[go: up one dir, main page]

JPH07196705A - Production of saccharide composed of three or more monosaccharide molecules bonded through glycoside linkage - Google Patents

Production of saccharide composed of three or more monosaccharide molecules bonded through glycoside linkage

Info

Publication number
JPH07196705A
JPH07196705A JP5354059A JP35405993A JPH07196705A JP H07196705 A JPH07196705 A JP H07196705A JP 5354059 A JP5354059 A JP 5354059A JP 35405993 A JP35405993 A JP 35405993A JP H07196705 A JPH07196705 A JP H07196705A
Authority
JP
Japan
Prior art keywords
component
reverse osmosis
osmosis membrane
solution
saccharide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5354059A
Other languages
Japanese (ja)
Other versions
JP3117596B2 (en
Inventor
Naoyuki Jinbo
尚幸 神保
Kikuzo Kaneko
菊造 金子
Tatsuya Kunieda
達也 国枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP05354059A priority Critical patent/JP3117596B2/en
Publication of JPH07196705A publication Critical patent/JPH07196705A/en
Application granted granted Critical
Publication of JP3117596B2 publication Critical patent/JP3117596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To provide a method for production of a saccharide, capable of saving thermal energy, and simplifying facilitates required for concentration, having an economical advantage and enabling improvement of the chromatographic separation rate and the reverse osmosis membrane separation rate and prevention of putrefaction of a saccharide solution during the treatment. CONSTITUTION:A mixture solution containing a monosaccharide and/or betaine (the first component), a disaccharide (the second component) and a saccharide (the third component) composed of three or more monosaccharide molecules mutually bonded through a glycoside linkage is used as the raw material solution and the three components are mutually separated according to the chromatographic method under a temperature condition of >=50 deg.C. The resultant solution of the third component isolated by the chromatographic separation method is concentrated through a reverse osmosis membrane equipment under a temperature condition of >=50 deg.C. The resultant concentrated solution is evaporated and concentrated to obtain a concentrated solution having 70wt.% solid content and the obtained concentrated solution is used as a commercial product. A filtered solution separated from the concentrated solution by the reverse osmosis membrane equipment is recycled as an eluting water for chromatographic separation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は例えばデンプンを酵素分
解して得られる糖類の混合溶液から目的とする3分子以
上の単糖類分子がグリコシド結合してなる糖類を高濃度
に濃縮された状態で得ることのできる、3分子以上の単
糖類分子がグリコシド結合してなる糖類の製造方法に関
する。
BACKGROUND OF THE INVENTION The present invention relates to a highly concentrated saccharide in which three or more monosaccharide molecules of interest are glycosidic-bonded from a mixed solution of saccharides obtained by enzymatically decomposing starch. The present invention relates to a method for producing a saccharide that can be obtained, in which three or more monosaccharide molecules are glycosidic-bonded.

【0002】[0002]

【従来の技術】一般に糖類は甘味剤として使用されてい
るが、なかでも3分子以上の単糖類分子がグリコシド結
合してなる糖類(例えば三糖類、四糖類等)(以下、三
糖類以上の糖類というときがある)は低カロリーの甘味
剤として消費者に歓迎され、消費量も年々増大してい
る。
2. Description of the Related Art Generally, sugars are used as sweeteners. Among them, sugars formed by glycosidic bonds of three or more monosaccharide molecules (for example, trisaccharides, tetrasaccharides, etc.) (hereinafter, sugars of trisaccharides or more) Is being welcomed by consumers as a low-calorie sweetener, and the consumption is increasing year by year.

【0003】三糖類以上の糖類を得る方法として通常、
デンプンを酵素アミラーゼにより分解する方法が採用さ
れている。この酵素分解により単糖類、二糖類、三糖類
以上の糖類の3成分混合溶液が得られる。この3成分混
合溶液より目的とする三糖類以上の糖類を得るための分
離操作としては従来よりクロマト分離が行われている。
As a method for obtaining saccharides having three or more sugars,
A method of decomposing starch with the enzyme amylase has been adopted. By this enzymatic decomposition, a three-component mixed solution of saccharides such as monosaccharides, disaccharides and trisaccharides or more can be obtained. Chromatographic separation has been conventionally performed as a separation operation for obtaining the target saccharides of three or more sugars from the three-component mixed solution.

【0004】クロマト分離に当たって展開液として一般
に水が使用され、従って分取りされた三糖類以上の糖類
は水によって希釈されており、そのため従来は該糖類液
を蒸発装置に供給して加熱し、水分を蒸発させて濃縮
し、所望の濃度の糖類を得ていた。
In the case of chromatographic separation, water is generally used as a developing solution, and thus the separated saccharides of trisaccharides and above are diluted with water. Therefore, conventionally, the saccharide solution is supplied to an evaporator to be heated to remove moisture. Was evaporated and concentrated to give the desired concentration of sugar.

【0005】[0005]

【発明が解決しようとする課題】クロマト分離により分
取りされた三糖類以上の糖類は上記の通り水により希釈
された希薄溶液として得られるが、三糖類以上の糖類
は、もともと混合溶液中の濃度が他の成分に比べて低い
ことと、三糖類以上の糖類が分取りされる区分は特に多
成分が含有される区分であり、クロマト分離層内での移
動速度に差のある各成分をすべて取り出さなければなら
ない区分であることなどの理由により、他の糖類区分に
比べて水により希釈される割合が大であるため、通常、
該溶液の濃度は約4〜5%程度の低濃度である。一方、
製品として要求される濃度は通常、約70%程度であ
る。従って製品とするためには約14〜18倍の濃縮が
必要であり、従来はこの濃縮をすべて加熱蒸発手段によ
り行っていた。しかしながら、水分の蒸発という相変化
を伴う蒸発濃縮方法は多大の熱エネルギーを必要とし、
エネルギー消費量が大きく、生産コストを著しく上昇さ
せる欠点がある。しかも約14〜18倍濃縮という高濃
度濃縮を行うためには大型の蒸発装置を必要とし、設備
費が嵩む上、設備スペースを必要とし、経済的に極めて
不利であった。
The trisaccharides or higher saccharides separated by the chromatographic separation are obtained as a dilute solution diluted with water as described above, but the trisaccharides or higher saccharides are originally concentrated in the mixed solution. Is lower than other components, and the category in which saccharides of trisaccharides and higher are separated is a category in which many components are contained, and all components with different migration speeds in the chromatographic separation layer are included. Due to the reason that it is a category that must be taken out, etc., it is usually diluted with water as compared with other sugar categories, so it is usually
The concentration of the solution is as low as about 4-5%. on the other hand,
The concentration required as a product is usually about 70%. Therefore, in order to obtain a product, it is necessary to concentrate it about 14 to 18 times, and conventionally, all of this concentration was carried out by a heating evaporation means. However, the evaporative concentration method involving a phase change of evaporation of water requires a large amount of heat energy,
It has a drawback that the energy consumption is large and the production cost is significantly increased. Moreover, in order to carry out high concentration concentration of about 14 to 18 times, a large-scale evaporator is required, the equipment cost is increased, and the equipment space is required, which is economically extremely disadvantageous.

