JPH07198348A - Measurement device of surface shape - Google Patents
Measurement device of surface shapeInfo
- Publication number
- JPH07198348A JPH07198348A JP35081793A JP35081793A JPH07198348A JP H07198348 A JPH07198348 A JP H07198348A JP 35081793 A JP35081793 A JP 35081793A JP 35081793 A JP35081793 A JP 35081793A JP H07198348 A JPH07198348 A JP H07198348A
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- laser
- light receiving
- imaging lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術(図5及び図6) 発明が解決しようとする課題(図6) 課題を解決するための手段(図1及び図2) 作用(図3及び図4) 実施例(図1〜図4) 発明の効果[Table of Contents] The present invention will be described in the following order. Industrial Application Conventional Technology (FIGS. 5 and 6) Problem to be Solved by the Invention (FIG. 6) Means for Solving the Problem (FIGS. 1 and 2) Action (FIGS. 3 and 4) Example (FIGS. 1 to 4) Effect of the invention
【0002】[0002]
【産業上の利用分野】本発明は表面形状測定装置に関
し、被測定物表面にレーザ光を照射して非接触で被測定
物表面の形状を測定するものに適用し得る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface profile measuring apparatus, and can be applied to a device for irradiating a surface of a measured object with a laser beam to measure the shape of the surface of the measured object in a non-contact manner.
【0003】[0003]
【従来の技術】従来、被測定物平面の表面形状を測定す
る非接触の測定装置として、例えば図5に示すような表
面形状測定装置1が用いられている。表面形状測定装置
1は照射系2と、受光系3とから構成される。照射系2
は出射レーザ光の波長が 632〜830 〔nm〕の近赤外光を
照射する照射光源レーザ装置4と、コリメータレンズ
5、シリンドリカルレンズ6及びシリンドリカルレンズ
7とからなり、レーザ光を線状の光(以下これを輝線と
いう)として被測定物平面8に照射する構成となつてい
る。2. Description of the Related Art Conventionally, a surface shape measuring apparatus 1 as shown in FIG. 5, for example, has been used as a non-contact measuring apparatus for measuring the surface shape of an object to be measured. The surface profile measuring apparatus 1 is composed of an irradiation system 2 and a light receiving system 3. Irradiation system 2
Is composed of an irradiation light source laser device 4 for irradiating near-infrared light having a wavelength of emitted laser light of 632 to 830 [nm], a collimator lens 5, a cylindrical lens 6 and a cylindrical lens 7, and the laser light is a linear light. (Hereinafter, this is referred to as a bright line.) The plane to be measured 8 is irradiated.
【0004】この照射系2が被測定物平面8に対して垂
直上方に位置するように配置される。受光系3はレーザ
反射光を受光するCCD(couple charged device) カメ
ラ9とCCDカメラ9上へ被測定物平面8上のレーザ光
による輝線を結像する結像レンズ10とからなり、被測
定物平面に対して斜め上方向に位置するように配置され
る。The irradiation system 2 is arranged so as to be vertically above the object plane 8. The light receiving system 3 includes a CCD (couple charged device) camera 9 for receiving laser reflected light, and an imaging lens 10 for forming an image of a bright line of the laser light on the object plane 8 on the CCD camera 9, and the object to be measured. It is arranged so as to be diagonally upward with respect to the plane.
【0005】表面形状測定装置1による被測定物平面8
の表面形状測定は照射光源レーザ装置4から照射するレ
ーザ光をコリメータレンズ5、シリンドリカルレンズ6
及びシリンドリカルレンズ7とにより輝線として被測定
物平面8に対して垂直上方から照射し、さらに被測定物
平面8を輝線の直交方向に水平に移動させて走査する。
これにより被測定物平面8上の物体面の頂点と基準点に
輝線が集光される。A flat surface 8 of the object to be measured by the surface profile measuring apparatus 1.
The surface shape measurement of the laser light emitted from the irradiation light source laser device 4 is performed by the collimator lens 5 and the cylindrical lens 6.
The cylindrical lens 7 and the cylindrical lens 7 irradiate the object plane 8 as a bright line from vertically above, and the object plane 8 is horizontally moved in the direction orthogonal to the bright line for scanning.
As a result, the bright lines are collected at the apex of the object plane on the object plane 8 and the reference point.
【0006】この輝線の反射は結像レンズ10によりC
CDカメラ9の受光面に結像される。CCDカメラ9の
受光面には被測定物平面8上の基準面8Aと物体上面8
Bに集光された輝線の反射が位置が異なる2点の観測点
として結像される。この2点の観測点と被測定物平面8
の基準面8A又は物体上面8Bとによつて形成される三
角形において観測点間の距離及び観測点における視角と
から三角測量法を用いて被測定物平面8上の基準面8A
から物体上面8Bまでの高さを算出する。The reflection of this bright line is reflected by the imaging lens 10 at C.
