JPH07192990A - Aligner - Google Patents
AlignerInfo
- Publication number
- JPH07192990A JPH07192990A JP33387293A JP33387293A JPH07192990A JP H07192990 A JPH07192990 A JP H07192990A JP 33387293 A JP33387293 A JP 33387293A JP 33387293 A JP33387293 A JP 33387293A JP H07192990 A JPH07192990 A JP H07192990A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- projection lens
- wavelength
- light source
- laser light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70483—Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
- G03F7/7055—Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
- G03F7/70575—Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Toxicology (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、レチクル上のパターン
を投影光学系を介して、ウェハ上に転写する露光装置に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exposure apparatus for transferring a pattern on a reticle onto a wafer via a projection optical system.
【0002】[0002]
【従来の技術】近年、半導体は微細化がますます進み、
64メガDRAMのLSIでは、線幅0.35μmの設
計ルールが望まれており、今後、更にもっと細かいデザ
インルールがホトリソグラフィ技術に要求されることは
必至である。2. Description of the Related Art In recent years, semiconductors have become smaller and smaller,
In a 64-mega DRAM LSI, a design rule of a line width of 0.35 μm is desired, and it is inevitable that a further finer design rule will be required in the photolithography technology in the future.
【0003】更に、重ね合わせ精度は、設計ルールの5
分の1から、3分の1程度の高い精度が要求されてい
る。Furthermore, the overlay accuracy is 5 of the design rule.
High precision of about 1/3 to 1/3 is required.
【0004】一般的に、解像力Rは、投影レンズの開口
数N.A.と露光波長λを用いて、以下の(数1)の関
係で表される。Generally, the resolution R is the numerical aperture N.V. of the projection lens. A. And the exposure wavelength λ are used to express the following relationship (Equation 1).
【0005】[0005]
【数1】 [Equation 1]
【0006】同様に、焦点深度DOFは、以下の(数
2)のように表される。Similarly, the depth of focus DOF is expressed by the following (Equation 2).
【0007】[0007]
【数2】 [Equation 2]
【0008】(数1)から解像力を向上させるために
は、露光波長を短くして、投影レンズの開口数を高くし
なければならないが、そうすると逆に(数2)から判る
ように、焦点深度が短くなる。In order to improve the resolving power from (Equation 1), it is necessary to shorten the exposure wavelength and increase the numerical aperture of the projection lens. On the contrary, as can be seen from (Equation 2), the depth of focus is increased. Becomes shorter.
【0009】このため、露光波長が短い光源を用いて露
光をする際には、ウェハ高さ位置を高精度で検出するこ
とはもちろんのこと、投影レンズの合焦位置が変動した
場合には影響が大きいため、これを補正する必要があ
る。Therefore, when exposure is performed using a light source with a short exposure wavelength, not only the wafer height position is detected with high accuracy, but also the focus position of the projection lens is affected. Is large, it is necessary to correct this.
【0010】また、温度、湿度、気圧が変化すれば空気
の屈折率が変化して、投影レンズの結像性能、特に焦点
位置、結像倍率が変動する。Further, if the temperature, the humidity and the atmospheric pressure change, the refractive index of air also changes, and the image forming performance of the projection lens, especially the focus position and the image forming magnification change.
【0011】このため、高い重ね合わせ精度を得るため
には高精度のウェハ位置検出手段を具備することは勿論
のこと、環境変化によって生じる投影レンズの結像倍率
変動について対策を講じることは必要不可欠な事項であ
る。Therefore, in order to obtain a high overlay accuracy, it is indispensable not only to provide a highly accurate wafer position detecting means, but also to take measures against a variation in the imaging magnification of the projection lens caused by a change in the environment. It is a matter.
【0012】これは、例えば、特開昭62−69617
号公報に記載されてるように、投影レンズを複数の空気
室に分けて、その空気室の圧力を制御して倍率変動とフ
ォーカス変動を制御する方法が知られている(第1の従
来例)。This is described in, for example, Japanese Patent Application Laid-Open No. 62-69617.
As described in Japanese Patent Laid-Open Publication No. JP-A-2003-264, there is known a method in which a projection lens is divided into a plurality of air chambers and the pressure of the air chambers is controlled to control magnification variation and focus variation (first conventional example). .
