のウラン、U
D、FP、TRU及びフッ素の含有量をそれぞれ低減す
る処理法に関するものである。
TECHNICAL FIELD The present invention relates to uranium which is an α and / or β decay nuclide, a radioactive decay nuclide of uranium (hereinafter referred to as UD) and a fission product (hereinafter referred to as FP).
And uranium, UD, FP from alkaline radioactive waste liquid containing transuranium element (hereinafter referred to as TRU) and fluorine
And TRU and fluorine are removed to remove uranium and U in the waste liquid.
The present invention relates to a treatment method for reducing the contents of D, FP, TRU and fluorine, respectively.

【0002】[0002]

【従来の技術】UO2ペレットを製造するために用いら
れた六フッ化ウランの入ったシリンダは用済み後、新た
に六フッ化ウランを充填する前に洗浄される。この洗浄
液にはフッ素及びウラン以外に、ウランの娘核種である
トリウムなどのβ崩壊核種を含んでいる。この洗浄液を
プラントから廃液としてそのまま排出することは環境保
全上問題がある。このため含有する元素毎に排水管理基
準を設け、洗浄液である放射性廃液を処理して、各排水
管理基準を下回るようにした上でプラントから排出して
いる。従来、図3に示すように、シリンダ洗浄液である
ウラン含有溶液にはNaOH等のアルカリ性化合物水溶
液が添加されて撹拌され、この撹拌液をろ過して撹拌に
より凝集したウラン沈殿物を除去する処理がなされる。
この撹拌工程1と予備的ろ過工程2により得られた放射
性廃液は次の方法により処理されていた。即ち、この処
理法は、ろ過工程2のろ液である放射性廃液に消石灰及
び塩化鉄を添加して撹拌する工程3と、この撹拌液をろ
過して撹拌により凝集したカルシウムと鉄のフッ化物を
除去するろ過工程4と、このろ液をイオン交換カラムに
通してイオン交換し、残余のウラン及びウランの娘核種
であるトリウムなどのβ崩壊核種を除去するイオン交換
工程5とからなっていた。
BACKGROUND OF THE INVENTION Cylinders containing uranium hexafluoride used to produce UO 2 pellets are cleaned after being used and before being filled with new uranium hexafluoride. In addition to fluorine and uranium, this cleaning solution contains β decay nuclides such as thorium which is a daughter nuclide of uranium. Discharging this cleaning liquid as it is from the plant is a problem in terms of environmental protection. For this reason, wastewater management standards are set for each contained element, and radioactive waste liquid, which is a cleaning liquid, is treated so that it falls below each wastewater management standard before being discharged from the plant. Conventionally, as shown in FIG. 3, an aqueous solution of an alkaline compound such as NaOH is added to a uranium-containing solution that is a cylinder cleaning solution and stirred, and the stirring solution is filtered to remove the aggregated uranium precipitate by stirring. Done.
The radioactive liquid waste obtained by the stirring step 1 and the preliminary filtration step 2 was treated by the following method. That is, this treatment method is a step 3 in which slaked lime and iron chloride are added to the radioactive waste liquid that is the filtrate of the filtration step 2 and stirred, and a calcium and iron fluoride aggregated by the filtration of this stirred solution by stirring. It consisted of a filtration step 4 for removal and an ion exchange step 5 for removing the residual uranium and β-decay nuclide such as thorium which is a daughter nuclide of uranium by passing the filtrate through an ion exchange column.

【0003】[0003]

【発明が解決しようとする課題】従来のこの凝集沈殿処
理法は高価なイオン交換樹脂を必要とするばかりでな
く、処理が容易でない使用済みのイオン交換樹脂を含む
固体廃棄物が新たに発生するなどの問題があった。また
この処理法は天然系濃縮ウランの洗浄液についての廃液
処理法としては有効であったが、微量のFP及びTRU
が混入している回収ウラン系濃縮ウランの場合には適用
できない欠点があった。即ち、フッ素に関してはその排
水管理基準値15ppmより低い濃度に処理できるもの
の、α崩壊核種に関してはα廃液の排水管理基準値:1
×10-2Bq/cm3を、またβ崩壊核種に関してはβ
廃液の排水管理基準値:3×10-1Bq/cm3をとも
に下回る放射能濃度に処理することができない欠点があ
った。
This conventional coagulation-sedimentation treatment method requires not only an expensive ion-exchange resin but also a solid waste containing a used ion-exchange resin which is not easily treated. There was such a problem. Moreover, this treatment method was effective as a waste liquid treatment method for the washing liquid of natural concentrated uranium, but a small amount of FP and TRU
However, it has a drawback that it cannot be applied to the case of the recovered uranium-enriched uranium mixed with. That is, although fluorine can be treated at a concentration lower than the wastewater management standard value of 15 ppm, for α decay nuclides, the wastewater management standard value of α waste liquid is: 1
× 10 -2 Bq / cm 3 and β for β decay nuclides
The wastewater management standard value of the waste liquid was 3 × 10 −1 Bq / cm 3 and there was a drawback that it could not be treated to a radioactivity concentration below both.