【0006】本発明者等は上記の点に鑑み鋭意検討した
結果、クロマト分離により分取りされた三糖類以上の糖
類溶液を逆浸透膜装置により濃縮液と透過液とに分離し
て濃縮した後、該濃縮液を更に蒸発濃縮により濃縮する
ことにより効率良く高濃度に濃縮処理が行われることを
見出した。
The present inventors have conducted extensive studies in view of the above points, and as a result, after separating a saccharide solution of trisaccharides or more separated by chromatographic separation into a concentrated liquid and a permeated liquid by a reverse osmosis membrane device and concentrating it, It was found that the concentrated solution can be efficiently concentrated to a high concentration by further concentrating the concentrated solution by evaporative concentration.

【0007】しかしながらその一方で、糖類溶液を取り
扱うことによる特有の問題点が発生した。その第1点は
クロマト分離工程及び逆浸透膜装置による濃縮工程にお
ける通液抵抗の問題である。即ち糖類溶液は粘度が高い
ため、クロマト分離及び逆浸透膜による分離の際の圧力
損失が大きく、その結果それらの分離速度の低下が避け
られないという問題がある。
On the other hand, however, the handling of the saccharide solution causes a particular problem. The first point is the problem of liquid passage resistance in the chromatographic separation step and the concentration step by the reverse osmosis membrane device. That is, since the saccharide solution has a high viscosity, there is a problem that a pressure loss is large at the time of chromatographic separation and separation by a reverse osmosis membrane, and as a result, a decrease in the separation rate thereof cannot be avoided.

【0008】また第2点として、クロマト分離工程中に
原料液としての糖類溶液が溶離水により希釈され濃度が
低下するため温度条件によっては細菌が発生し、その結
果、クロマト分離工程及び逆浸透膜濃縮工程時に糖類溶
液が腐敗を起こすという問題がある。
As a second point, during the chromatographic separation step, the saccharide solution as a raw material liquid is diluted with eluent water and its concentration is lowered, so that bacteria are generated depending on the temperature conditions, and as a result, the chromatographic separation step and the reverse osmosis membrane. There is a problem that the saccharide solution will rot during the concentration step.

【0009】本発明者等は上記の問題点を解決すべく更
に研究を重ねた結果、クロマト分離及び逆浸透膜による
分離の際の処理温度を50℃以上に温度設定することに
よりそれらの分離速度を向上でき、しかも細菌の発生を
抑止して、糖類溶液の腐敗を防止できるという知見を得
た。本発明はこのような知見に基づき完成されたもので
ある。
The inventors of the present invention have conducted further studies to solve the above-mentioned problems, and as a result, by setting the treatment temperature at the time of chromatographic separation and separation by a reverse osmosis membrane to 50 ° C. or higher, the separation speed of them is increased. The present inventors have found that it is possible to improve the above-mentioned properties, and further, to prevent bacteria from spoiling and prevent the sugar solution from spoiling. The present invention has been completed based on these findings.

【0010】而して本発明は、生産効率に優れ、生産コ
ストを低減でき、且つ製造工程中における糖類溶液の腐
敗を防止できる、3分子以上の単糖類分子がグリコシド
結合してなる糖類の製造方法を提供することを目的とす
る。
Thus, the present invention provides a saccharide which is excellent in production efficiency, can reduce the production cost, and can prevent spoilage of the saccharide solution during the production process, in which three or more monosaccharide molecules are glycoside-bonded. The purpose is to provide a method.

【0011】[0011]

【課題を解決するための手段】本発明は、(1)単糖類
及び/又はベタイン(第1成分)、二糖類(第2成
分)、3分子以上の単糖類分子がグリコシド結合してな
る糖類(第3成分)を含む混合溶液を50℃以上の温度
条件下でクロマト分離装置により上記第1成分、第2成
分、第3成分の三成分に分離する工程と、クロマト分離
により得られた第3成分溶液を50℃以上の温度条件下
で逆浸透膜装置により濃縮処理して濃縮液と透過液とに
分離する工程と、該透過液をクロマト分離装置の溶離水
供給部に還流する工程と、上記濃縮液を加熱して蒸発濃
縮による第2段の濃縮処理を行う工程とからなることを
特徴とする3分子以上の単糖類分子がグリコシド結合し
てなる糖類の製造方法、(2)単糖類及び/又はベタイ
ン(第1成分)、二糖類(第2成分)、3分子以上の単
糖類分子がグリコシド結合してなる糖類(第3成分)を
含む混合溶液を50℃以上の温度条件下でクロマト分離
装置により上記第1成分、第2成分、第3成分の三成分
に分離する工程と、クロマト分離により得られた第3成
分溶液を50℃以上の温度条件下で第1の逆浸透膜装置
により濃縮処理して濃縮液と透過液とに分離する工程
と、該透過液を第2の逆浸透膜装置に導いて無機塩類溶
液と透過液とに分離する工程と、第2の逆浸透膜装置に
より分離された透過液をクロマト分離装置の溶離水供給
部に還流する工程と、第1の逆浸透膜装置により分離さ
れた濃縮液を加熱して蒸発濃縮による第2段の濃縮処理
を行う工程とからなることを特徴とする3分子以上の単
糖類分子がグリコシド結合してなる糖類の製造方法を要
旨とする。
The present invention relates to (1) a monosaccharide and / or betaine (a first component), a disaccharide (a second component), and a saccharide in which three or more monosaccharide molecules are glycoside-bonded. A step of separating the mixed solution containing the (third component) into three components of the above-mentioned first component, second component and third component by a chromatographic separation device under a temperature condition of 50 ° C. or higher; A step of concentrating the three-component solution under a temperature condition of 50 ° C. or higher by a reverse osmosis membrane device to separate it into a concentrate and a permeate, and a step of refluxing the permeate to an eluting water supply part of the chromatographic separator. A method for producing a saccharide comprising three or more monosaccharide molecules glycoside-bonded, wherein the concentrated liquid is heated to perform a second-stage concentration treatment by evaporative concentration. Sugar and / or betaine (first component), disaccharide (Second component) A mixed solution containing saccharides (third component) formed by glycosidic bonds of three or more monosaccharide molecules is subjected to a chromatographic separation device under a temperature condition of 50 ° C. or more by the above-mentioned first and second components. A step of separating the third component into three components, and the third component solution obtained by the chromatographic separation is concentrated by the first reverse osmosis membrane device under a temperature condition of 50 ° C. or higher to obtain a concentrate and a permeate. A step of separating the permeated liquid into an inorganic salt solution and a permeated liquid by introducing the permeated liquid to a second reverse osmosis membrane device, and a chromatographic separation device for separating the permeated liquid by the second reverse osmosis membrane device. And a step of refluxing the concentrated solution separated by the first reverse osmosis membrane device to perform a second-stage concentration treatment by evaporative concentration. Of the saccharides formed by glycosidic bonds of the above monosaccharide molecules The gist of the production method.

【0012】本発明は単糖類(第1成分)、二糖類(第
2成分)、3分子以上の単糖類分子がグリコシド結合し
てなる糖類(第3成分)を含む混合溶液を原料液として
用い、上記三成分を分離する。
The present invention uses a mixed solution containing a monosaccharide (first component), a disaccharide (second component), and a saccharide (third component) formed by glycosidic bonding of three or more monosaccharide molecules as a raw material liquid. , Separate the above three components.