【0013】以下、図2を用いながらこの例について説
明する。図2において、101は投影レンズ、102は
定圧制御系、103は圧力オフセット設定部、104は
露光用光源系、105はウエハステージ、Hは倍率調整
用に圧力制御される空気室、Nはフォーカス調整用に圧
力制御される空気室、G1からG5は代表的なレンズ素
子である。This example will be described below with reference to FIG. In FIG. 2, 101 is a projection lens, 102 is a constant pressure control system, 103 is a pressure offset setting unit, 104 is an exposure light source system, 105 is a wafer stage, H is a pressure-controlled air chamber for magnification adjustment, and N is a focus. Air chambers G1 to G5 whose pressure is controlled for adjustment are typical lens elements.
【0014】この例においては、気圧変動によって発生
する倍率変動とフォーカス変動とを補正するため、投影
レンズないの密閉された空気室の圧力を制御し屈折率を
変化させて、その補正を行う。In this example, in order to correct the magnification variation and focus variation caused by atmospheric pressure variation, the pressure is controlled in the closed air chamber without the projection lens to change the refractive index and the correction is performed.
【0015】具体的は、倍率調整用の空気室H、フォー
カス位置調整用の空気室Nに、それぞれ通常の大気圧の
変動範囲を補正するように、P1、P2の圧力がかけら
れている。Specifically, the pressures P1 and P2 are applied to the air chamber H for magnification adjustment and the air chamber N for focus position adjustment so as to correct the normal fluctuation range of atmospheric pressure, respectively.
【0016】そして、この時、各レンズ素子にかかる応
力が常に一方向になるように、A、Bの空気室には、適
当な圧力がかけられる。At this time, appropriate pressure is applied to the air chambers A and B so that the stress applied to each lens element is always in one direction.
【0017】このように、各レンズ素子が常に一定の方
向の圧力しか受けないようにされると、圧力の働く方向
とは異なる方向に関してレンズを強く保持する必要がな
くなるので、レンズに無用な歪を与える可能性が少な
く、より安定性が高くなるとしている。As described above, when each lens element is made to receive only the pressure in a constant direction at all times, it becomes unnecessary to strongly hold the lens in the direction different from the direction in which the pressure acts, so that unnecessary distortion is caused in the lens. Is less likely to give more stability.
【0018】更に、露光光の波長を変化させて、結像倍
率を変化させることも一般的に知られている。It is also generally known that the wavelength of the exposure light is changed to change the imaging magnification.
【0019】例えば、特公平5−54687号公報に記
載されてるように、投影レンズの諸数値が設計値と異な
り、所望の結像倍率が得られない場合、装置製造上の倍
率誤差微調整手段として用いる技術が、一般的に知られ
ている(第2の従来例)。For example, as described in Japanese Patent Publication No. 5-54687, when the numerical values of the projection lens are different from the design values and a desired imaging magnification cannot be obtained, a magnification error fine adjustment means for manufacturing the apparatus. The technique used as is generally known (second conventional example).
【0020】これは、投影レンズを構成するガラス部材
の屈折率が、入射波長により僅かに変化することを利用
したものである。This utilizes the fact that the refractive index of the glass member constituting the projection lens slightly changes depending on the incident wavelength.
【0021】つまり、波長を僅かに変化させて結像倍率
を変化ささることで、機械的調整で行うことが非常に困
難な、倍率調整を容易にしている。That is, by changing the image forming magnification by slightly changing the wavelength, it becomes easy to adjust the magnification, which is very difficult to perform by mechanical adjustment.
【0022】[0022]
【発明が解決しようとする課題】しかし、以上のような
第1の従来例では、投影レンズに4つの空気室を設けて
いるため、圧力制御装置が複雑になる。However, in the first conventional example as described above, since the projection lens is provided with four air chambers, the pressure control device becomes complicated.
【0023】また、体積が一定の各空気室を、大気圧変
化に応じて、それぞれ異なる圧力に設定するため、各空
気室は定積変化を起こして、空気室の温度が変化する。Further, since the air chambers having a constant volume are set to different pressures in accordance with the change in atmospheric pressure, the air chambers change in volume and the temperature of the air chambers changes.