【0004】本発明の目的は、ウラン、UD、FP及び
TRU、並びにフッ素を含有する放射性廃液からウラ
ン、UD、FP、TRU及びフッ素を除去して、廃液中
に含有する各元素を排水管理基準値以下の放射能濃度に
それぞれ低減する放射性廃液の処理法を提供することに
ある。
The object of the present invention is to remove uranium, UD, FP, TRU and fluorine from radioactive waste liquid containing uranium, UD, FP and TRU and fluorine, and to remove each element contained in the waste liquid as a wastewater management standard. It is to provide a method for treating radioactive waste liquids, each of which reduces the radioactivity concentration below the specified value.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、図1に示すように本発明の処理法は、それぞれα及
び/又はβ崩壊核種であるウラン、ウランの放射性崩壊
核種、核分裂生成物及び超ウラン元素とフッ素とを含有
するアルカリ性放射性廃液にCa(OH)2,CaO,C
aCO3等のカルシウム化合物及び塩化鉄を添加して撹
拌する工程13と、前記工程13の撹拌により凝集した
沈殿物を前記工程13の撹拌液からろ別することにより
除去する第1ろ過工程14と、前記工程14のろ液に硝
酸又は必要により硝酸と塩化鉄を添加してpHを3以下
に調整する第1pH調整工程15と、前記pH調整液に
ランタノイド化合物、チタン化合物、ジルコニウム化合
物及びハフニウム化合物からなる群より選ばれた1種又
は2種以上の化合物を添加して前記化合物を溶解又は混
合する工程16と、前記工程16の溶液又は混合液にN
4OH溶液、NaOH溶液等のアルカリ溶液を添加し
てpHを9以上に調整する第2pH調整工程17と、前
記工程17のpH調整により凝集した沈殿物を前記工程
17のpH調整液からろ別することにより除去する第2
ろ過工程19とを含む方法である。
In order to achieve the above object, as shown in FIG. 1, the treatment method of the present invention comprises uranium, which is an α and / or β decay nuclide, radioactive decay nuclide of uranium, and fission production, respectively. Of Ca (OH) 2 , CaO, and C in alkaline radioactive waste liquid containing substances and transuranic elements and fluorine
a step 13 in which a calcium compound such as aCO 3 and iron chloride are added and stirred, and a first filtration step 14 in which a precipitate aggregated by the stirring in the step 13 is removed by filtering from the stirring liquid in the step 13. A first pH adjusting step 15 of adjusting the pH to 3 or less by adding nitric acid or nitric acid and iron chloride to the filtrate of the step 14, and a lanthanoid compound, a titanium compound, a zirconium compound and a hafnium compound in the pH adjusting solution. Step 16 of adding one or more compounds selected from the group consisting of to dissolve or mix the compounds, and N in the solution or mixture of Step 16.
A second pH adjusting step 17 in which an alkaline solution such as H 4 OH solution or NaOH solution is added to adjust the pH to 9 or more, and a precipitate aggregated by the pH adjusting in the step 17 is filtered from the pH adjusting solution in the step 17. Second to remove by separating
This is a method including a filtration step 19.

【0006】なお、撹拌工程13で撹拌される放射性廃
液は、例えば図1に示すように、シリンダ洗浄液である
ウラン含有溶液にアルカリ溶液を添加し撹拌してpH1
0以上にする撹拌工程11を経た後、この撹拌により凝
集したウラン沈殿物を撹拌液から予備的にろ別して除去
する予備的ろ過工程12により得られる。
The radioactive waste liquid stirred in the stirring step 13 is adjusted to pH 1 by adding an alkali solution to a uranium-containing solution, which is a cylinder cleaning solution, and stirring the solution as shown in FIG.
After the stirring step 11 of 0 or more, the uranium precipitate aggregated by the stirring is preliminarily filtered out from the stirring solution to be removed by the preliminary filtration step 12.