An image is formed on the light receiving surface of the CD camera 9. The light receiving surface of the CCD camera 9 has a reference surface 8A on the flat surface 8 of the object to be measured and an upper surface 8 of the object.
The reflection of the bright line focused on B is imaged as two observation points having different positions. These two observation points and the object plane 8
In the triangle formed by the reference plane 8A or the upper surface 8B of the object, the reference plane 8A on the object plane 8 is measured by the triangulation method from the distance between the observation points and the viewing angle at the observation points.
The height from the object top surface 8B is calculated.
【0007】[0007]
【発明が解決しようとする課題】ところが照射光源レー
ザに近赤外のレーザ光を用いて表面形状を測定する場
合、被測定物がレジスト成分を有すると、例えば図6に
示すようにレジスト成分の反射率は出射光の波長が 780
〔nm〕のGaAlAs(gallium alminium arsenic)レー
ザでは0.54〔%〕、また出射光の波長が 670〔nm〕のA
lGaInP(aluminium gallium indium phosphorus)
レーザでは0.28〔%〕と低いため受光素子で十分な光量
を得ることが困難になる。またレジスト成分を含まない
例えば半田部分では反射率が約70〔%〕となり、受光素
子により感知する光強度に大きな差が生じ、光強度から
変換されるビデオ信号強度の差異が非常に大きくなる。However, when the surface shape is measured by using a near infrared laser beam as the irradiation light source laser, if the object to be measured has a resist component, for example, as shown in FIG. The reflectance is 780
GaAlAs (gallium alminium arsenic) laser of [nm] is 0.54 [%], and the wavelength of emitted light is 670 [nm].
lGaInP (aluminium gallium indium phosphorus)
Since it is as low as 0.28 [%] with a laser, it becomes difficult to obtain a sufficient amount of light with a light receiving element. Further, for example, in a solder portion containing no resist component, the reflectance becomes about 70%, and a large difference occurs in the light intensity sensed by the light receiving element, and the difference in the video signal intensity converted from the light intensity becomes very large.
【0008】このため、例えば半田部分のビデオ信号が
飽和しないように受光レベルを設定した場合、レジスト
成分を含む部分でのビデオ信号のSN比が悪くなり正確
な表面形状測定が困難となる問題があつた。さらに照射
光を線状に集光した場合、レジスト成分を含む部分と含
まない部分とで反射光の線幅が変化して、正確な形状測
定ができないという問題があつた。Therefore, for example, when the light receiving level is set so that the video signal of the solder portion is not saturated, the SN ratio of the video signal in the portion including the resist component is deteriorated, which makes it difficult to accurately measure the surface shape. Atsuta Further, when the irradiation light is condensed linearly, there is a problem that the line width of the reflected light changes between the portion containing the resist component and the portion not containing the resist component, and accurate shape measurement cannot be performed.
【0009】本発明は以上の点を考慮してなされたもの
で、レジスト成分を含む被測定物の表面形状を正確に測
定し得る表面形状測定装置を提案しようとするものであ
る。The present invention has been made in view of the above points, and an object thereof is to propose a surface shape measuring apparatus capable of accurately measuring the surface shape of an object to be measured including a resist component.
【0010】[0010]
【課題を解決するための手段】かかる課題を解決するた
め本発明においては、波長帯域 475〜560 〔nm〕の光を
出射する照射光源23と、照射光源23から出射される
光を被測定物8上に輝線として集光するレンズ系24
と、被測定物8上に集光された輝線の反射光を受光する
受光手段9と、受光手段9の受光面9A上に被測定物8
上に集光された輝線40の反射光を結像する結像レンズ
10とを備える。In order to solve such a problem, in the present invention, an irradiation light source 23 which emits light in a wavelength band of 475 to 560 [nm] and a light which is emitted from the irradiation light source 23 are measured. Lens system 24 that collects light as a bright line on 8
And a light receiving means 9 for receiving the reflected light of the bright line condensed on the object to be measured 8, and the object to be measured 8 on the light receiving surface 9A of the light receiving means 9.
The image forming lens 10 forms an image of the reflected light of the bright line 40 condensed above.
【0011】[0011]
【作用】レジスト成分を含む被測定物8上に照射する照
射光の波長帯域を 475〜 560〔nm〕にすることにより、
レジスト成分を含む部分における反射率強度が十分得ら
れるようになると共に、レジスト成分を含まない部分と
の反射率強度の差を減らすことができる。これにより被
測定物8上の反射光の測定が容易になし得る。[Function] By setting the wavelength band of the irradiation light with which the DUT 8 including the resist component is irradiated to 475 to 560 [nm],
A sufficient reflectance intensity can be obtained in the portion containing the resist component, and the difference in reflectance intensity from the portion not containing the resist component can be reduced. As a result, the reflected light on the DUT 8 can be easily measured.