【0024】このため、投影レンズ内は光軸方向に温度
分布を持つことになる。特に、空気室A、Bの圧力は、
日常的に起こり得る大気圧の範囲外の一定値に設定して
るため、各空気室の標準気圧との圧力差は大きくなり、
温度分布も生じ易く、空気室の境界面のレンズ素子G1
等が大きな応力を受けることになる。Therefore, the projection lens has a temperature distribution in the optical axis direction. In particular, the pressure in the air chambers A and B is
Since it is set to a constant value outside the range of atmospheric pressure that can occur on a daily basis, the pressure difference from the standard atmospheric pressure of each air chamber becomes large,
A temperature distribution is also likely to occur, and the lens element G1 on the boundary surface of the air chamber
Etc. will be greatly stressed.
【0025】更に、上記補正により各空気室の圧力値が
変化され場合、空気室の温度が結果的に変化するので、
投影レンズ温度が定常状態になるまでには、一定の時間
を要する。Further, when the pressure value of each air chamber is changed by the above correction, the temperature of the air chamber changes as a result,
It takes a certain time for the projection lens temperature to reach a steady state.
【0026】標準状態での空気室の温度をT1、圧力を
P1、体積をVとして、気圧変動に補正のため圧力をP
2に変化させるとすると、これは定積変化となるため、
以下の(数3)が成り立つ。In the standard state, the temperature of the air chamber is T1, the pressure is P1, the volume is V, and the pressure is P to correct the atmospheric pressure fluctuation.
If you change it to 2, this is a constant volume change, so
The following (Equation 3) is established.
【0027】[0027]
【数3】 [Equation 3]
【0028】この(数3)から、基準温度を23℃とし
て、投影レンズ101内圧力が1%変化すれば、空気室
温度が0.2℃変化することになり、これは投影レンズ
の温度分布としては無視できない値となり、結像性能を
低下させるものである。From this (Equation 3), when the reference temperature is set to 23 ° C. and the pressure inside the projection lens 101 changes by 1%, the air chamber temperature changes by 0.2 ° C., which is the temperature distribution of the projection lens. Becomes a non-negligible value, which lowers the imaging performance.
【0029】そして、これを温度調整器で制御しようと
する場合、温度分布が一様でないため、複数の温度制御
装置が必要となる。When controlling this with a temperature regulator, a plurality of temperature control devices are required because the temperature distribution is not uniform.
【0030】以上述べたように、第1の従来例では、各
レンズ素子に対する応力の発生と均一な温度分布を得に
くいという問題がある。As described above, in the first conventional example, there are problems that stress is generated in each lens element and it is difficult to obtain a uniform temperature distribution.
【0031】更に、露光波長を変化させて倍率を調整す
る第2の従来例では、装置製造上の倍率微調整手段とし
て使われており、装置使用時の環境変化によって生じる
継続的な倍率変動およびフォーカス変動に対しては、具
体的には何等考慮されてはいない。Further, in the second conventional example in which the exposure wavelength is changed to adjust the magnification, it is used as a fine adjustment means for the magnification in the manufacture of the apparatus, and the continuous fluctuation of the magnification caused by the environmental change when the apparatus is used and No specific consideration is given to the focus variation.
【0032】また、レーザ波長のみを変化させるという
補正手段を1つしか持たない場合に、フォーカス残量に
ついて具体的に検討をすると以下の(表1)の様にな
る。Further, when only one correcting means for changing only the laser wavelength is provided, a specific examination of the focus remaining amount is as shown in (Table 1) below.
【0033】[0033]
【表1】 [Table 1]
【0034】このようにレーザ波長の変化だけで補正し
た場合、フォーカスを完全に補正することができない。When the correction is made only by the change of the laser wavelength, the focus cannot be completely corrected.
【0035】64メガDRAMに対応した高NAの投影
レンズでは焦点深度が短いため、このフォーカス残留誤
差は無視できない。Since the depth of focus is short in a high NA projection lens compatible with 64 mega DRAM, this focus residual error cannot be ignored.
【0036】本発明は上記課題に鑑み、装置使用時の環
境変化により発生する投影光学系の倍率変動およびフォ
ーカス変動を、光源であるレーザの波長を変化させるこ
とと、投影光学内に大気圧に対して僅かな差圧を設ける
2つの制御手段を用いることで、投影レンズに対して結
像倍率変動とフォーカス変動の2つの制御手段を用いる
ことで、投影レンズに対して結像倍率変動とフォーカス
変動の2つの変動を同時に補正することを可能にした露
光装置を提供することを目的とする。In view of the above problems, the present invention changes the magnification and focus of the projection optical system caused by environmental changes during use of the apparatus by changing the wavelength of the laser serving as the light source and setting the atmospheric pressure in the projection optical system. By using two control means for providing a slight differential pressure to the projection lens, two control means for changing the imaging magnification and the focus are used for the projection lens, thereby changing the imaging magnification and the focus for the projection lens. An object of the present invention is to provide an exposure apparatus capable of correcting two fluctuations at the same time.