【0013】本発明において混合溶液中の第1成分は単
糖類及び/又はベタインであり、該単糖類としてグルコ
ース、フラクトース等が挙げられる。また第2成分は二
糖類であり、該二糖類としてマルトース、サッカロース
等が挙げられる。本発明において単糖類、二糖類はいず
れも、それらに属する糖類の1種又は2種以上の混合物
である。
In the present invention, the first component in the mixed solution is a monosaccharide and / or betaine, and examples of the monosaccharide include glucose and fructose. The second component is a disaccharide, and examples of the disaccharide include maltose and sucrose. In the present invention, both monosaccharides and disaccharides are one kind or a mixture of two or more kinds of sugars belonging to them.

【0014】本発明において、上記第3成分としての、
3分子以上の単糖類分子がグリコシド結合してなる糖類
(三糖類以上の糖類)とは少糖類(オリゴサッカリド)
のうち二糖類を除いた糖類、即ち三糖類、四糖類、五糖
類、六糖類等を意味する。構成単糖類分子数は多糖類と
区別できる範囲内において任意に選定でき、例えば十糖
類も妥当する。
In the present invention, as the third component,
Saccharides (sugars with three or more sugars) formed by glycosidic bonds of three or more monosaccharide molecules are oligosaccharides (oligosaccharides)
Of these, saccharides excluding disaccharides, that is, trisaccharides, tetrasaccharides, pentasaccharides, hexasaccharides and the like are meant. The number of constituent monosaccharide molecules can be arbitrarily selected within a range that can be distinguished from polysaccharides, and decasaccharide is also appropriate.

【0015】本発明において上記三糖類以上の糖類は、
上記に定義された糖類の1種又は2種以上の混合物であ
る。三糖類としてマルトトリオース、ラフィノース、四
糖類としてマルトテトラオース、五糖類としてマルトペ
ンタオース、六糖類としてマルトヘキサオース等が、ま
た十糖類としてマルトデカオース等がそれぞれ挙げられ
る。
In the present invention, the above-mentioned trisaccharide and higher saccharides are
It is one or a mixture of two or more of the sugars defined above. Examples thereof include maltotriose and raffinose as trisaccharides, maltotetraose as tetrasaccharides, maltopentaose as pentasaccharides, maltohexaose as hexasaccharides, and maltodecaose as decasaccharides.

【0016】このような三成分を含む混合溶液を得る方
法としては例えば次の如き方法がある。 (1)デンプンを出発原料とする場合 α−アミラーゼを主成分とする液化酵素を用いて液化す
ると共に、グルコアミラーゼとβ−アミラーゼを主成分
とする糖化酵素を用いて糖化を行い、酵素分解によりグ
ルコース(第1成分)、マルトース(第2成分)、三糖
類以上の糖類の2種以上の混合物(第3成分)の三成分
を含む混合溶液を得る。 (2)甜菜糖を出発原料とする場合 原料の砂糖大根を搾汁し、濾過して濾液を加熱濃縮し次
いで結晶化を行う。結晶を除いた残液(モラセス)とし
て、ベタイン(第1成分)、サッカロース(第2成
分)、無機塩類の混在したラフィノース(第3成分)の
三成分を含む混合溶液を得る。 (3)甘蔗糖を出発原料とする場合 原料の砂糖キビを前記(2)と同一の方法により処理し
て、グルコースとフラクトースの混合物(第1成分)、
サッカロース(第2成分)、無機塩類の混在した、三糖
類以上の糖類の2種以上の混合物(第3成分)の三成分
を含む混合溶液を得る。
As a method for obtaining a mixed solution containing such three components, there are the following methods, for example. (1) In the case of using starch as a starting material, liquefaction is performed using a liquefying enzyme containing α-amylase as a main component, and saccharification is performed using a saccharifying enzyme containing glucoamylase and β-amylase as main components, and enzymatic decomposition is performed. A mixed solution containing three components of glucose (first component), maltose (second component), and a mixture of two or more kinds of saccharides including trisaccharides or more (third component) is obtained. (2) Using beet sugar as a starting material The raw material sugar beet is squeezed, filtered, and the filtrate is heated and concentrated, followed by crystallization. A mixed solution containing three components of betaine (first component), sucrose (second component), and raffinose mixed with inorganic salts (third component) is obtained as a residual liquid (molasses) from which crystals are removed. (3) When cane sugar is used as a starting material A mixture of glucose and fructose (first component) is prepared by treating sugar cane as a starting material in the same manner as in (2) above.
A mixed solution containing three components of sucrose (second component) and a mixture of two or more saccharides of three or more saccharides (third component) in which inorganic salts are mixed is obtained.

【0017】上記の如くして得られた混合溶液を原料液
とし、これをクロマトグラフィーの手法を用いて三成分
分離を行う。三成分分離の方法としては、1)疑似移動
層式多成分分離装置を用いる方法(特開平4−2278
04号)、2)固定床式のクロマト分離装置を用いて、
三成分以上の各成分の富化した画分を連続的に分画する
方法(特開昭63−158105号)、3)三成分に対
する親和力の強さの順序が第3成分>第2成分>第1成
分である第1の吸着剤を充填した単位充填層と、三成分
に対する親和力の強さの順序が、第2成分>第3成分>
第1成分である第2の吸着剤を充填した単位充填層とを
それぞれ交互に少なくとも4層以上に直列無端に連結し
た疑似移動層装置に通液することにより、三成分の吸着
特性の違いでこれらを分画分離する方法(特開昭64−
80409号)等、公知の方法を採用できるが、三成分
に効率よく分離することができ且つ処理能力が大きいと
いう点で上記1)の方法が好ましい。
The mixed solution obtained as described above is used as a raw material liquid, and this is subjected to three-component separation by a chromatographic method. As a method of separating three components, 1) a method using a pseudo moving bed type multi-component separating apparatus (Japanese Patent Laid-Open No. 4-2278).
04), 2) using a fixed-bed type chromatographic separation device,
A method for continuously fractionating enriched fractions of three or more components (Japanese Patent Laid-Open No. 63-158105), 3) The order of strength of affinity for the three components is third component> second component> The unit packing layer filled with the first adsorbent which is the first component and the order of the strength of the affinity for the three components are: second component> third component>
By alternately passing at least four layers and the unit packed bed filled with the second adsorbent, which is the first component, to the simulated moving bed device connected in series in an endless manner, the adsorption characteristics of the three components differ. A method for fractionating and separating these (JP-A-64-
Although a known method such as 80409) can be adopted, the method of 1) above is preferable because it can be efficiently separated into three components and has a large processing capacity.

【0018】以下、上記1)の方法について図1に基づ
き説明すると、固体吸着剤を充填した多数の単位充填層
1〜10を無端直列に連結して循環流路を形成する。1
3は充填層1と充填層10とをつなぐ連結管である。吸
着剤に対する親和性の異なる三つの成分(上記第1成
分、第2成分、第3成分)を含む原料液fの一定量を原
料液供給管14eより導入すると共に同時に溶離水Dを
溶離水供給管14dより導入して循環流路に流す。12
は循環液のためのポンプである。原料液fは原料液供給
弁5eを有する管路を通して循環流路に流れ込み、また
溶離水Dは溶離水供給弁1dを有する管路を通して循環
流路に流れ込む。
Hereinafter, the method 1) will be described with reference to FIG. 1. A large number of unit packing layers 1 to 10 filled with a solid adsorbent are connected in an endless series to form a circulation channel. 1
Reference numeral 3 is a connecting pipe that connects the packed bed 1 and the packed bed 10. A fixed amount of a raw material liquid f containing three components having different affinities for the adsorbent (the first component, the second component, and the third component) is introduced from the raw material liquid supply pipe 14e, and the eluting water D is supplied at the same time. It is introduced from the pipe 14d and flows into the circulation flow path. 12
Is a pump for circulating fluid. The raw material liquid f flows into the circulation passage through the pipe having the raw material liquid supply valve 5e, and the elution water D flows into the circulation passage through the pipe having the elution water supply valve 1d.