【0012】[0012]
【実施例】以下図面について、本発明の一実施例を詳述
する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.
【0013】図5との対応部分に同一符号を付けて示す
図1において、20は全体として表面形状測定装置を示
し、レーザ光を被測定物平面8上に集光する照射系21
と、被測定物平面8上のレーザ光による輝線をCCDカ
メラ9によつて受光する受光系22とから構成されてい
る。表面形状測定装置20は自動制御装置(図示せず)
を用いて、被測定物平面8を水平走査して被測定物平面
8の全面の表面形状を測定する。In FIG. 1 in which parts corresponding to those in FIG. 5 are designated by the same reference numerals, numeral 20 indicates an apparatus for measuring the surface shape as a whole, and an irradiation system 21 for condensing laser light on the plane 8 to be measured.
And a light receiving system 22 for receiving the bright line of the laser beam on the object plane 8 by the CCD camera 9. The surface shape measuring device 20 is an automatic control device (not shown).
Is used to horizontally scan the object plane 8 to measure the surface shape of the entire surface of the object plane 8.
【0014】照射系21は照射光源となる第2高調波レ
ーザ装置23と、第2高調波レーザ装置23から出射さ
れるレーザ光MGを被測定物平面8上に集光するレンズ
群24とから構成される。照射系21は被測定物平面8
の垂直上方に配置され、出射されるレーザ光MGが被測
定物平面8に対して垂直に照射されるように被測定物平
面8を水平走査する。第2高調波レーザ装置23は励起
光に半導体レーザを用い基本波レーザ光を出射するNd:
YAG(neodymium yittrium alminium garnet)レーザ媒
質と、Nd:YAGレーザ媒質から出射される波長1064
〔μm 〕の基本波レーザ光を波長 532〔nm〕の第2高調
波に波長変換するSHG(second harmonicgeneration)
非線形光学素子とからなる。The irradiation system 21 comprises a second harmonic laser device 23 which serves as an irradiation light source, and a lens group 24 which focuses the laser light MG emitted from the second harmonic laser device 23 on the object plane 8. Composed. The irradiation system 21 is the object plane 8
Is arranged vertically above the object plane 8 and is horizontally scanned so that the emitted laser beam MG is vertically irradiated to the object plane 8. The second harmonic laser device 23 uses a semiconductor laser as the excitation light and emits the fundamental wave laser light Nd:
Wavelength 1064 emitted from YAG (neodymium yittrium alminium garnet) laser medium and Nd: YAG laser medium
SHG (second harmonic generation) for wavelength conversion of fundamental wave laser light of [μm] into second harmonic of wavelength 532 [nm]
It consists of a nonlinear optical element.
【0015】レンズ群24はコリメータレンズ25、シ
リンドリカルレンズ26及び球面レンズ27とから構成
される。第2高調波レーザ装置23から出射されるレー
ザ光MGはコリメータレンズ25を介して平行光とな
る。さらにシリンドリカルレンズ26と球面レンズ27
とにより線状に集光されてNA(numerical aperture)約
0.025 、焦点深度約 400〔μm 〕、集光点から光軸方向
± 2.5〔mm〕範囲の線幅50〜 100〔μm 〕、線長方向 7
〜 8〔mm〕のレーザ光でなる輝線として被測定物平面8
に照射される。また被測定物平面8上でのレーザ照射光
量は線幅50〔μm〕で線長方向に50〔μW/mm〕である。The lens group 24 comprises a collimator lens 25, a cylindrical lens 26 and a spherical lens 27. The laser light MG emitted from the second harmonic laser device 23 becomes parallel light via the collimator lens 25. Further, a cylindrical lens 26 and a spherical lens 27
And linearly condensed by and about NA (numerical aperture)
0.025, depth of focus about 400 [μm], line width 50 to 100 [μm] in the direction of the optical axis ± 2.5 [mm] from the focal point, line length direction 7
-8 plane of the object to be measured as a bright line composed of laser light of 8 [mm]
Is irradiated. The laser irradiation light amount on the object plane 8 is 50 [μm] in the line width and 50 [μW / mm] in the line length direction.