【0037】[0037]
【課題を解決するための手段】本発明は、露光光源であ
る発振波長が可変なレーザ光源と、前記レーザ光源の発
振波長を所望の波長に設定する波長制御手段と、前記レ
ーザ光源によりマスクパターンを有するマスクを照明す
る照明光学系と、前記マスクパターンをウェハ上に結像
する投影光学系と、前記投影レンズ内の圧力を所望な圧
力に設定する圧力制御手段と、前記投影光学系内外の圧
力および/または温度を検出する検出手段と、前記検出
手段から得られた結果に基づいて前記投影光学系内の圧
力および前記レーザ光源の発振波長の必要変化量を算出
する演算手段とを有し、前記必要変化量に応じて前記波
長制御手段が前記レーザ光源の発振波長を所望な波長に
設定し、前記圧力制御手段が前記投影レンズ内の圧力を
所望な圧力に設定する露光装置である。According to the present invention, a laser light source which is an exposure light source and has a variable oscillation wavelength, wavelength control means for setting the oscillation wavelength of the laser light source to a desired wavelength, and a mask pattern by the laser light source. An illumination optical system for illuminating a mask having: a projection optical system for forming an image of the mask pattern on a wafer; a pressure control unit for setting a pressure in the projection lens to a desired pressure; and an inside and outside of the projection optical system. A detection means for detecting pressure and / or temperature; and a calculation means for calculating a necessary change amount of the pressure in the projection optical system and the oscillation wavelength of the laser light source based on the result obtained from the detection means. , The wavelength control means sets the oscillation wavelength of the laser light source to a desired wavelength according to the required change amount, and the pressure control means sets the pressure in the projection lens to a desired pressure. That is an exposure apparatus.
【0038】ここで、波長制御手段および圧力制御手段
は、使用時の環境変化に起因する投影レンズの結像倍率
変動およびフォーカス位置変動を補正するように、前記
レーザ光源の発振波長を所望な波長に設定し、投影レン
ズ内の圧力を所望な圧力に設定する。Here, the wavelength control means and the pressure control means set the oscillation wavelength of the laser light source to a desired wavelength so as to correct fluctuations in the imaging magnification and focus position of the projection lens due to environmental changes during use. And set the pressure in the projection lens to the desired pressure.
【0039】そして、圧力制御手段は、投影レンズ内全
体の圧力が、実質的に均一であって、投影レンズ外の圧
力に対して相対差の少ない圧力であるように設定してい
る。The pressure control means is set so that the pressure inside the projection lens is substantially uniform and has a small relative difference with respect to the pressure outside the projection lens.
【0040】さらに、圧力制御手段が、投影レンズ内に
気体を一定流量フローさせながら前記投影レンズ内の圧
力を所望な圧力に設定してもよい。Further, the pressure control means may set the pressure in the projection lens to a desired pressure while causing the gas to flow in the projection lens at a constant flow rate.
【0041】[0041]
【作用】本発明は、上記構成により、装置使用時の環境
変化によって発生する投影光学系の結像倍率変動及びフ
ォーカス変動を補正する。With the above-described structure, the present invention corrects fluctuations in the imaging magnification and focus of the projection optical system caused by environmental changes during use of the apparatus.
【0042】[0042]
【実施例】以下、図1を参照して本発明の実施例につい
て説明する。Embodiments of the present invention will be described below with reference to FIG.
【0043】図1は、本発明の露光装置の構成図であ
る。図1において、1は光源である波長可変なレーザ、
2は照明光学系、3はマスク、4は投影レンズ内外の圧
力を検出する圧力検知器、5は気体のフローが可能で投
影レンズ内の圧力を制御し大気圧に対して任意の圧量差
を設けるための圧力制御装置、6は投影レンズ、10は
各制御装置を環境に応じて制御する中央演算器、11は
ウエハ、13はレーザの波長を制御する波長制御装置で
ある。FIG. 1 is a block diagram of the exposure apparatus of the present invention. In FIG. 1, reference numeral 1 denotes a tunable laser which is a light source,
Reference numeral 2 is an illumination optical system, 3 is a mask, 4 is a pressure detector for detecting the pressure inside and outside the projection lens, and 5 is a gas flow capable of controlling the pressure inside the projection lens to obtain an arbitrary pressure difference from the atmospheric pressure. Is a projection lens, 6 is a projection lens, 10 is a central processing unit that controls each control unit according to the environment, 11 is a wafer, and 13 is a wavelength control unit that controls the wavelength of the laser.