【0019】原料液が各充填層を通過して循環流路を移
動するに伴い、吸着剤に対する親和力の弱い成分から強
い成分に順次に分かれた吸着帯域が形成される。上記親
和力の弱い成分は三糖類以上の糖類(第3成分)であ
り、強い成分は単糖類(第1成分)であり、その中間に
位置する成分(中間成分)は二糖類(第2成分)であ
る。この中間成分が充填層4に存在するとき遮断弁11
を閉じ、原料液供給管14eより一定量の原料液fを導
入し、原料液供給弁5eを有する管路を介して循環流路
に流す。次に、抜出弁4bを開け、充填層4より中間成
分(第2成分)を抜出管14bを経て系外に抜き出す。
As the raw material liquid passes through each packed bed and moves in the circulation flow path, an adsorption zone is formed which is sequentially divided from a component having a weak affinity to the adsorbent to a component having a strong affinity. The component having a weak affinity is a trisaccharide or higher saccharide (third component), the strong component is a monosaccharide (first component), and the component (intermediate component) located in between is a disaccharide (second component). Is. When this intermediate component is present in the packed bed 4, the shut-off valve 11
Is closed, and a certain amount of the raw material liquid f is introduced from the raw material liquid supply pipe 14e, and is flown into the circulation flow path through the pipe having the raw material liquid supply valve 5e. Next, the extraction valve 4b is opened, and the intermediate component (second component) is extracted from the packed bed 4 to the outside of the system through the extraction pipe 14b.

【0020】その後、遮断弁11を開け、系の循環を行
わせながら系内に残った上記親和力の弱い成分(第3成
分)を各抜出弁1a〜10aを順次開けて抜出管14a
より系外に抜き出すと共に、上記親和力の強い成分(第
1成分)を各抜出弁1c〜10cを順次開けて抜出管1
4cより系外に抜き出す。このようにして第1成分とし
ての単糖類Cと、第2成分としての二糖類Bと、第3成
分としての三糖類以上の糖類Aの三成分が分離される。
尚、2d〜10dは溶離水供給弁を、2b、3bは第2
成分の抜出弁をそれぞれ示す。
After that, the shut-off valve 11 is opened, and the components having weak affinity (third component) remaining in the system while circulating the system are opened by sequentially opening the respective withdrawal valves 1a to 10a.
The extraction pipe 1 is further extracted outside the system, and at the same time, the extraction valve 1c to 10c is sequentially opened to open the extraction component 1 (first component) having a strong affinity.
Pull out from the system from 4c. In this way, the three components of the monosaccharide C as the first component, the disaccharide B as the second component, and the trisaccharide or higher saccharide A as the third component are separated.
2d to 10d are eluent water supply valves, and 2b and 3b are second
The extraction valves of the components are shown respectively.

【0021】充填層に充填される吸着剤としては代表的
にはアルカリ金属形またはアルカリ土類金属形の強酸性
陽イオン交換樹脂が用いられる。
As the adsorbent packed in the packed bed, an alkali metal type or alkaline earth metal type strongly acidic cation exchange resin is typically used.

【0022】上記したクロマト分離操作は50℃以上、
好ましくは60〜85℃の温度条件下で行う。50℃未
満の温度では原料液の粘度が高すぎて分離速度が遅くな
り、また細菌の発生による原料液の腐敗の問題が生じ
る。上記温度条件下で操作を行うためには、系内に導入
する以前に原料液を50℃以上に加温する必要があり、
また充填層及び流路管で構成される系を50℃以上に加
温保持する恒温手段をクロマト分離装置に設ける必要が
ある。
The above chromatographic separation operation is carried out at 50 ° C. or higher,
It is preferably carried out under the temperature condition of 60 to 85 ° C. If the temperature is lower than 50 ° C., the viscosity of the raw material liquid is too high, the separation speed becomes slow, and the problem of spoilage of the raw material liquid due to generation of bacteria occurs. In order to operate under the above temperature conditions, it is necessary to heat the raw material liquid to 50 ° C. or higher before introducing it into the system.
Further, it is necessary to provide the chromatographic separation device with a constant temperature means for heating and maintaining the system constituted by the packed bed and the flow path tube at 50 ° C. or higher.

【0023】クロマト分離により得られた第3成分溶液
(三糖類以上の糖類溶液)は次いで濃縮工程に送られ
る。クロマト分離工程及び濃縮工程からなる本発明の全
体的な工程図は図2及び図3に示されている。
The third component solution (a saccharide solution of trisaccharides or more) obtained by the chromatographic separation is then sent to the concentration step. An overall process diagram of the present invention comprising a chromatographic separation process and a concentration process is shown in FIGS. 2 and 3.

【0024】図中、20はクロマト分離装置、21は溶
離水製造装置である。溶離水製造装置21としては、公
知のイオン交換樹脂装置や逆浸透膜装置が用いられ、該
装置により市水又は工業用水等の原水から溶離水が製造
される。上記の如く、原料液の糖類はクロマト分離によ
り第1成分C、第2成分B、第3成分Aの三成分に分離
され、そのうちの第3成分Aは第3成分流出ライン22
を経て逆浸透膜装置23に送られる。
In the figure, 20 is a chromatographic separation device, and 21 is an eluting water producing device. A known ion exchange resin device or a reverse osmosis membrane device is used as the eluting water producing device 21, and the eluting water is produced from raw water such as city water or industrial water by the device. As described above, the saccharides of the raw material liquid are separated into three components of the first component C, the second component B and the third component A by the chromatographic separation, and the third component A among them is the third component outflow line 22.
And is sent to the reverse osmosis membrane device 23.

【0025】三成分を含む混合溶液を製造する過程にお
いて塩化ナトリウム等の無機塩類が混入し、該混合溶液
中に混在する場合があり、この場合、クロマト分離によ
り分取りされた三糖類以上の糖類溶液(第3成分)にも
そのまま無機塩類が混入された状態で持ち込まれるのが
通常である。後述するように本発明は逆浸透膜装置によ
り分離された透過液を溶離水として循環使用するため、
該透過液中の無機塩類の含有量が問題となる。溶離水と
して使用するための無機塩類含有量許容値は0.2重量
%以下である。従って、無機塩類含有量が0.2重量%
を越える場合には別個の逆浸透膜装置を用いて無機塩類
の除去を行う必要がある。
In the process of producing a mixed solution containing three components, an inorganic salt such as sodium chloride may be mixed and mixed in the mixed solution. In this case, saccharides of three or more trisaccharides separated by chromatographic separation are mixed. Usually, it is usually brought into the solution (third component) with the inorganic salts mixed therein. As described below, the present invention circulates and uses the permeate separated by the reverse osmosis membrane device as eluent,
The content of the inorganic salt in the permeate becomes a problem. The allowable content of inorganic salts for use as elution water is 0.2% by weight or less. Therefore, the content of inorganic salts is 0.2% by weight
If it exceeds, it is necessary to remove inorganic salts using a separate reverse osmosis membrane device.

