[go: up one dir, main page]

JPH07190675A - Radiation material - Google Patents

Radiation material

Info

Publication number
JPH07190675A
JPH07190675A JP33815193A JP33815193A JPH07190675A JP H07190675 A JPH07190675 A JP H07190675A JP 33815193 A JP33815193 A JP 33815193A JP 33815193 A JP33815193 A JP 33815193A JP H07190675 A JPH07190675 A JP H07190675A
Authority
JP
Japan
Prior art keywords
heat
radiation
copper powders
heating element
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33815193A
Other languages
Japanese (ja)
Other versions
JP2638461B2 (en
Inventor
Akio Yamaguchi
晃生 山口
Asaharu Nakagawa
朝晴 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP33815193A priority Critical patent/JP2638461B2/en
Publication of JPH07190675A publication Critical patent/JPH07190675A/en
Application granted granted Critical
Publication of JP2638461B2 publication Critical patent/JP2638461B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/06Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PURPOSE:To provide a radiation material which can efficiently radiate heat to the outside. CONSTITUTION:Dimethylsilicone 6 is used as a base material, and cordierite particles 8 and copper powders 10 are mixed together, and on one side of the material, mixing ratio of the cordierite particles 8 is high, while, on the contrary, on the other side, mixing ratio of the copper powders 10 is high. In use, a heat conduction surface 2a having high ratio of copper powders 10 is brought into contact with a heating element 4, whereby the copper powders 10 having high thermal conductivity rapidly conducts the heat generated by the element 4, and the particles 8 having been heated by the heat conducted from the element 4 through the powders 10 converts the heat to far-infrared radiation to radiate it to the outside of a radiation material 2, so that the heat can be radiated at high efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば電子部品等、熱
を発生する部品の放熱を行うために用いられる放熱材に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat dissipating material used to dissipate heat from parts that generate heat, such as electronic parts.

【0002】[0002]

【従来の技術】近年、電子機器等に使用されているIC
等の電子部品は、その集積度の向上及び動作の高速化に
より消費電力が増大すると共に発熱量も増大し、その放
熱対策が大きな問題となっている。
2. Description of the Related Art In recent years, ICs used in electronic devices and the like
The electronic components such as the above increase power consumption and heat generation amount due to the improvement of the integration degree and the speeding up of the operation, and the heat dissipation measures thereof are a big problem.

【0003】即ち、こういった電子部品は過熱される
と、電子部品の特性が変動して電子機器の誤動作の原因
となったり、電子部品自体が故障してしまうことがあ
る。そこで従来より、電子機器等においては、その使用
中に電子部品が過熱することを防止するために放熱板等
が使用されている。そして放熱板は、熱を発生する電子
部品に接触させる等して設置され、電子部品が発生する
熱を放熱板に伝導させることにより、電子部品の放熱を
助けるものであり、熱伝導率の大きい材料により構成さ
れていた。また、放熱板に伝導された熱は、放熱板の表
面と外部との温度差に従って放熱板の表面から放熱され
る。
That is, when these electronic components are overheated, the characteristics of the electronic components may fluctuate, which may cause malfunction of the electronic equipment, or the electronic components themselves may fail. Therefore, conventionally, in an electronic device or the like, a heat radiating plate or the like has been used in order to prevent an electronic component from overheating during its use. The heat radiating plate is installed by contacting an electronic component that generates heat, and conducts the heat generated by the electronic component to the heat radiating plate to help dissipate the heat of the electronic component and has a high thermal conductivity. It was composed of materials. Further, the heat conducted to the heat sink is dissipated from the surface of the heat sink according to the temperature difference between the surface of the heat sink and the outside.

【0004】[0004]

【発明が解決しようとする課題】しかし、この種の放熱
板は、電子部品が発生する熱を、熱を受けた端面から他
端面に向けて素早く伝導することができるが、放熱板に
伝導された熱を放熱板の外部に放熱する能力に限界があ
り、放熱板に熱がこもってしまうという問題があった。
However, this type of heat dissipation plate can quickly conduct the heat generated by the electronic component from the end face receiving the heat to the other end face, but it is conducted to the heat dissipation plate. There is a limit to the ability to radiate heat to the outside of the heat sink, and there is a problem that the heat is trapped in the heat sink.