【0044】以上のような構成において、以下にその動
作を説明する。まず、圧力検出器4によって投影レンズ
6の内外の圧力を検出し、基準状態からの環境変化量を
確認する。The operation of the above arrangement will be described below. First, the pressure detector 4 detects the pressure inside and outside the projection lens 6, and confirms the amount of environmental change from the reference state.
【0045】圧力検出器4の出力結果に基づいて、環境
変化によって生じる倍率変動、フォーカス変動を補正す
るために、演算器10でレーザ1の波長と、投影レンズ
6内全体の圧力を算出して、その結果を波長制御装置1
3と、圧力制御装置5に指令する。Based on the output result of the pressure detector 4, the wavelength of the laser 1 and the pressure inside the projection lens 6 are calculated by the calculator 10 in order to correct the magnification variation and the focus variation caused by the environmental change. , The result is the wavelength control device 1
3 and the pressure control device 5.
【0046】この場合の算出方法について説明する。基
準気圧からの気圧変化量をΔpreとすると、投影レン
ズ6に生じる結像倍率変動ΔM、およびフォーカス変動
ΔFは、一般的に、以下の(数4)、(数5)に表され
る。The calculation method in this case will be described. Assuming that the pressure change amount from the reference pressure is Δpre, the imaging magnification variation ΔM and the focus variation ΔF that occur in the projection lens 6 are generally represented by the following (Equation 4) and (Equation 5).
【0047】[0047]
【数4】 [Equation 4]
【0048】[0048]
【数5】 [Equation 5]
【0049】ただし、k1、k2は定数である。また、基
準状態からのレーザ1の波長の差分をΔλ、投影レンズ
6内外の圧力差をΔPとすると、Δλ、ΔPはΔM、Δ
Fに対してそれぞれ独立に作用するため、以下の(数
6)、(数7)で表される。However, k 1 and k 2 are constants. Further, assuming that the wavelength difference of the laser 1 from the reference state is Δλ and the pressure difference inside and outside the projection lens 6 is ΔP, Δλ and ΔP are ΔM and Δ
Since they act on F independently, they are expressed by the following (Equation 6) and (Equation 7).
【0050】ここで、投影レンズ内に設ける僅かな圧力
差は、投影レンズ6内全体にかけるものとする。Here, a slight pressure difference provided in the projection lens is applied to the entire projection lens 6.
【0051】[0051]
【数6】 [Equation 6]
【0052】[0052]
【数7】 [Equation 7]
【0053】ただしk3〜k5は、定数である。いま、基
準気圧からの変化量がΔpreのとき、結像倍率変動量
ΔM、フォーカス変動量ΔFをそれぞれ補正するため
に、基準値からレーザ波長をΔλ、投影レンズ内の圧力
をΔP変化させたとすると、ΔM、ΔFは(数4)と
(数6)、(数5)と(数7)の各辺の和となり、以下
の(数8)、(数9)のように表される。However, k 3 to k 5 are constants. Now, when the change amount from the reference atmospheric pressure is Δpre, it is assumed that the laser wavelength is changed by Δλ and the pressure in the projection lens is changed by ΔP from the reference value in order to correct the image forming magnification change amount ΔM and the focus change amount ΔF, respectively. , ΔM, ΔF are the sums of the sides of (Equation 4) and (Equation 6), (Equation 5) and (Equation 7), and are expressed as (Equation 8) and (Equation 9) below.
【0054】[0054]
【数8】 [Equation 8]
【0055】[0055]
【数9】 [Equation 9]
【0056】よって、結像倍率変動量ΔM、フォーカス
変動量ΔFをそれぞれ零にするには、(数8)、(数
9)の左辺を零として、Δpreにつて解けばよい。Therefore, in order to make the image-forming magnification change amount ΔM and the focus change amount ΔF zero, respectively, the left side of (Equation 8) and (Equation 9) may be set to zero and solved for Δpre.