【0016】ここで照射されるレーザ光MGは基板上の
レジスト成分に対して、反射率強度が2.66〔%〕となり
レジスト成分の最大反射率強度MAX(約 3〔%〕)の
75〔%〕以上に達する。これによりレジスト成分を含ま
ない部分との反射率強度の差異を少なくすることができ
る。The laser light MG irradiated here has a reflectance intensity of 2.66 [%] with respect to the resist component on the substrate and has a maximum reflectance intensity MAX (about 3 [%]) of the resist component.
It reaches 75% or more. This makes it possible to reduce the difference in reflectance intensity from the portion not containing the resist component.
【0017】次に受光系22の構成は表面形状測定装置
1における受光系3と同様の結像レンズ10及びCCD
カメラ9とから構成される。ここで結像レンズ10の光
軸AXと照射系21の光軸BXとは角θが45度になるよ
うに設定され、さらに結像レンズ10のレンズ面10A
の延長線とCCDカメラ9上の結像面9Aの延長線との
角φは45度に設定される。また受光系22には結像レン
ズ10は倍率が1倍のものが用いられる。このように照
射系21と受光系22とをシヤインプルフの原理に基づ
いて配置する。Next, the configuration of the light receiving system 22 is the same as that of the light receiving system 3 in the surface profile measuring apparatus 1 and the imaging lens 10 and CCD.
It is composed of a camera 9. Here, the optical axis AX of the imaging lens 10 and the optical axis BX of the irradiation system 21 are set so that the angle θ is 45 degrees, and the lens surface 10A of the imaging lens 10 is further set.
The angle φ between the extension line of the line and the extension line of the image plane 9A on the CCD camera 9 is set to 45 degrees. Further, the imaging lens 10 having a magnification of 1 is used for the light receiving system 22. In this way, the irradiation system 21 and the light receiving system 22 are arranged on the basis of the Sheamplf principle.
【0018】すなわち図2に示すように、シヤインプル
フの原理によれば物体面30の延長線ABと像面31の
延長線CDとレンズ32の光軸QRに直交するレンズ面
32Aの延長線OPとが1点で交わるようにレンズ光軸
の傾きを設定し、レンズ32の光軸QRと物体面30と
のなす角度をθ、像面31の延長線CDとレンズ面32
Aの延長線OPとのなす角度をφ、レンズ32の倍率を
Mとすると、次式That is, as shown in FIG. 2, the extension line AB of the object plane 30 and the extension line CD of the image plane 31 and the extension line OP of the lens surface 32A orthogonal to the optical axis QR of the lens 32 are defined by the Sheamplf principle. Are set so that they intersect at one point, the angle between the optical axis QR of the lens 32 and the object plane 30 is θ, the extension line CD of the image plane 31 and the lens plane 32.
If the angle formed by the extension line OP of A is φ and the magnification of the lens 32 is M, then
【数1】 に示す関係式が成り立つ。これにより像面31に結像す
るレンズ32による物体面30の像は全てピントが合う
ようになる。[Equation 1] The relational expression shown in is established. As a result, all the images of the object plane 30 formed by the lens 32 on the image plane 31 come into focus.
【0019】因みに上述の例の場合、角θとして45度、
角φとして45度、さらにレンズの倍率1であるので、こ
れらを(1)式に代入すると、シヤインプルフの原理を
満たしており、従つて結像レンズ10によりCCDカメ
ラ9の結像面9Aに結像される被測定物平面8上の像は
全てピントが合う。In the above example, the angle θ is 45 degrees,
Since the angle φ is 45 degrees, and the lens magnification is 1, substituting these into the equation (1) satisfies the Schaimfluff principle, and accordingly, the imaging lens 10 connects the imaging surface 9A of the CCD camera 9 to the imaging surface 9A. All the images on the object plane 8 to be imaged are in focus.
【0020】以上の構成において、例えばクリーム半田
を塗布した後の半導体実装基板上の被測定物平面8に第
2高調波レーザ装置23からレーザ光MGを照射するこ
とで被測定物平面8上の表面形状測定が開始される。第
2高調波レーザ装置23から出射されたレーザ光MGは
コリメータレンズ25を介して平行光とされ、さらにシ
リンドリカルレンズ26、球面レンズ27により線状に
集光され被測定物平面8上に照射される。このとき被測
定物平面8上では基準面8Aに対して輝線40Aが、高
さを測定する対象の物体上面8Bには輝線40Bが観察
される。In the above configuration, for example, the second harmonic laser device 23 irradiates the laser beam MG on the object surface 8 to be measured on the semiconductor mounting substrate after applying the cream solder, so that the object surface 8 to be measured is irradiated. Surface shape measurement is started. The laser light MG emitted from the second harmonic laser device 23 is collimated through the collimator lens 25, is linearly condensed by the cylindrical lens 26 and the spherical lens 27, and is irradiated onto the object plane 8. It At this time, a bright line 40A is observed with respect to the reference plane 8A on the object plane 8 and a bright line 40B is observed with the object upper surface 8B whose height is to be measured.