【0026】図2は無機塩類の除去処理を行わない場
合、図3は別個の逆浸透膜装置を用いて無機塩類の除去
処理を行う場合を示している。図2に示す逆浸透膜装置
23において、逆浸透膜として食塩阻止率90〜93%
の中間RO膜が用いられ、該中間RO膜の具体的例示と
してNTR−729HF等が挙げられる。
FIG. 2 shows the case where the inorganic salt removal treatment is not performed, and FIG. 3 shows the case where the inorganic salt removal treatment is performed using a separate reverse osmosis membrane device. In the reverse osmosis membrane device 23 shown in FIG. 2, the salt blocking rate of the reverse osmosis membrane is 90 to 93%.
The intermediate RO film is used, and specific examples of the intermediate RO film include NTR-729HF and the like.

【0027】逆浸透膜装置23には50℃以上の温度に
保温するための恒温手段が設けられ、50℃以上、好ま
しくは50〜70℃の温度条件下で濃縮処理が行われ
る。50℃未満の温度では第3成分溶液の粘度が高すぎ
て分離速度(濃縮処理速度)が遅くなり、また細菌の発
生により第3成分溶液が腐敗する虞れがある。このよう
に50℃以上の温度で処理が行われるため前記逆浸透膜
としては耐熱性のあるものが要求される。
The reverse osmosis membrane device 23 is provided with a constant temperature means for keeping the temperature at 50 ° C. or higher, and the concentration treatment is performed under the temperature condition of 50 ° C. or higher, preferably 50 to 70 ° C. If the temperature is lower than 50 ° C., the viscosity of the third component solution is too high, the separation rate (concentration processing rate) becomes slow, and the third component solution may be spoiled due to the generation of bacteria. Since the treatment is carried out at a temperature of 50 ° C. or higher, the reverse osmosis membrane is required to have heat resistance.

【0028】三糖類以上の糖類溶液(第3成分A)は5
0℃以上の温度に保持された状態で第3成分流出ライン
22を通り、高圧ポンプ24により加圧され、逆浸透膜
装置23内に流入し、50℃以上の温度において逆浸透
膜により濃縮され、濃縮液と透過液(水)とに分離され
る。この濃縮工程時にクロマト分離後の第3成分溶液
(濃度約4〜5%)は約4〜8倍に濃縮され、濃度約2
0〜30%の濃縮液が得られる。
A saccharide solution containing three or more sugars (third component A) is 5
While being maintained at a temperature of 0 ° C. or higher, it is pressurized by the high pressure pump 24 through the third component outflow line 22, flows into the reverse osmosis membrane device 23, and is concentrated by the reverse osmosis membrane at a temperature of 50 ° C. or higher. , And is separated into a concentrated liquid and a permeated liquid (water). At the time of this concentration step, the third component solution (concentration about 4 to 5%) after chromatographic separation is concentrated about 4 to 8 times and the concentration about 2
A 0-30% concentrate is obtained.

【0029】濃縮液は流出ライン25を通り蒸発装置2
6に送られ、また透過液は溶離水循環ライン27を通り
溶離水供給ライン28に合流し、而して溶離水供給部に
還流されて、クロマト分離装置における溶離水の一部と
して使用される。この場合、還流液は常温以上の温度を
保有しているので溶離水加温のための熱エネルギーを節
約できる。尚、一回の濃縮処理では目的とする濃度に濃
縮できない場合は濃縮液を濃縮液循環ライン29に導い
て再度逆浸透膜装置23に通し繰り返し濃縮を行っても
よい。
The concentrate passes through the outflow line 25 and the evaporator 2
The permeated liquid is sent to the No. 6 and the permeated liquid passes through the eluting water circulation line 27 and joins with the eluting water supply line 28, and is then returned to the eluting water supply unit to be used as a part of the eluting water in the chromatographic separation device. In this case, since the reflux liquid has a temperature of room temperature or higher, it is possible to save heat energy for heating the eluting water. When the concentration cannot be concentrated to the desired concentration by one-time concentration treatment, the concentrated liquid may be introduced into the concentrated liquid circulation line 29, passed through the reverse osmosis membrane device 23 again, and repeatedly concentrated.

【0030】蒸発装置26に導入された第3成分溶液は
ここで加熱され、蒸発濃縮による第2段の濃縮処理が行
われる。蒸発装置26は公知の構造のものが使用され
る。第3成分溶液は逆浸透膜装置23により予備濃縮さ
れているので、蒸発装置は小型の装置で充分である。こ
こにおいても第3成分溶液は常温以上の温度を保有して
いるので蒸発濃縮のための熱エネルギーを節約できる。
The third component solution introduced into the evaporator 26 is heated here, and the second-stage concentration treatment by evaporative concentration is performed. The evaporator 26 has a known structure. Since the third component solution is pre-concentrated by the reverse osmosis membrane device 23, a small-sized evaporator is sufficient. Also in this case, since the third component solution has a temperature of room temperature or higher, it is possible to save heat energy for evaporative concentration.

【0031】この蒸発濃縮工程において、逆浸透膜濃縮
後の第3成分溶液は約2.3〜3.5倍に濃縮され、濃
度約70%の濃縮液となり、而して目的とする高濃度に
濃縮された三糖類以上の糖類を得ることができる。
In this evaporative concentration step, the third component solution after concentration by the reverse osmosis membrane is concentrated to about 2.3 to 3.5 times to be a concentrated solution having a concentration of about 70%, and thus the desired high concentration is obtained. It is possible to obtain a saccharide having a trisaccharide or higher concentration.

【0032】上述したように、第3成分溶液中の無機塩
類含有量が0.2重量%を越える場合には図3に示す如
く別個の逆浸透膜装置を用いて無機塩類の除去処理を行
う必要がある。この場合、第1の逆浸透膜装置30にお
ける逆浸透膜として食塩阻止率70%以下のルーズRO
膜が用いられる。このルーズRO膜を用いることにより
水及び無機塩類が膜を透過し、濃縮液と分離される。無
機塩類として1価の無機塩が多い場合に用いられる前記
ルーズRO膜の具体的例示として、NTR−7250等
が、また1価の他に2価の無機塩が多い場合に用いられ
る前記ルーズRO膜の具体的例示としてNTR−725
0、NTR−7450等がそれぞれ挙げられる。
As described above, when the content of the inorganic salts in the third component solution exceeds 0.2% by weight, the inorganic salts are removed by using a separate reverse osmosis membrane device as shown in FIG. There is a need. In this case, as the reverse osmosis membrane in the first reverse osmosis membrane device 30, a loose RO with a salt inhibition rate of 70% or less is used.
Membranes are used. By using this loose RO membrane, water and inorganic salts permeate the membrane and are separated from the concentrate. As a specific example of the loose RO film used when a large amount of monovalent inorganic salts are used as the inorganic salts, NTR-7250 or the like is used, and the loose RO film used when a large amount of divalent inorganic salts is used in addition to monovalent inorganic salts. As a specific example of the membrane, NTR-725
0, NTR-7450 and the like.