【0007】[0007]

【作用】本発明の放射性廃液に撹拌工程13でカルシウ
ム化合物及び塩化鉄を添加した後、第1ろ過工程14で
主としてフッ素をフッ化物として除去する。更に工程1
5でろ液をpH3以下の酸性側にした後、工程16でラ
ンタノイド化合物、チタン化合物、ジルコニウム化合物
又はハフニウム化合物を溶解又は混合させ、工程17で
再びpHを9以上のアルカリ側にすることにより、第2
ろ過工程19でα及び/又はβ崩壊核種をランタノイド
化合物、チタン化合物、ジルコニウム化合物又はハフニ
ウム化合物の凝集沈殿物として除去する。特に本発明の
特徴ある点は、工程16におけるランタノイド化合物、
チタン化合物、ジルコニウム化合物又はハフニウム化合
物の添加と、工程19でこれらの化合物を凝集沈殿させ
て同時にα及び/又はβ崩壊核種を除去することにあ
る。ランタノイド化合物としてはLaCl3,CeCl3
等が例示され、チタン化合物としてはTiCl4が例示
される。またジルコニウム化合物としてはZrCl4
例示され、ハフニウム化合物としてはHfCl4が例示
される。
After adding the calcium compound and iron chloride to the radioactive waste liquid of the present invention in the stirring step 13, fluorine is mainly removed as a fluoride in the first filtering step 14. Further step 1
After adjusting the filtrate to an acidic side having a pH of 3 or less in step 5, dissolving or mixing the lanthanoid compound, titanium compound, zirconium compound or hafnium compound in step 16, and bringing the pH to the alkaline side of 9 or more again in step 17, Two
In the filtration step 19, the α and / or β decay nuclides are removed as aggregate precipitates of lanthanoid compound, titanium compound, zirconium compound or hafnium compound. Particularly, a feature of the present invention is that the lanthanoid compound in step 16,
It is to add a titanium compound, a zirconium compound or a hafnium compound, and to coagulate and precipitate these compounds in step 19 to simultaneously remove α and / or β decay nuclides. As the lanthanoid compound, LaCl 3 , CeCl 3
And the like, and TiCl 4 is exemplified as the titanium compound. The zirconium compound is exemplified by ZrCl 4 , and the hafnium compound is exemplified by HfCl 4 .

【0008】[0008]

【実施例】次に本発明の具体的態様を示すために、本発
明の実施例を説明する。以下に述べる実施例は本発明の
技術的範囲を限定するものではない。
EXAMPLES Next, examples of the present invention will be described in order to show specific embodiments of the present invention. The examples described below do not limit the technical scope of the present invention.

【0009】<実施例1>フッ素濃度340ppm、α
(ウラン)濃度=6.96×103Bq/cm3及びβ濃
度=5.72×103Bq/cm3を含むシリンダ洗浄液
0.5リットルに濃度15NのNH4OH溶液を20c
3添加し、30分間撹拌した。この撹拌により凝集し
た沈殿物をろ別し、得られたろ液にCa(OH)2を0.
95gと濃度37%のFeCl3を1cm3添加し、30
分間撹拌した。この撹拌により凝集した沈殿物をろ別
し、得られたろ液に濃度6Nの硝酸を15cm3と濃度
37%のFeCl3を1cm3添加してpHを2〜3に調
整した。このpH調整液に市販のCeCl3・7H2Oを
50mg添加し溶解した。この溶液に濃度25%のNa
OH溶液を10cm3添加してpHを9〜10に調整し
た。このpH調整により凝集した沈殿物をろ別し、得ら
れたろ液に含まれるフッ素、α濃度及びβ濃度を測定し
た。その結果を表1及び図2に示す。
<Example 1> Fluorine concentration 340 ppm, α
(Uranium) Concentration = 6.96 × 10 3 Bq / cm 3 and β Concentration = 5.72 × 10 3 Bq / cm 3 0.5 liter of cylinder cleaning liquid containing 15 N NH 4 OH solution 20 c
m 3 was added and stirred for 30 minutes. The precipitate which was aggregated by this stirring was filtered off, and Ca (OH) 2 was added to the obtained filtrate in an amount of 0.
Add 95 g and 1 cm 3 of FeCl 3 with a concentration of 37%,
Stir for minutes. The precipitates aggregated by this stirring were separated by filtration, and 15 cm 3 of nitric acid having a concentration of 6 N and 1 cm 3 of FeCl 3 having a concentration of 37% were added to the obtained filtrate to adjust the pH to 2-3. To this pH adjusting solution, 50 mg of commercially available CeCl 3 .7H 2 O was added and dissolved. 25% Na in this solution
The pH was adjusted to 9 to 10 by adding 10 cm 3 of the OH solution. The aggregated precipitate was filtered off by this pH adjustment, and the fluorine, α concentration and β concentration contained in the obtained filtrate were measured. The results are shown in Table 1 and FIG.