【0021】この輝線40A及び40Bは図3に示すよ
うに、結像レンズ10を介して、CCDカメラ9の受光
面上に結像される。すなわち被測定物平面8の基準面8
Aの輝線40Aは輝線41Aとして、さらに物体上面8
Bの輝線40Bは輝線41Bとして、それぞれCCDカ
メラ9の受光面に結像される。このとき基準面8Aから
物体上面8Bまでの高さhは、結像される輝線41A及
び41B間のずれh´として観察される。The bright lines 40A and 40B are imaged on the light receiving surface of the CCD camera 9 through the imaging lens 10, as shown in FIG. That is, the reference plane 8 of the object plane 8
The bright line 40A of A is the bright line 41A, and
The bright line 40B of B is imaged on the light receiving surface of the CCD camera 9 as a bright line 41B. At this time, the height h from the reference surface 8A to the object upper surface 8B is observed as a shift h'between the imaged bright lines 41A and 41B.
【0022】ここで被測定物平面8上にレジスト成分が
含まれている場合でも波長 532〔nm〕の緑色レーザ光M
Gの反射率は2.66〔%〕と、従来に比し20〔dB〕以上改
善されるので、クリーム半田での反射率強度との差異は
少なくなりSN比の高い正確な測定ができる。さらに被
測定物平面8上に照射される輝線40が線状に集光され
てもレジスト成分を含む部分とレジスト成分を含まない
部分とで線幅が一定となり、より正確な測定ができる。
また波長 532〔nm〕のレーザ光MGは緑色の可視光なの
で被測定物平面8上での照射部分が目視でき、これによ
り参照光レーザを必要とせずに被測定物平面8上にレー
ザ光MGをあてることができる。Here, even when the resist component is contained on the flat surface 8 of the object to be measured, the green laser light M having a wavelength of 532 [nm] is obtained.
The reflectance of G is 2.66 [%], which is improved by 20 [dB] or more compared with the conventional one, so that the difference from the reflectance intensity in the cream solder is reduced and accurate measurement with a high SN ratio can be performed. Further, even if the bright line 40 irradiated on the object plane 8 is linearly condensed, the line width becomes constant between the portion containing the resist component and the portion not containing the resist component, and more accurate measurement can be performed.
Further, since the laser light MG having a wavelength of 532 [nm] is green visible light, the irradiated portion on the object plane 8 can be visually observed, which allows the laser beam MG on the object plane 8 without using the reference light laser. Can be applied.
【0023】このCCDカメラ9の受光面に集光された
輝線41A及び41Bをビデオ信号に変換すると、図4
に示すように、輝線の位置がそれぞれビデオ信号のピー
ク42A及び42Bとして現れる。ここで基準面8Aに
おけるHシンクとピーク42A間の画素数a、物体上面
8BにおけるHシンクとピーク42B間の画素数bとを
各々読み取る。これにより画素数a及び画素数bとの差
が観測点間距離として測定され、さらに輝線42A及び
42Bとにおける視角とから三角測量法を用いて基準面
8Aから物体上面8Bまでの高さが算出される。When the bright lines 41A and 41B condensed on the light receiving surface of the CCD camera 9 are converted into a video signal, as shown in FIG.
As shown in, the positions of the bright lines appear as peaks 42A and 42B of the video signal, respectively. Here, the pixel number a between the H sync on the reference surface 8A and the peak 42A and the pixel number b between the H sync on the object upper surface 8B and the peak 42B are read. As a result, the difference between the number of pixels a and the number of pixels b is measured as the distance between the observation points, and the height from the reference surface 8A to the object upper surface 8B is calculated using the triangulation method from the viewing angle with the bright lines 42A and 42B. To be done.
【0024】以上の構成によれば、波長 532〔nm〕の緑
色のレーザ光を照射して表面形状の測定をするようにし
たことにより、被測定物上にレジスト成分が含まれてい
る場合でも十分な反射率強度が得られることにより、レ
ジスト成分が含まれている部分と含まれていない部分の
反射光が同一の照射光によつて共にSN比良く検出でき
る。さらにレジスト成分が含まれている部分と含まれて
いない部分とで反射光の線幅が変わらなくなり、これに
より正確な表面形状の測定をなし得る。また可視光であ
るために参照光に用いるレーザ装置が不要となり、部品
点数を減らすことができ装置が小型化し得る。According to the above configuration, the surface shape is measured by irradiating the green laser beam having the wavelength of 532 [nm], so that even when the measured object contains the resist component. By obtaining a sufficient reflectance intensity, the reflected light of the portion containing the resist component and the reflected light of the portion not containing the resist component can both be detected with a good SN ratio by the same irradiation light. Further, the line width of the reflected light does not change between the portion containing the resist component and the portion not containing the resist component, which allows accurate surface shape measurement. Further, since it is visible light, a laser device used for reference light is unnecessary, the number of parts can be reduced, and the device can be downsized.