【0033】第1の逆浸透膜装置30により分離された
濃縮液は流出ライン25を通して蒸発装置26に送ら
れ、一方、透過液(無機塩類を含有する水)は流出ライ
ン32を通って原水(市水又は工業用水)を供給する流
入ライン33と合流し、第2の逆浸透膜装置31に流入
する。第2の逆浸透膜装置31における逆浸透膜として
食塩阻止率98%以上のタイトRO膜が用いられ、該タ
イトRO膜の具体的例示としてNTR−759HR等が
挙げられる。この逆浸透膜装置により水と無機塩類とに
分離され、透過液としての水は溶離水循環ライン34を
通り、クロマト分離装置20の溶離水供給部に還流さ
れ、溶離水として使用される。
The concentrated liquid separated by the first reverse osmosis membrane device 30 is sent to the evaporation device 26 through the outflow line 25, while the permeated liquid (water containing inorganic salts) passes through the outflow line 32 and becomes the raw water ( It merges with an inflow line 33 for supplying city water or industrial water and flows into the second reverse osmosis membrane device 31. As the reverse osmosis membrane in the second reverse osmosis membrane device 31, a tight RO membrane having a salt rejection rate of 98% or more is used, and specific examples of the tight RO membrane include NTR-759HR and the like. Water and inorganic salts are separated by this reverse osmosis membrane device, and water as a permeate passes through the eluting water circulation line 34 and is returned to the eluting water supply section of the chromatographic separating device 20 to be used as eluting water.

【0034】[0034]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、もとより本発明は実施例に制約されるものではな
い。 実施例 デンプンを原料とし、α−アミラーゼを主成分とする液
化酵素を用いて液化処理を行うと共に、グルコアミラー
ゼとβ−アミラーゼを主成分とする糖化酵素を用いて糖
化処理を行い、下記組成のデンプン糖水溶液を得た。 デンプン糖水溶液組成 グルコース: 41.1% マルトース: 42.4% 三糖類以上の糖類(マルトトリオース、マルトテトラオ
ース等の混合物): 16.3% 無機塩類 : 0.2%
The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. Example Using starch as a raw material, a liquefaction treatment was performed using a liquefying enzyme containing α-amylase as a main component, and a saccharification treatment was performed using a saccharifying enzyme containing glucoamylase and β-amylase as the main components. An aqueous starch sugar solution was obtained. Aqueous starch sugar composition Glucose: 41.1% Maltose: 42.4% Sugars of three or more sugars (mixture of maltotriose, maltotetraose, etc.): 16.3% Inorganic salts: 0.2%

【0035】このデンプン糖水溶液の固形分濃度を測定
したところ60%であった。上記デンプン糖水溶液を原
料液として図1に示す擬似移動層式多成分分離装置によ
りクロマト分離を行った。クロマト分離の操作条件は以
下の通りである。 クロマト分離条件 吸着剤 : アンバーライトCG−6000(商品
名),Na形 溶離水 : クロマト分離装置起動後、分離液が生成す
るまではイオン交換水を使用。分離液生成後、分離液を
逆浸透膜濃縮し膜透過液が得られた後はイオン交換水と
膜透過液の混合したものを使用。イオン交換水/膜透過
液混合比=1.0:0.6 処理温度: 63℃ 原料液流入量: 150m3 /D
The solid content concentration of this starch sugar aqueous solution was measured and found to be 60%. Chromatographic separation was performed using the above starch sugar aqueous solution as a raw material liquid by a simulated moving bed type multi-component separator shown in FIG. The operating conditions for chromatographic separation are as follows. Chromatographic separation conditions Adsorbent: Amberlite CG-6000 (trade name), Na-type eluent water: After starting the chromatographic separation device, use ion-exchanged water until a separated liquid is produced. After the separated liquid is generated, the separated liquid is concentrated by reverse osmosis membrane to obtain a membrane permeated liquid, and then a mixture of ion exchanged water and the membrane permeated liquid is used. Ion-exchanged water / membrane permeation liquid mixing ratio = 1.0: 0.6 Treatment temperature: 63 ° C Inflow amount of raw material liquid: 150 m 3 / D

【0036】クロマト分離により、目的とする分離液
(三糖類以上の糖類溶液)を得た。この分離液中の三糖
類以上の糖類の含有率は98.5%(他にグルコース
0.8%、マルトース0.7%)であり、充分な分離性
能が認められた。この分離液の固形分濃度を測定したと
ころ、5.1%であり、また電気伝導度は450μS/
cmであった。
By chromatographic separation, a target separation liquid (a saccharide solution of trisaccharides or more) was obtained. The content of trisaccharides or higher saccharides in this separation liquid was 98.5% (in addition, glucose was 0.8% and maltose was 0.7%), and sufficient separation performance was recognized. The solid content concentration of this separated solution was measured to be 5.1%, and the electric conductivity was 450 μS /
It was cm.

【0037】上記分離液を図2に示す工程に従って逆浸
透膜装置に送り、下記条件にて濃縮処理を行った。 逆浸透膜濃縮条件 使用逆浸透膜: NTR−729HF 耐熱品 処理温度 : 60℃ 圧力 : 17kg/cm2
The separated liquid was sent to the reverse osmosis membrane apparatus according to the process shown in FIG. 2 and concentrated under the following conditions. Reverse osmosis membrane concentration conditions Reverse osmosis membrane used: NTR-729HF heat resistant product Treatment temperature: 60 ° C Pressure: 17 kg / cm 2

【0038】濃縮液の固形分濃度を測定したところ2
5.5%であった。濃縮液と分離された透過液をクロマ
ト分離装置の溶離水供給部に還流し、クロマト溶離水と
して再利用した。透過液中の糖類含有量については全て
検出限度以下で測定不能であった。因みにこの透過液の
電気伝導度は10μS/cmであった。従って透過液は
クロマト溶離水として充分再利用が可能であることが確
認された。
When the solid content concentration of the concentrated liquid was measured, it was 2
It was 5.5%. The permeated liquid separated from the concentrated liquid was refluxed to the eluting water supply unit of the chromatographic separation device and reused as chromatographic eluting water. The saccharide content in the permeate was all below the detection limit and could not be measured. Incidentally, the electric conductivity of this permeated liquid was 10 μS / cm. Therefore, it was confirmed that the permeated liquid can be sufficiently reused as chromatographic elution water.

【0039】濃縮液を小型エバポレーター(蒸発装置)
に送り、加熱による蒸発濃縮を行った。蒸発濃縮の条件
は以下の通りである。 蒸発濃縮条件 加熱温度: 80℃ 熱源 : 蒸気 エバポレーター内容積 : 40リットル
The concentrated liquid is a small evaporator (evaporator)
The mixture was sent to the reactor and heated to evaporate and concentrate. The conditions of evaporative concentration are as follows. Evaporative concentration conditions Heating temperature: 80 ° C Heat source: Steam evaporator internal volume: 40 liters

【0040】濃縮処理終了後、濃縮液の固形分濃度を測
定したところ70%であり、シロップ状の良品質の製品
が得られた。尚、全工程を通して糖溶液の変質或いは腐
敗は全く認められなかった。
After the completion of the concentration treatment, the concentration of the solid content of the concentrated liquid was measured to be 70%, and a syrup-like product of good quality was obtained. No deterioration or spoilage of the sugar solution was observed during the entire process.