【0057】つまり、ΔP、Δλは、以下の(数1
0)、(数11)となる。That is, ΔP and Δλ are given by
0) and (Equation 11).
【0058】[0058]
【数10】 [Equation 10]
【0059】[0059]
【数11】 [Equation 11]
【0060】このように、基準状態からの環境変化に応
じて、ΔP、Δλを、(数10)、(数11)から算出
して、波長制御装置2、圧力制御装置に指令すればよ
い。As described above, ΔP and Δλ may be calculated from (Equation 10) and (Equation 11) according to the environmental change from the reference state, and the wavelength control device 2 and the pressure control device may be instructed.
【0061】気圧が、953、1043mbarのとき
の倍率変動およびフォーカス変動を零にするための制御
圧力補正量ΔPとレーザ波長補正量Δλは、以下の(表
2)のようになる。The control pressure correction amount ΔP and the laser wavelength correction amount Δλ for making the magnification variation and the focus variation zero when the atmospheric pressure is 953 and 1043 mbar are as follows (Table 2).
【0062】[0062]
【表2】 [Table 2]
【0063】従って、波長制御装置13と圧力制御装置
5により、投影レンズ6内の圧力と波長可変レーザ1の
出射波長とを組み合わせて変化させることにより、初め
て効果的にフォーカス残量を0(つまり倍率誤差も0)
にすることができる。Therefore, by changing the pressure inside the projection lens 6 and the emission wavelength of the wavelength tunable laser 1 by the wavelength control device 13 and the pressure control device 5, the focus remaining amount can be effectively reduced to 0 (that is, for the first time). Magnification error is also 0)
Can be
【0064】この場合、投影レンズ6の内外には、極め
て僅かな圧力差しかかからないため、レンズ素子が歪む
可能性は極めて少ない。In this case, since a very slight pressure is not applied to the inside and the outside of the projection lens 6, the possibility that the lens element is distorted is extremely small.
【0065】また、投影レンズ全体に圧力差をかけるた
め、特定のレンズ素子が歪易くなることもなく、また温
度分布も生じない。Further, since a pressure difference is applied to the entire projection lens, the specific lens element is not easily distorted and the temperature distribution does not occur.
【0066】そして、波長制御装置2、および圧力制御
装置が、それぞれ波長、圧力を所定の値に設定したあ
と、実際に露光を行う。Then, the wavelength control device 2 and the pressure control device perform the actual exposure after setting the wavelength and the pressure to predetermined values, respectively.
【0067】なお、圧力制御装置2は、投影レンズ6内
に気体を一定流量フローさせながら圧力制御を行なって
いる。The pressure control device 2 controls the pressure while allowing the gas in the projection lens 6 to flow at a constant flow rate.
【0068】以上のように、本発明は、装置使用時の環
境変化で生じる投影光学系の倍率変動およびフォーカス
変動を常に一定に保つことができ、高い重ね合わせ精度
を得ることが可能になる。As described above, according to the present invention, it is possible to constantly keep the magnification variation and the focus variation of the projection optical system caused by the environmental change when the apparatus is used, and it is possible to obtain a high overlay accuracy.
【0069】なお、上記実施例では、投影レンズ6内外
の圧力を検出しているが、温度を検出するようにしても
よいし、圧力と温度の双方を検出するようにしてもよ
い。Although the pressure inside and outside the projection lens 6 is detected in the above embodiment, the temperature may be detected, or both the pressure and the temperature may be detected.
【0070】[0070]
【発明の効果】以上のように本発明では、レーザ波長補
正および投影レンズ内の圧力補正の2つの制御手段を用
いて、装置使用時の環境変化で生じる投影光学系の倍率
変動とフォーカス変動の2つの変動を同時に補正するこ
とで高い重ね合わせ精度を得ることができる。さらに投
影レンズ全体にかかる大気圧との圧力差は僅かであるた
め、レンズ素子が歪易くなることはない。差圧は投影レ
ンズ全体にかかるため、当然特定のレンズ素子が歪むこ
なく、さらに投影レンズ内で温度分布が生じることはな
い。As described above, according to the present invention, by using the two control means for correcting the laser wavelength and correcting the pressure in the projection lens, the fluctuations in magnification and focus of the projection optical system caused by environmental changes during use of the apparatus can be prevented. A high overlay accuracy can be obtained by correcting the two variations at the same time. Furthermore, since the pressure difference with the atmospheric pressure applied to the entire projection lens is small, the lens element is not easily distorted. Since the differential pressure is applied to the entire projection lens, naturally no particular lens element is distorted and no temperature distribution occurs in the projection lens.