【0025】なお上述の実施例においては、照射系と受
光系の光学的配置をシヤインプルフの原理に基づいた配
置とした場合について述べたが、本発明はこれに限ら
ず、受光系の結像レンズの光軸角度を被測定物の表面に
集光される輝線がCCDカメラで観測できる角度に配置
すれば良い。In the above-mentioned embodiments, the case where the optical arrangement of the irradiation system and the light receiving system is the arrangement based on the shear-impul principle is described, but the present invention is not limited to this, and the imaging lens of the light receiving system is described. The optical axis angle may be arranged at an angle at which the bright line condensed on the surface of the object to be measured can be observed by the CCD camera.
【0026】また上述の実施例においては、1つの照射
系に対して1つの受光系を配置した場合について述べた
が、本発明はこれに限らず、1つの照射系に対して左右
対象に2つ以上の受光系を設置するようにしても良く、
このようにすれば表面形状の測定精度を一段と向上し得
る。Further, in the above-described embodiment, the case where one light receiving system is arranged for one irradiation system has been described, but the present invention is not limited to this, and two left and right objects are provided for one irradiation system. You may install two or more light receiving systems,
By doing so, the measurement accuracy of the surface profile can be further improved.
【0027】さらに上述の実施例においては、照射レー
ザの出力は50〔μW/mm〕としているが、輝線部分を表す
ビデオ信号が飽和せず、その強度中心が検出できる範囲
であれば良い。さらに上述の実施例においては、CCD
カメラに2分の3インチのものを用いているが、カメラ
サイズはこれに限らなくても良く、さらに上述の実施例
においては、受光素子にCCDカメラを用いた場合につ
いて述べたが、CCDラインセンサー又は光学的位置セ
ンサー等でも良い。Further, in the above-mentioned embodiment, the output of the irradiation laser is 50 [μW / mm], but it is sufficient if the video signal representing the bright line portion is not saturated and the intensity center thereof can be detected. Further, in the above embodiment, the CCD
Although a camera having a size of ½ inch is used, the camera size is not limited to this, and in the above-mentioned embodiment, the case where the CCD camera is used as the light receiving element has been described. It may be a sensor or an optical position sensor.
【0028】また上述の実施例においては、照射光源に
波長 532〔nm〕の緑色光のレーザを用いた場合について
述べたが、本発明はこれに限らず、例えば波長 442〔n
m〕のCd:He(cadmium helium) 等の気体レーザ、
波長 477〔nm〕、 488〔nm〕、497〔nm〕、 502〔n
m〕、 515〔nm〕のAr(argon) 又は波長 521〔nm〕、
531〔nm〕のKr (krypton)等のイオンレーザ、波長帯
域が 475〜 560〔nm〕の半導体レーザ又は波長帯域が 4
75〜 560〔nm〕のLED(light emitting diode)等を照
射光源に用いるようにしても良い。Further, in the above-mentioned embodiments, the case where a green light laser having a wavelength of 532 [nm] is used as the irradiation light source has been described, but the present invention is not limited to this, and for example, a wavelength of 442 [n]
m] Cd: He (cadmium helium) gas laser,
Wavelength 477 (nm), 488 (nm), 497 (nm), 502 (n
m], 515 [nm] Ar (argon) or wavelength 521 [nm],
Ion laser such as Kr (krypton) of 531 [nm], semiconductor laser of wavelength band 475 to 560 [nm] or wavelength band of 4
An LED (light emitting diode) of 75 to 560 [nm] may be used as the irradiation light source.
【0029】また上述の実施例においては、SHGの基
本波レーザ光を出射するレーザ媒質としてNd:YAG
レーザ媒質を用いたが、本発明はこれに限らず、例えば
Nd:YVO4 (ネオジムイオン、バナジウム酸イツト
リウム)等を用いても良く、また基本波レーザ光を出射
するレーザ媒質の励起光源として半導体レーザ装置の他
にフラツシユランプ等を用いても良い。In the above embodiment, the laser medium for emitting the SHG fundamental wave laser light is Nd: YAG.
Although the laser medium is used, the present invention is not limited to this, and Nd: YVO 4 (neodymium ion, yttrium vanadate) or the like may be used, and a semiconductor is used as an excitation light source of the laser medium that emits a fundamental wave laser beam. A flash lamp or the like may be used instead of the laser device.