【0041】比較例 クロマト分離された分離液(三糖類以上の糖類溶液)を
逆浸透膜装置による濃縮処理を行わずに直接大型エバポ
レーター(内容積300リットル)に送り蒸発濃縮を行
った点を除き、前記本発明実施例と同一の条件にて処理
を行い固形分濃度70%の製品を得た。
Comparative Example Except that the separated liquid obtained by the chromatographic separation (a saccharide solution of trisaccharides or more) was directly sent to a large evaporator (internal volume of 300 liters) for concentration without performing concentration treatment by a reverse osmosis membrane device. Then, the treatment was carried out under the same conditions as in the above-mentioned Examples of the present invention to obtain a product having a solid content concentration of 70%.

【0042】(設備費等の比較)前記本発明方法(実施
例)と従来法(比較例)による場合のそれぞれの設備費
(但し、クロマト分離装置を除く)、排水量及び蒸気使
用量を、設備費にあっては計算により求め、排水量、蒸
気使用量にあっては操業時のデータにより求め、両者の
比率をもって対比した。結果は次の通りである(いずれ
も、従来法における値を1.0としてその比を求め
た)。 設備費の比率: 従来法 : 本発明方法 = 1.0 : 0.60 排水量の比率: 従来法 : 本発明方法 = 1.0 : 0.67 蒸気使用量の比率: 従来法 : 本発明方法 = 1.0 : 0.2
(Comparison of equipment costs, etc.) The equipment costs (excluding the chromatographic separation device), the amount of waste water and the amount of steam used for the method of the present invention (example) and the conventional method (comparative example) are The cost was calculated, and the amount of wastewater and steam used was calculated from the data during operation, and the ratio of the two was compared. The results are as follows (in each case, the ratio was determined with the value in the conventional method being 1.0). Ratio of equipment costs: Conventional method: Method of the present invention = 1.0: 0.60 Ratio of wastewater: Conventional method: Method of the present invention = 1.0: 0.67 Ratio of steam usage: Conventional method: Method of the present invention = 1.0: 0.2

【0043】以上の点から本発明方法によれば従来法に
比べて設備費が安価で済み、排水量、蒸気使用量のいず
れも低減でき経済的に極めて有利であることが確認され
た。
From the above points, it was confirmed that the method of the present invention requires less equipment cost than the conventional method and can reduce both the amount of waste water and the amount of steam used, and is economically extremely advantageous.

【0044】[0044]

【発明の効果】以上説明したように、本発明はクロマト
分離された分離液(三糖類以上の糖類溶液)を第1段濃
縮処理として逆浸透膜装置による濃縮を行い、次いで第
2段濃縮処理として蒸発濃縮を行うものであるから、ク
ロマト分離液を蒸発濃縮手段によってのみ濃縮する従来
法に比べて効率よく濃縮処理を行うことができる上、目
的とする濃度を得るために要する熱エネルギー消費量を
大幅に減少できる。また蒸発装置が小型のもので済むの
で、全体的に設備を簡素化でき、設備費を低減できて経
済的に極めて有利であり、生産コストの低下に寄与でき
る効果がある。
As described above, according to the present invention, the chromatographically separated liquid (a saccharide solution of trisaccharides or more) is concentrated by the reverse osmosis membrane device as the first-stage concentration treatment, and then the second-stage concentration treatment. As a result, the chromatographic separation liquid can be concentrated more efficiently than the conventional method in which the chromatographic separation liquid is concentrated only by the evaporative concentration means, and the heat energy consumption required to obtain the target concentration Can be significantly reduced. Further, since the evaporator can be small in size, the equipment can be simplified as a whole, the equipment cost can be reduced, and it is economically extremely advantageous, and there is an effect that it can contribute to the reduction of the production cost.

【0045】本発明はクロマト分離操作及び逆浸透膜濃
縮操作を50℃以上の温度条件下で行うため、クロマト
分離速度及び逆浸透膜分離速度を向上でき、糖溶液の粘
度が分離速度に影響を与える問題を解決することができ
る。また上記温度条件下で処理することにより、細菌の
発生を抑止し、糖溶液の腐敗を未然に防止することがで
きる。
In the present invention, the chromatographic separation operation and the reverse osmosis membrane concentration operation are performed under a temperature condition of 50 ° C. or higher, so that the chromatographic separation rate and the reverse osmosis membrane separation rate can be improved, and the viscosity of the sugar solution affects the separation rate. You can solve the problems that you give. Further, by treating under the above temperature conditions, generation of bacteria can be suppressed, and spoilage of the sugar solution can be prevented in advance.

【0046】本発明は逆浸透膜濃縮工程において分離さ
れた透過液をクロマト分離装置の溶離水供給部に還流す
るので、該透過液を溶離水として有効に利用することが
でき、市水、工業用水等の溶離水製造用原水の使用量を
低減できる。
In the present invention, since the permeated liquid separated in the reverse osmosis membrane concentration step is returned to the eluting water supply section of the chromatographic separation device, the permeated liquid can be effectively used as the eluting water. It is possible to reduce the amount of raw water used for producing elution water such as water.

【0047】また請求項2の本発明方法によれば、第1
の逆浸透膜装置により分離された透過液を更に第2の逆
浸透膜装置に導いて無機塩類溶液と透過液とに分離する
ので、原料液中に相当量の無機塩類が含有されている場
合でも確実に無機塩類を透過液から分離除去でき、従っ
て該透過液を溶離水として再利用するのに何ら支障がな
い。
According to the method of the present invention as defined in claim 2,
When the raw material liquid contains a considerable amount of inorganic salts, the permeated liquid separated by the reverse osmosis membrane device is further guided to the second reverse osmosis membrane device and separated into an inorganic salt solution and a permeated liquid. However, the inorganic salts can be surely separated and removed from the permeate, and there is no problem in reusing the permeate as eluent.

【図面の簡単な説明】[Brief description of drawings]

【図1】擬似移動層式多成分分離装置の概略図である。FIG. 1 is a schematic view of a simulated moving bed multi-component separation device.

【図2】請求項1の本発明方法の工程を示す説明図であ
る。
FIG. 2 is an explanatory view showing steps of the method of the present invention according to claim 1.

【図3】請求項2の本発明方法の工程を示す説明図であ
る。
FIG. 3 is an explanatory view showing the steps of the method of the present invention according to claim 2.

【符号の説明】[Explanation of symbols]