【0005】また、放熱板に熱がこもってしまうと、十
分な放熱効果が期待できないため、放熱板の表面積を大
きくしたり、放熱板を強制的に冷却する等の対策を施す
必要があり、その結果、こういった放熱板を必要とする
電子部品で構成された電子機器を小型化することができ
ないという問題があった。
Further, if the heat sink is full of heat, a sufficient heat dissipation effect cannot be expected, so it is necessary to take measures such as increasing the surface area of the heat sink or forcibly cooling the heat sink. As a result, there is a problem in that it is not possible to reduce the size of an electronic device that is composed of electronic components that require such a heat sink.

【0006】本発明は、上記問題点を解決するために、
外部への熱の放射を効率よく行うことのできる放熱材を
提供することを目的とする。
In order to solve the above problems, the present invention provides
An object of the present invention is to provide a heat dissipation material that can efficiently radiate heat to the outside.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
になされた本発明は、熱伝導率の大きい熱伝導材料と熱
放射率の大きい熱放射材料とを混合した混合材料により
所定の形状に形成してなる放熱材であって、発熱体から
の熱を受けるべき端面は、上記熱放射材料の比率を小さ
くすると共に、該端面から他端面に向けて徐々に上記熱
放射材料の比率を大きくしてなることを特徴とする。
DISCLOSURE OF THE INVENTION The present invention, which has been made to achieve the above object, provides a predetermined shape with a mixed material obtained by mixing a heat conductive material having a large thermal conductivity and a heat emitting material having a large thermal emissivity. The end surface of the heat radiation material formed, which should receive heat from the heating element, has a small proportion of the heat radiation material and gradually increases the proportion of the heat radiation material from the end surface to the other end surface. It is characterized by being done.

【0008】[0008]

【作用および発明の効果】上記のように構成された本発
明の放熱材においては、放熱材を形成する熱伝導率の大
きい材料が、発熱体が発生する熱を素早く伝導し、放熱
材に混合された放射率の大きい熱放射材料が放熱材に伝
導した熱を放熱材の外部に放射する。
In the heat dissipating material of the present invention configured as described above, the material having a high thermal conductivity forming the heat dissipating material quickly conducts the heat generated by the heating element and mixes with the heat dissipating material. The heat radiation material having a large emissivity radiates the heat conducted to the heat radiation material to the outside of the heat radiation material.

【0009】しかも、発熱体からの熱を受けるべき端面
では、熱放射材料が混合されている比率が小いので、放
熱材としての熱伝導率が損なわれることがなく、従っ
て、発熱体が発生する熱は効率よく放熱材に伝導され、
また、他の端面では、熱放射材料が混合されている比率
が大きいので、熱放射率が高く、従って、放熱材に伝導
した熱は効率よく放射される。
Moreover, since the ratio of the heat radiation material mixed in the end surface to receive the heat from the heat generating element is small, the heat conductivity as the heat radiating material is not impaired, so that the heat generating element is generated. Heat is efficiently conducted to the heat dissipation material,
In addition, since the ratio of the heat radiation material mixed in the other end face is large, the heat radiation rate is high, and thus the heat conducted to the heat radiation material is efficiently radiated.

【0010】このように、本発明の放熱材によれば、発
熱体の熱を放熱材に伝導するだけでなく、放熱材に伝導
された熱を積極的に放射しているので、放射の少ない従
来の放熱材に比べて、きわめて効率よく放熱を行なうこ
とができる。また、従来の放熱材より小さくても同等の
放熱効果を得ることができるので、電子機器等を小型化
することができる。
As described above, according to the heat dissipating material of the present invention, not only the heat of the heating element is conducted to the heat dissipating material but also the heat conducted to the heat dissipating material is positively radiated, so that the radiation is small. It can radiate heat extremely efficiently compared with the conventional heat radiating material. Further, even if the heat dissipation material is smaller than the conventional heat dissipation material, the same heat dissipation effect can be obtained, so that the electronic device or the like can be downsized.