【0010】<実施例2>CeCl3・7H2Oの代わり
に市販のLaCl3・7H2Oを50mg添加した以外は
実施例1と同様にしてシリンダ洗浄液を処理した。最終
的に得られたろ液に含まれるフッ素、α濃度及びβ濃度
を測定した。その結果を表1及び図2に示す。
[0010] were treated <Example 2> CeCl 3 · 7H 2 O cylinder washes were repeated, except that a commercially available LaCl 3 · 7H 2 O was added 50mg of Example 1 in place of. The fluorine, α concentration and β concentration contained in the finally obtained filtrate were measured. The results are shown in Table 1 and FIG.

【0011】<実施例3>CeCl3・7H2Oの代わり
に市販のTiCl4を50mg添加した以外は実施例1
と同様にしてシリンダ洗浄液を処理した。最終的に得ら
れたろ液に含まれるフッ素、α濃度及びβ濃度を測定し
た。その結果を表1及び図2に示す。
Example 3 Example 1 except that 50 mg of commercially available TiCl 4 was added instead of CeCl 3 .7H 2 O.
The cylinder cleaning liquid was treated in the same manner as in. The fluorine, α concentration and β concentration contained in the finally obtained filtrate were measured. The results are shown in Table 1 and FIG.

【0012】<実施例4>CeCl3・7H2Oの代わり
に市販のZrCl4を50mg添加した以外は実施例1
と同様にしてシリンダ洗浄液を処理した。最終的に得ら
れたろ液に含まれるフッ素、α濃度及びβ濃度を測定し
た。その結果を表1及び図2に示す。
Example 4 Example 1 except that 50 mg of commercially available ZrCl 4 was added instead of CeCl 3 .7H 2 O.
The cylinder cleaning liquid was treated in the same manner as in. The fluorine, α concentration and β concentration contained in the finally obtained filtrate were measured. The results are shown in Table 1 and FIG.

【0013】[0013]

【表1】 [Table 1]

【0014】表1から明らかなように、実施例1〜4の
処理後の濃度は、フッ素に関してはその排水管理基準値
15ppmより低い濃度に処理することができ、ウラン
などのα崩壊核種に関してはα廃液の排水管理基準値:
1×10-2Bq/cm3以下の濃度に、またウランの放
射性崩壊核種などのβ崩壊核種に関してはβ廃液の排水
管理基準値:3×10-1Bq/cm3以下の濃度にそれ
ぞれ処理することができた。
As is clear from Table 1, the concentrations after the treatments of Examples 1 to 4 can be treated to a concentration lower than 15 ppm of the wastewater management standard value for fluorine, and for α decaying nuclides such as uranium. α Wastewater drainage control standard value:
Treated to a concentration of 1 × 10 -2 Bq / cm 3 or less, and for β-decay nuclides such as uranium radioactive decay nuclides to a drainage management standard value of β waste liquid: 3 × 10 -1 Bq / cm 3 or less. We were able to.

【0015】[0015]