1〜10 充填層 14a〜14c 抜出管 14d 溶離水供給管 14e 原料液供給管 20 クロマト分離装置 23 逆浸透膜装置 26 蒸発装置 27、34 溶離水循環ライン 30 第1の逆浸透膜装置 31 第2の逆浸透膜装置 1-10 Packed bed 14a-14c Extraction pipe 14d Elution water supply pipe 14e Raw material liquid supply pipe 20 Chromatographic separation device 23 Reverse osmosis membrane device 26 Evaporator 27, 34 Elution water circulation line 30 First reverse osmosis membrane device 31 Second Reverse osmosis device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単糖類及び/又はベタイン(第1成
分)、二糖類(第2成分)、3分子以上の単糖類分子が
グリコシド結合してなる糖類(第3成分)を含む混合溶
液を50℃以上の温度条件下でクロマト分離装置により
上記第1成分、第2成分、第3成分の三成分に分離する
工程と、クロマト分離により得られた第3成分溶液を5
0℃以上の温度条件下で逆浸透膜装置により濃縮処理し
て濃縮液と透過液とに分離する工程と、該透過液をクロ
マト分離装置の溶離水供給部に還流する工程と、上記濃
縮液を加熱して蒸発濃縮による第2段の濃縮処理を行う
工程とからなることを特徴とする3分子以上の単糖類分
子がグリコシド結合してなる糖類の製造方法。
1. A mixed solution containing a monosaccharide and / or betaine (first component), a disaccharide (second component), and a saccharide (third component) formed by glycosidic bonding of three or more monosaccharide molecules to each other. Under a temperature condition of ℃ or more, a step of separating the above-mentioned first component, second component and third component into three components by a chromatographic separation device, and a third component solution obtained by the chromatographic separation
A step of concentrating with a reverse osmosis membrane device under a temperature condition of 0 ° C. or higher to separate into a concentrate and a permeate, a step of refluxing the permeate to an eluting water supply part of a chromatographic separator, and the above concentrate And a step of performing a second-stage concentration treatment by evaporating and condensing the saccharide. A method for producing a saccharide, wherein three or more monosaccharide molecules are glycosidic-bonded.
【請求項2】 単糖類及び/又はベタイン(第1成
分)、二糖類(第2成分)、3分子以上の単糖類分子が
グリコシド結合してなる糖類(第3成分)を含む混合溶
液を50℃以上の温度条件下でクロマト分離装置により
上記第1成分、第2成分、第3成分の三成分に分離する
工程と、クロマト分離により得られた第3成分溶液を5
0℃以上の温度条件下で第1の逆浸透膜装置により濃縮
処理して濃縮液と透過液とに分離する工程と、該透過液
を第2の逆浸透膜装置に導いて無機塩類溶液と透過液と
に分離する工程と、第2の逆浸透膜装置により分離され
た透過液をクロマト分離装置の溶離水供給部に還流する
工程と、第1の逆浸透膜装置により分離された濃縮液を
加熱して蒸発濃縮による第2段の濃縮処理を行う工程と
からなることを特徴とする3分子以上の単糖類分子がグ
リコシド結合してなる糖類の製造方法。
2. A mixed solution containing a monosaccharide and / or betaine (first component), a disaccharide (second component), and a saccharide (third component) formed by glycosidic bonding of three or more monosaccharide molecules to each other. Under a temperature condition of ℃ or more, a step of separating the above-mentioned first component, second component and third component into three components by a chromatographic separation device, and a third component solution obtained by the chromatographic separation
A step of concentrating with a first reverse osmosis membrane device under a temperature condition of 0 ° C. or higher to separate a concentrate and a permeate, and introducing the permeate to a second reverse osmosis membrane device to form an inorganic salt solution. A step of separating the permeate into a permeate, a step of refluxing the permeate separated by the second reverse osmosis membrane device to an eluent water supply section of the chromatographic separator, and a concentrate separated by the first reverse osmosis membrane device. And a step of performing a second-stage concentration treatment by evaporating and condensing the saccharide. A method for producing a saccharide, wherein three or more monosaccharide molecules are glycosidic-bonded.
JP05354059A 1993-12-29 1993-12-29 Method for producing saccharide comprising three or more monosaccharide molecules in glycosidic bonds Expired - Lifetime JP3117596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05354059A JP3117596B2 (en) 1993-12-29 1993-12-29 Method for producing saccharide comprising three or more monosaccharide molecules in glycosidic bonds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05354059A JP3117596B2 (en) 1993-12-29 1993-12-29 Method for producing saccharide comprising three or more monosaccharide molecules in glycosidic bonds

Publications (2)

Publication Number Publication Date
JPH07196705A true JPH07196705A (en) 1995-08-01
JP3117596B2 JP3117596B2 (en) 2000-12-18

Family

ID=18435022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05354059A Expired - Lifetime JP3117596B2 (en) 1993-12-29 1993-12-29 Method for producing saccharide comprising three or more monosaccharide molecules in glycosidic bonds

Country Status (1)

Country Link
JP (1) JP3117596B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063339A1 (en) * 1998-05-29 1999-12-09 Organo Corporation Method of chromatography
JP2005530850A (en) * 2002-06-26 2005-10-13 フィンフィーズ フィンランド オイ How to recover betaine
JP4756232B2 (en) * 2000-12-28 2011-08-24 ダニスコ スイートナーズ オイ Separation process
EP2401046A4 (en) * 2009-02-25 2015-02-25 Dupont Nutrition Biosci Aps SEPARATION METHOD
JP2019107645A (en) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 Wastewater treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228861B2 (en) 2008-12-04 2013-07-03 トヨタ自動車株式会社 Simple width measuring device
JP5926322B2 (en) 2014-05-30 2016-05-25 協立化学産業株式会社 Coated copper particles and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063339A1 (en) * 1998-05-29 1999-12-09 Organo Corporation Method of chromatography
US6328895B1 (en) 1998-05-29 2001-12-11 Organo Corporation Chromatographic separation process
JP4756232B2 (en) * 2000-12-28 2011-08-24 ダニスコ スイートナーズ オイ Separation process
JP2005530850A (en) * 2002-06-26 2005-10-13 フィンフィーズ フィンランド オイ How to recover betaine
EP2401046A4 (en) * 2009-02-25 2015-02-25 Dupont Nutrition Biosci Aps SEPARATION METHOD
EP2401047A4 (en) * 2009-02-25 2015-02-25 Dupont Nutrition Biosci Aps SEPARATION METHOD
EP2401048A4 (en) * 2009-02-25 2015-03-04 Dupont Nutrition Biosci Aps SEPARATION METHOD
JP2019107645A (en) * 2017-12-15 2019-07-04 ダイセン・メンブレン・システムズ株式会社 Wastewater treatment method

Also Published As

Publication number Publication date
JP3117596B2 (en) 2000-12-18

Similar Documents

Publication Publication Date Title
Nene et al. Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice
EP1963539B1 (en) Process for the recovery of sucrose and/or non-sucrose components
FI80705B (en) FOER FARING FRAMSTAELLNING AV KRISTALLISERAD MALTITOL.
CN101367852B (en) High-efficiency method for continuously extracting stevioside from stevia leaf
JPH04218400A (en) Method and device for production of dextrose
JP3070890B2 (en) Method for producing starch sugar
US4096036A (en) Method for the separation of water soluble polyols
CN105256079A (en) Purification method for HFCS (high fructose corn syrup) in fructose production process
CN114671919B (en) Method for producing crystalline psicose based on chromatographic separation
JPH07196705A (en) Production of saccharide composed of three or more monosaccharide molecules bonded through glycoside linkage
US2388195A (en) Process for purification of sugar juices and the like
US4294623A (en) Method of producing high purity maltose
EP0973949B1 (en) Process for demineralizing a sugar solution
JPS6130543A (en) Manufacture of superpure sorbitol
Bieser et al. Continuous countercurrent separation of saccharides with inorganic adsorbents
JPH02275835A (en) Method for recovering citric acid from solution containing citric acid
CN102617325A (en) Method for decoloration of succinic acid fermentation broth by ion exchange resin
JPS6260942B2 (en)
JP3783756B2 (en) Desalination method
JPH11183459A (en) Chromatographic separation method and chromatographic separation device
CN105907817A (en) Preparation method of high fructose corn syrup
US2594440A (en) Invert sirup process
US4483980A (en) Process for separating glucose from polysaccharides by selective adsorption
CN214060479U (en) Sugar alcohol chromatogram raffinate recovery processing device
US2746889A (en) Interconversion of sugars using anion exchange resins

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071006

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081006

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 12