【0011】ここで、熱伝導率の大きい熱伝導材料とし
ては、例えば、高弾性率カーボン繊維または銅,アルミ
ニウム,鉄等の金属粉末,金属繊維,セラミック,カー
ボンブラックあるいはそれらの複合体等を使用すること
ができる。また、熱放射率の大きい熱放射材料として
は、例えば、遠赤外線の放射特性が優れている各種セラ
ミックや、黒鉛等が挙げられる。この内、セラミックと
しては、例えばアルミナ,ジルコニア,チタニア等を用
いることができるが、遠赤外線の放射率が高く、しかも
低熱膨張性で耐熱性のあるセラミックスとして、コージ
ライト(2MgO・2Al23・5SiO2),β−ス
ポジューメン(LiO2・Al23・4SiO2),チタ
ン酸アルミニウム(Al23・Ti23)等も好適に用
いられる。更に、全赤外域で放射率の高いセラミックス
として、遷移元素酸化物系セラミックス(1例として、
MnO2:60%,Fe23:20%,CuO:10
%,CoO:10%)を用いることもできる。
Here, as the heat conductive material having a high heat conductivity, for example, high elastic modulus carbon fibers or metal powders of copper, aluminum, iron, etc., metal fibers, ceramics, carbon black, or composites thereof are used. can do. Examples of the heat radiation material having a high heat radiation rate include various ceramics having excellent radiation characteristics of far infrared rays, graphite, and the like. Of these, as the ceramic, for example, alumina, zirconia, titania, etc. can be used, but cordierite (2MgO.2Al 2 O 3 · 5SiO 2), β- spodumene (LiO 2 · Al 2 O 3 · 4SiO 2), aluminum titanate (Al 2 O 3 · Ti 2 O 3) or the like is also preferably used. Further, as a ceramic having a high emissivity in the all infrared region, a transition element oxide-based ceramic (for example,
MnO 2 : 60%, Fe 2 O 3 : 20%, CuO: 10
%, CoO: 10%) can also be used.

【0012】尚、上述のように、熱放射材料としては、
遠赤外線の放射特性が優れているものを用いることが好
ましいが、より具体的には、30℃〜120℃程度の温
度範囲で、遠赤外線を黒体レベル程度(即ち、例えば放
射率が0.9以上)発生放射するものであればより一層
好ましい。
As mentioned above, as the heat radiation material,
It is preferable to use a material having excellent radiation characteristics of far infrared rays, but more specifically, the far infrared rays have a black body level (that is, emissivity of about 0. It is even more preferable that it emits (9 or more) radiation.

【0013】また、熱放射材料と熱伝導材料とを混合し
て混合材料とする際にベースとなるマトリックス材料と
しては、ポリオルガノシロキサン,ポリアミド,ポリエ
ステル,ポリオレフィン等の熱可塑性のホモポリマー,
及びこれらのコポリマーや混合物が用いられる。また、
フェノール樹脂のような熱硬化性の樹脂も使用できる。
When the heat radiation material and the heat conduction material are mixed to form a mixed material, a matrix material serving as a base is a thermoplastic homopolymer such as polyorganosiloxane, polyamide, polyester, or polyolefin.
And copolymers and mixtures thereof. Also,
Thermosetting resins such as phenolic resins can also be used.

【0014】[0014]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。ここで、図1は、本実施例の放熱材2が用いら
れたICチップ等の発熱体4の断面図である。図1に示
すように、放熱材2は、ICチップ等の発熱体4に接触
させて、発熱体4の放熱を行うためのものであり、ジメ
チルシリコーン6を基材として、熱放射率が大きい熱放
射性材料としてのコージライト粉粒体8と、熱伝導率が
大きい熱伝導性材料としての銅粉10とを混合させた混
合圧縮成形体をシート状に成形したものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. Here, FIG. 1 is a cross-sectional view of a heating element 4 such as an IC chip using the heat dissipation material 2 of this embodiment. As shown in FIG. 1, the heat radiating material 2 is for contacting the heat generating body 4 such as an IC chip to radiate the heat from the heat generating body 4, and has a large thermal emissivity using the dimethyl silicone 6 as a base material. The cordierite powder or granular material 8 as a heat radiative material and the copper powder 10 as a thermal conductive material having a high thermal conductivity are mixed to form a mixed compression molded product in a sheet shape.

【0015】なお、コージライト粉粒体8と銅粉10と
の混合比率は、発熱体4と接触させる熱伝導面2a付近
では、コージライト粉粒体8の比率が高く、反対側の面
である熱放射面2b付近では逆に銅粉10の比率が高
く、その中間ではこれらの中間となるように構成されて
いる。
Regarding the mixing ratio of the cordierite powder 8 and the copper powder 10, the ratio of the cordierite powder 8 is high in the vicinity of the heat conducting surface 2a which is in contact with the heating element 4, and on the opposite surface. On the contrary, in the vicinity of a certain heat radiation surface 2b, the ratio of the copper powder 10 is high, and in the middle thereof, it is in the middle thereof.

【0016】このように構成された放熱材2において
は、熱伝導率の大きい銅粉10が、発熱体4が発生する
熱を素早く伝導し、銅粉10により発熱体から伝導され
た熱により暖められたコージライト粉粒体8が、熱を遠
赤外線に変換して、放熱材2の外部に放射する。
In the heat dissipating member 2 thus constructed, the copper powder 10 having a high thermal conductivity quickly conducts the heat generated by the heating element 4 and is warmed by the heat conducted from the heating element by the copper powder 10. The cordierite powder particles 8 thus converted convert heat into far infrared rays and radiate the heat to the outside of the heat dissipation material 2.