【0030】さらに上述の実施例においては、半導体実
装基板上の表面形状を測定する場合について述べたが、
本発明はこれに限らず、 475〜 560〔nm〕反射帯域を有
する被測定物の表面形状を測定する場合に広く適用し得
る。Further, in the above embodiment, the case where the surface shape on the semiconductor mounting substrate is measured has been described.
The present invention is not limited to this, and can be widely applied to the case of measuring the surface shape of an object to be measured having a 475 to 560 [nm] reflection band.
【0031】[0031]
【発明の効果】上述のように本発明によれば、可視光線
の緑色の成分に対する反射率強度が大きい波長帯域 475
〜560 〔nm〕の照射光源を用いることにより、 475〜56
0 〔nm〕の反射帯域を有する被測定物上の反射率強度が
十分に得られ、さらに照射光が目視できるので、これに
より正確な反射光による測定が参照光なしで容易になし
得る。As described above, according to the present invention, a wavelength band having a large reflectance intensity for the green component of visible light is used.
By using an irradiation light source of ~ 560 [nm], 475 ~ 56
A sufficient reflectance intensity on the object to be measured having a reflection band of 0 [nm] can be obtained, and the irradiation light can be visually observed. Therefore, accurate reflection light measurement can be easily performed without reference light.
【図1】本発明による表面形状測定装置の一実施例を示
す略線図である。FIG. 1 is a schematic diagram showing an embodiment of a surface profile measuring apparatus according to the present invention.
【図2】シヤインプルフの原理を示す略線図である。FIG. 2 is a schematic diagram showing the principle of the shear impul.
【図3】CCDカメラで認識する画像を示す略線図であ
る。FIG. 3 is a schematic diagram showing an image recognized by a CCD camera.
【図4】CCDカメラで得られるビデオ信号を示す信号
波形図である。FIG. 4 is a signal waveform diagram showing a video signal obtained by a CCD camera.
【図5】従来の表面形状測定装置を示す略線図である。FIG. 5 is a schematic diagram showing a conventional surface profile measuring apparatus.
【図6】レジスト成分の反射率分光特性を示す特性曲線
図である。FIG. 6 is a characteristic curve diagram showing reflectance spectral characteristics of a resist component.
1、20……表面形状測定装置、4……照射光源レーザ
装置、5、25……コリメータレンズ、6、7、26…
…シリンドリカルレンズ、8……被測定物平面、9……
CCDカメラ、10…結像レンズ、27……球面レン
ズ。1, 20 ... Surface shape measuring device, 4 ... Irradiation light source laser device, 5, 25 ... Collimator lens, 6, 7, 26 ...
… Cylindrical lens, 8… Object plane, 9 ……
CCD camera, 10 ... Imaging lens, 27 ... Spherical lens.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 鵜飼 信之 岐阜県美濃加茂市本郷町9丁目15番22号ソ ニー美濃加茂株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Ukai 9-15-22 Hongo-cho, Minokamo City, Gifu Prefecture Sony Minokamo Co., Ltd.
Claims (4)
照射光源と、 上記照射光源から出射される光を被測定物上に輝線とし
て集光するレンズ系と、 上記被測定物上に集光された上記輝線の反射光を受光す
る受光手段と、 上記受光手段の受光面上に上記被測定物上に集光された
上記輝線の反射光を結像する結像レンズとを具えること
を特徴とする表面形状測定装置。1. An irradiation light source that emits light in a wavelength band of 475 to 560 [nm], a lens system that collects the light emitted from the irradiation light source as a bright line on the object to be measured, and the object to be measured. Light receiving means for receiving the reflected light of the bright line focused on the light receiving surface, and an imaging lens for forming an image of the reflected light of the bright line focused on the object to be measured on the light receiving surface of the light receiving means. A surface shape measuring device characterized by being obtained.
を出射するNd:YAGレーザ媒質と、 上記Nd:YAGレーザ媒質から出射される基本波レーザ
光を第2高調波に波長変換する非線形光学素子とを具え
ることを特徴とする請求項1に記載の表面形状測定装
置。2. The irradiation light source includes a semiconductor laser device as an excitation light source, an Nd: YAG laser medium which emits a fundamental wave laser light by being excited by the semiconductor laser device, and an emission source from the Nd: YAG laser medium. The surface profile measuring apparatus according to claim 1, further comprising a non-linear optical element that wavelength-converts a fundamental wave laser beam into a second harmonic.