【図1】本発明の一実施例における露光装置の構成図FIG. 1 is a configuration diagram of an exposure apparatus according to an embodiment of the present invention.
【図2】従来の露光装置の構成図FIG. 2 is a block diagram of a conventional exposure apparatus
1 レーザ 2 照明光学系 3 マスク 4 検出器 5 圧力制御装置 6 投影レンズ 10 演算器 11 ウエハ 13 波長制御装置 101 投影レンズ 102 定圧制御系 103 圧力オフセット設定系 104 光源系 105 ウエハステージ 1 Laser 2 Illumination Optical System 3 Mask 4 Detector 5 Pressure Control Device 6 Projection Lens 10 Operator 11 Wafer 13 Wavelength Control Device 101 Projection Lens 102 Constant Pressure Control System 103 Pressure Offset Setting System 104 Light Source System 105 Wafer Stage
フロントページの続き (72)発明者 山中 圭一郎 神奈川県川崎市多摩区東三田3丁目10番1 号 松下技研株式会社内Front Page Continuation (72) Inventor Keiichiro Yamanaka 3-10-1 Higashisanda, Tama-ku, Kawasaki City, Kanagawa Prefecture Matsushita Giken Co., Ltd.
Claims (4)
光源と、前記レーザ光源の発振波長を所望の波長に設定
する波長制御手段と、前記レーザ光源によりマスクパタ
ーンを有するマスクを照明する照明光学系と、前記マス
クパターンをウェハ上に結像する投影光学系と、前記投
影レンズ内の圧力を所望な圧力に設定する圧力制御手段
と、前記投影光学系内外の圧力および/または温度を検
出する検出手段と、前記検出手段から得られた結果に基
づいて前記投影光学系内の圧力および前記レーザ光源の
発振波長の必要変化量を算出する演算手段とを有し、前
記必要変化量に応じて前記波長制御手段が前記レーザ光
源の発振波長を所望な波長に設定し、前記圧力制御手段
が前記投影レンズ内の圧力を所望な圧力に設定する露光
装置。1. A laser light source that is an exposure light source and has a variable oscillation wavelength, a wavelength control unit that sets the oscillation wavelength of the laser light source to a desired wavelength, and an illumination optics that illuminates a mask having a mask pattern by the laser light source. System, a projection optical system for forming an image of the mask pattern on a wafer, pressure control means for setting the pressure in the projection lens to a desired pressure, and pressure and / or temperature inside and outside the projection optical system. Detecting means, and a calculating means for calculating a necessary change amount of the pressure in the projection optical system and the oscillation wavelength of the laser light source based on the result obtained from the detecting means, depending on the necessary change amount An exposure apparatus in which the wavelength control unit sets the oscillation wavelength of the laser light source to a desired wavelength, and the pressure control unit sets the pressure in the projection lens to a desired pressure.
用時の環境変化に起因する投影レンズの結像倍率変動お
よびフォーカス位置変動を補正するように、前記レーザ
光源の発振波長を所望な波長に設定し、投影レンズ内の
圧力を所望な圧力に設定する請求項1記載の露光装置。2. The wavelength control means and the pressure control means set the oscillation wavelength of the laser light source to a desired wavelength so as to correct fluctuations in the imaging magnification and focus position of the projection lens due to environmental changes during use. The exposure apparatus according to claim 1, wherein the pressure in the projection lens is set to a desired pressure.
力が、実質的に均一であって、投影レンズ外の圧力に対
して相対差の少ない圧力であるように設定する請求項1
または2記載の露光装置。3. The pressure control means is set so that the pressure inside the projection lens is substantially uniform and has a small relative difference with respect to the pressure outside the projection lens.
Or the exposure apparatus according to 2.