【発明の効果】以上述べたように、従来の処理法と比べ
て、本発明の処理法では廃液の除染係数がα放射能で2
桁、β放射能で1桁程度上がり、フッ素を初めとしてウ
ラン及びウラン以外のα及び/又はβ崩壊核種につい
て、いずれも排水管理基準値以下の濃度に処理にするこ
とができる。また高価なイオン交換樹脂を用いる代わり
に入手が容易で使用量が少なくて済むランタノイド化合
物、チタン化合物、ジルコニウム化合物及びハフニウム
化合物を用いるため、固体廃棄物の発生が少ない上に、
処理が容易でない使用済みイオン交換樹脂等の発生がな
いため、結果として従来よりも処理コストが安価になる
利点がある。
As described above, in comparison with the conventional treatment method, in the treatment method of the present invention, the decontamination coefficient of the waste liquid is 2 in α-activity.
The radioactivity increases by about one digit in terms of β and β activity, and fluorine, uranium, and α and / or β decay nuclides other than uranium can be treated at concentrations below the drainage control standard value. Further, instead of using an expensive ion exchange resin, lanthanoid compounds, titanium compounds, zirconium compounds and hafnium compounds, which are easily available and can be used in small amounts, are used.
Since there is no generation of used ion exchange resin or the like that is not easy to process, there is an advantage that the processing cost is lower than in the past as a result.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の放射性廃液の処理法の工程図。FIG. 1 is a process diagram of a method for treating radioactive waste liquid according to the present invention.

【図2】本発明実施例の添加剤毎にα放射能及びβ放射
能の除染係数を示す図。
FIG. 2 is a graph showing decontamination coefficients of α-activity and β-activity for each additive of the examples of the present invention.

【図3】従来の放射性廃液の処理法の工程図。FIG. 3 is a process diagram of a conventional radioactive waste liquid treatment method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 それぞれα及び/又はβ崩壊核種である
ウラン、ウランの放射性崩壊核種、核分裂生成物及び超
ウラン元素のいずれか1種又は2種以上と、フッ素とを
含有するアルカリ性放射性廃液にカルシウム化合物及び
塩化鉄を添加して撹拌する工程(13)と、 前記工程(13)の撹拌により凝集した沈殿物を前記工程(1
3)の撹拌液からろ別することにより除去する第1ろ過工
程(14)と、 前記工程(14)のろ液に硝酸を添加してpHを3以下に調
整する第1pH調整工程(15)と、 前記pH調整液にランタノイド化合物、チタン化合物、
ジルコニウム化合物及びハフニウム化合物からなる群よ
り選ばれた1種又は2種以上の化合物を添加して前記化
合物を溶解又は混合する工程(16)と、 前記工程(16)の溶液又は混合液にアルカリ溶液を添加し
てpHを9以上に調整する第2pH調整工程(17)と、 前記工程(17)のpH調整により凝集した沈殿物を前記工
程(17)のpH調整液からろ別することにより除去する第
2ろ過工程(19)とを含む放射性廃液の処理法。
1. An alkaline radioactive liquid waste containing fluorine and one or more of uranium, a radioactive decay nuclide of uranium, a fission product, and a transuranium element, which are α and / or β decay nuclides, respectively. A step (13) of adding a calcium compound and iron chloride and stirring, and a precipitate aggregated by the stirring of the step (13) in the step (1).
The first filtration step (14) of removing the agitated liquid of 3) by filtering, and the first pH adjusting step (15) of adjusting the pH to 3 or less by adding nitric acid to the filtrate of the step (14). A lanthanoid compound, a titanium compound,
A step (16) of dissolving or mixing the compound by adding one or more compounds selected from the group consisting of a zirconium compound and a hafnium compound, and an alkaline solution in the solution or mixture of the step (16) And a second pH adjusting step (17) for adjusting the pH to 9 or more, and a precipitate aggregated by the pH adjusting in the step (17) is removed from the pH adjusting solution in the step (17) by filtration. A method of treating radioactive waste liquid, which comprises a second filtration step (19).
【請求項2】 工程(17)で添加するアルカリ溶液はNH
4OH溶液又はNaOH溶液である請求項1記載の放射
性廃液の処理法。
2. The alkaline solution added in step (17) is NH
The method for treating radioactive waste liquid according to claim 1, which is a 4 OH solution or a NaOH solution.
【請求項3】 工程(13)で添加するカルシウム化合物は
Ca(OH)2,CaO又はCaCO3である請求項1記載
の放射性廃液の処理法。
3. The method for treating radioactive waste liquid according to claim 1, wherein the calcium compound added in the step (13) is Ca (OH) 2 , CaO or CaCO 3 .
【請求項4】 第1pH調整工程(15)でろ液に硝酸とと
もに塩化鉄を添加する請求項1記載の放射性廃液の処理
法。
4. The method for treating radioactive waste liquid according to claim 1, wherein iron chloride is added to the filtrate together with nitric acid in the first pH adjusting step (15).
JP39094A 1994-01-07 1994-01-07 Method for treating radioactive waste liquid Pending JPH07198894A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP39094A JPH07198894A (en) 1994-01-07 1994-01-07 Method for treating radioactive waste liquid
FR9415972A FR2714995B1 (en) 1994-01-07 1994-12-27 Process for the treatment of radioactive waste solutions.
GB9500279A GB2285534B (en) 1994-01-07 1995-01-06 Method for treating radioactive waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP39094A JPH07198894A (en) 1994-01-07 1994-01-07 Method for treating radioactive waste liquid