と上記結像レンズの光軸との第1の角と、上記結像レン
ズの光軸に直交する当該結像レンズの中心面の延長線と
上記受光手段の受光面の延長線との第2の角と上記結像
レンズの倍率で、上記第1の角の正接が上記倍率と上記
第2の角の正接との商に等しくなるように上記結像レン
ズを配置することを特徴とする請求項1又は請求項2に
記載の表面形状測定装置。3. A first angle between the optical axis of the irradiation light irradiated on the object to be measured and the optical axis of the imaging lens, and the imaging lens orthogonal to the optical axis of the imaging lens. A second angle between the extension line of the center plane and the extension line of the light receiving surface of the light receiving means and the magnification of the imaging lens, and the tangent of the first angle is the tangent of the magnification and the tangent of the second angle. The surface shape measuring apparatus according to claim 1 or 2, wherein the imaging lens is arranged so as to be equal to a quotient.
を測定し、上記波長帯域 475〜 560〔nm〕の光によつ
て、上記実装基板のレジスト成分に対して最大値の4分
の3以上の反射率強度を得るようにしたことを特徴とす
る請求項1、請求項2又は請求項3に記載の表面形状測
定装置。4. As the object to be measured, the surface shape of a mounting board is measured, and a maximum of four times the maximum value of the resist component of the mounting board is measured by using light in the wavelength band of 475 to 560 [nm]. The surface shape measuring device according to claim 1, 2 or 3, wherein a reflectance intensity of 3 or more is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35081793A JPH07198348A (en) | 1993-12-30 | 1993-12-30 | Measurement device of surface shape |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35081793A JPH07198348A (en) | 1993-12-30 | 1993-12-30 | Measurement device of surface shape |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07198348A true JPH07198348A (en) | 1995-08-01 |
Family
ID=18413085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35081793A Pending JPH07198348A (en) | 1993-12-30 | 1993-12-30 | Measurement device of surface shape |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07198348A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175604A (en) * | 2007-01-17 | 2008-07-31 | Anritsu Corp | Optical displacement sensor and displacement measuring device using it |
JP2008185381A (en) * | 2007-01-29 | 2008-08-14 | Nikon Corp | Shape measuring system |
JP2009109450A (en) * | 2007-11-01 | 2009-05-21 | Anritsu Corp | Device and method for inspecting printed solder |
JP2009216453A (en) * | 2008-03-07 | 2009-09-24 | Aisin Seiki Co Ltd | Inner surface measuring device |
-
1993
- 1993-12-30 JP JP35081793A patent/JPH07198348A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008175604A (en) * | 2007-01-17 | 2008-07-31 | Anritsu Corp | Optical displacement sensor and displacement measuring device using it |
JP2008185381A (en) * | 2007-01-29 | 2008-08-14 | Nikon Corp | Shape measuring system |
JP2009109450A (en) * | 2007-11-01 | 2009-05-21 | Anritsu Corp | Device and method for inspecting printed solder |
JP2009216453A (en) * | 2008-03-07 | 2009-09-24 | Aisin Seiki Co Ltd | Inner surface measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6459493B1 (en) | Apparatus for measuring surface form | |
US5305092A (en) | Apparatus for obtaining three-dimensional volume data of an object | |
US5381224A (en) | Scanning laser imaging system | |
JPH06185979A (en) | Three-dimensional image measuring instrument | |
JPH10267628A (en) | Three-dimensional shape detection method and apparatus, and substrate manufacturing method | |
CN108747029A (en) | A kind of teaching type laser engraving cutter and control method, application | |
JPH11132748A (en) | Multifocal simultaneous detection device, three-dimensional shape detection device, appearance inspection device, and method thereof | |
JPH07198348A (en) | Measurement device of surface shape | |
US20010022829A1 (en) | Method of setting a position of an object of measurement in layer thickness measurement by x-ray fluorescence | |
JPH0544961B2 (en) | ||
JP3794745B2 (en) | Optical constant measuring device and microscope | |
JPH10328864A (en) | Laser beam machining device and method for measuring position of object to be machined | |
JP2008224476A (en) | Photoluminescence measuring device | |
JPS6288906A (en) | How to measure 3D shape | |
JP2001108420A (en) | Device and method for shape measurement | |
JP2000329531A (en) | Apparatus and method for measurement of three- dimensional shape | |
JP3370733B2 (en) | Method and apparatus for measuring height of minute object | |
JP2005030997A (en) | Step shape measuring method | |
JP2000146545A (en) | Optical disc inspection instrument | |
JPS59196407A (en) | Surface-roughness measuring device | |
JPS63242232A (en) | Measuring endoscopic apparatus | |
WO2003087711A1 (en) | High-precision measuring method for object to be measured by laser reflection beam and device therefor | |
JPS63127105A (en) | Method for measuring three-dimensional shape | |
JP2006071476A (en) | Subject distance measuring device and method | |
JPH0611313A (en) | Thickness measuring device |