一定流量フローさせながら前記投影レンズ内の圧力を所
望な圧力に設定する請求項1から3のいずれか記載の露
光装置。4. The exposure apparatus according to claim 1, wherein the pressure control means sets the pressure in the projection lens to a desired pressure while causing a gas to flow in the projection lens at a constant flow rate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33387293A JPH07192990A (en) | 1993-12-27 | 1993-12-27 | Aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33387293A JPH07192990A (en) | 1993-12-27 | 1993-12-27 | Aligner |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07192990A true JPH07192990A (en) | 1995-07-28 |
Family
ID=18270897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33387293A Pending JPH07192990A (en) | 1993-12-27 | 1993-12-27 | Aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07192990A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980018960A (en) * | 1996-08-27 | 1998-06-05 | 요시다 쇼이치로 | Projection exposure apparatus |
WO1999010917A1 (en) * | 1997-08-26 | 1999-03-04 | Nikon Corporation | Aligner, exposure method, method of pressure adjustment of projection optical system, and method of assembling aligner |
WO1999031561A1 (en) * | 1997-12-18 | 1999-06-24 | Nikon Corporation | Method of controlling air pressure in chamber, apparatus for the same, and exposure apparatus |
WO2000017916A1 (en) * | 1998-09-17 | 2000-03-30 | Nikon Corporation | Method of adjusting optical projection system |
JP2006145985A (en) * | 2004-11-22 | 2006-06-08 | Olympus Corp | Optical device |
CN119555205A (en) * | 2025-01-26 | 2025-03-04 | 福建技术师范学院 | A method and system for correcting wavelength drift of a spectrometer |
-
1993
- 1993-12-27 JP JP33387293A patent/JPH07192990A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19980018960A (en) * | 1996-08-27 | 1998-06-05 | 요시다 쇼이치로 | Projection exposure apparatus |
WO1999010917A1 (en) * | 1997-08-26 | 1999-03-04 | Nikon Corporation | Aligner, exposure method, method of pressure adjustment of projection optical system, and method of assembling aligner |
WO1999031561A1 (en) * | 1997-12-18 | 1999-06-24 | Nikon Corporation | Method of controlling air pressure in chamber, apparatus for the same, and exposure apparatus |
US6267131B1 (en) | 1997-12-18 | 2001-07-31 | Nikon Corporation | Method of controlling pressure in a chamber, apparatus for the same, and exposure apparatus |
WO2000017916A1 (en) * | 1998-09-17 | 2000-03-30 | Nikon Corporation | Method of adjusting optical projection system |
US7123347B2 (en) | 1998-09-17 | 2006-10-17 | Nikon Corporation | Image formation characteristics adjustment method for projection optical system |
JP2006145985A (en) * | 2004-11-22 | 2006-06-08 | Olympus Corp | Optical device |
CN119555205A (en) * | 2025-01-26 | 2025-03-04 | 福建技术师范学院 | A method and system for correcting wavelength drift of a spectrometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100285030B1 (en) | Projection exposure apparatus and device manufacturing method | |
JP3303758B2 (en) | Projection exposure apparatus and device manufacturing method | |
KR100847633B1 (en) | Method and program for calculating exposure dose and focus position in exposure apparatus, and device manufacturing method | |
US4811055A (en) | Projection exposure apparatus | |
KR100200384B1 (en) | Projection exposure apparatus and device manufacturing method using the same | |
JP3278407B2 (en) | Projection exposure apparatus and device manufacturing method | |
JP3459773B2 (en) | Projection exposure apparatus and device manufacturing method | |
JP3445045B2 (en) | Projection exposure apparatus and device manufacturing method using the same | |
US4922290A (en) | Semiconductor exposing system having apparatus for correcting change in wavelength of light source | |
US20130342819A1 (en) | Exposure apparatus, exposure method, and method of manufacturing article | |
CN108931890B (en) | Determining method, exposure method, information processing apparatus, medium, and manufacturing method | |
KR100327841B1 (en) | Projection exposure appratus and device manufacturing method | |
JPH07192990A (en) | Aligner | |
JP2897345B2 (en) | Projection exposure equipment | |
TWI645261B (en) | Illumination optical system, lithography apparatus, and article manufacturing method | |
JP3414476B2 (en) | Projection exposure equipment | |
JP3347692B2 (en) | Optical characteristic adjusting method and device manufacturing method | |
JPS60214335A (en) | Projection type exposing device | |
JP3632264B2 (en) | X-ray projection exposure apparatus | |
JP2897346B2 (en) | Projection exposure equipment | |
JP2661082B2 (en) | Laser wavelength control apparatus and exposure apparatus using the same | |
JPH0963923A (en) | X-ray projection aligner | |
JPH0950952A (en) | Projection aligner | |
JP2590891B2 (en) | Projection optical device | |
JPH06188168A (en) | Projection exposure system, and manufacture of semiconductor device |