Publications (1)

Publication Number Publication Date
JPH07198894A true JPH07198894A (en) 1995-08-01

Family

ID=11472486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP39094A Pending JPH07198894A (en) 1994-01-07 1994-01-07 Method for treating radioactive waste liquid

Country Status (3)

Country Link
JP (1) JPH07198894A (en)
FR (1) FR2714995B1 (en)
GB (1) GB2285534B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988600A (en) * 2022-04-22 2022-09-02 中南大学 Arsenic-uranium cooperative fixation processing method based on chemical mineralization

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382129B2 (en) * 2013-02-26 2016-07-05 Transport Logistics International, Inc. Uranium recovery from UF6 cylinders
CN105355250B (en) * 2015-10-16 2018-07-10 华东理工大学 Method based on in-situ preparation birnessite processing nuclear power plant radioactive liquid waste
CN114291921A (en) * 2021-11-29 2022-04-08 江苏超敏科技有限公司 Decay pond system for radioactive wastewater in hospital and treatment method thereof
CN114988601B (en) * 2022-04-22 2023-04-07 中南大学 Method for strengthening uranium and arsenic mineralization and improving mineral stability

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB790474A (en) * 1951-03-02 1958-02-12 Atomic Energy Authority Uk Improvements in or relating to means and methods of treating water
JPS5354698A (en) * 1976-10-27 1978-05-18 Mitsubishi Metal Corp Removal of atomized and ionic radioactive material in ammonia fluoride solution
FR2480019B1 (en) * 1980-04-08 1986-11-14 Etu En Nucleaire Centre PROCESS FOR EXTRACTING FLUORIDE IONS FROM A NUCLEAR FUEL SOLUTION
JPS62235218A (en) * 1986-04-04 1987-10-15 Unitika Ltd Method for separating and recovering uranium and hydrofluoric acid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988600A (en) * 2022-04-22 2022-09-02 中南大学 Arsenic-uranium cooperative fixation processing method based on chemical mineralization

Also Published As

Publication number Publication date
GB2285534A (en) 1995-07-12
GB2285534B (en) 1997-11-05
FR2714995A1 (en) 1995-07-13
FR2714995B1 (en) 1998-01-23
GB9500279D0 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US5234603A (en) Methods employing a zirconium salt for use in wastewater treatment
EP0909447B1 (en) method for producing nickel or cobalt hexacyanoferrates
US4983306A (en) Method of treating waste water
JPH07198894A (en) Method for treating radioactive waste liquid
JPH0668556B2 (en) Treatment method of radioactive waste liquid
CN111087114A (en) Treatment method of tantalum-niobium production wastewater
US2766204A (en) Method for decontamination of radioactively contaminated aqueous solution
US4654173A (en) Nuclear waste solutions
JPH0527094A (en) Treatment method for solid radioactive waste
EP0454028B1 (en) Waste treatment process for alkaline waste liquid
CA1181596A (en) Reclamation process for water-borne uranium
EP1029328B1 (en) Treatment of organic materials
Lauderdale Treatment of radioactive water by phosphate precipitation
JPH0550058A (en) Adsorptive separation of heavy metals by tannin adsorbent and regenerating method for this adsorbent
AU2002249752B2 (en) Gypsum decontamination process
JPH0534286B2 (en)
US8993828B2 (en) Method of radium stabilizing in solid effluent or effluent containing substances in suspension
US3737373A (en) Method of decontaminating heavy water cooled and moderated reactor
CN211350122U (en) Tantalum niobium waste water&#39;s processing apparatus
JP2001174587A (en) Decontamination method for liquid radioactive waste
Campbell et al. Low-level liquid waste decontamination by ion exchange
JPH06226089A (en) Radioactive waste water treating cement and formation of hardened body using the same
JP3073353B2 (en) Treatment method of decontamination waste liquid
GB2073478A (en) Treating radioactive effluent
JPS58176598A (en) Method of processing rich salt liquid waste containing radioactive material