【0017】従って、本実施例の放熱材2によれば、非
常に効率よく放熱を行なうことができるので、発熱体4
の温度上昇を抑制することができる。次に、上記実施例
の放熱材2の製造方法について説明する。まず、平均粒
子径35μmのコージライト粉粒体,平均粒子径10μ
mの銅粉,およびジメチルシリコーンを、基材であるジ
メチルシリコーンが40体積%、添加剤であるコージラ
イト粉粒体および銅粉が60体積%となるように混合し
た3種類のシート材料を作製する。[表1]に示すよう
に、ジメチルシリコーンに対して、シート材料Aはコー
ジライト粉粒体のみを添加し、シート材料Bはコージラ
イト粉粒体,銅粉の両方を添加し、シート材料Cは、銅
粉のみを添加している。
Therefore, according to the heat dissipating material 2 of this embodiment, heat can be dissipated very efficiently, so that the heating element 4
It is possible to suppress the temperature rise. Next, a method of manufacturing the heat dissipation material 2 of the above embodiment will be described. First, cordierite powder with an average particle diameter of 35 μm and an average particle diameter of 10 μm
Three kinds of sheet materials were prepared by mixing m copper powder and dimethyl silicone so that the base material dimethyl silicone was 40% by volume and the additive cordierite powder and copper powder were 60% by volume. To do. As shown in [Table 1], for dimethyl silicone, the sheet material A was added with only cordierite powder, the sheet material B was added with both cordierite powder and copper powder, and the sheet material C was added. Contains only copper powder.

【0018】[0018]

【表1】 [Table 1]

【0019】そして、これら3種のシート材料がA−B
−Cの順に重ね合わされたものを、圧縮ローラを用いて
延伸する。このとき重ね合わされたシート材料の厚さは
9mmであるが、延伸後の厚さは5mmとなる。この延
伸されたシート材料を、今度は100℃に加熱した圧縮
ローラを用いて再度延伸することにより、厚さ2mmの
複合シート材料を作製する。
Then, these three kinds of sheet materials are AB
The pieces stacked in the order of -C are stretched using a compression roller. At this time, the thickness of the laminated sheet material is 9 mm, but the thickness after stretching is 5 mm. This stretched sheet material is again stretched using a compression roller heated to 100 ° C. to produce a composite sheet material having a thickness of 2 mm.

【0020】更に、この複合シート材料を金型に入れて
プレスし、170℃のオーブン中で10分間加熱した
後、加硫することにより、本実施例の放熱材2が得られ
る。なお、得られた放熱材2の厚さは約1.5mmであ
り、その断面は図1に示したように、コージライト粉粒
体8および銅粉10の濃度が厚さ方向に沿って徐々に変
化するいわゆる傾斜材料となっている。
Further, this composite sheet material is put in a mold, pressed, heated in an oven at 170 ° C. for 10 minutes, and then vulcanized, whereby the heat dissipation material 2 of this embodiment is obtained. The thickness of the obtained heat dissipation material 2 is about 1.5 mm, and the cross section thereof has a concentration of cordierite powder particles 8 and copper powder 10 gradually along the thickness direction, as shown in FIG. It is a so-called graded material that changes to.

【0021】次に、上記のようにして製造した放熱材の
放熱性を評価するために行った実験について説明する。
ここでは、放熱材の放熱性を評価するために、並列にト
ランジスタ素子を内蔵したICチップを使用し、このI
Cチップの表面に放熱材を張り付け、一方のトランジス
タに定電流を流した状態で、もう一方のトランジスタを
動作させた時の出力電圧を測定し、この測定値からIC
チップの温度を換算する方法を用いた。
Next, an experiment conducted to evaluate the heat radiation property of the heat radiation material manufactured as described above will be described.
Here, in order to evaluate the heat dissipation of the heat dissipation material, an IC chip in which transistor elements are built in parallel is used.
A heat dissipation material is attached to the surface of the C chip, the output voltage when one transistor is operated while the other transistor is operating is measured, and from this measured value the IC
The method of converting the temperature of the chip was used.

【0022】なお、測定には、上述した方法で製造した
放熱材(実施例1)と、実施例1と同様の手法により、
熱放射性材料として0.1μm×1mmの気相成長炭素
繊維を用い、熱伝導性材料として平均粒子径20μmの
アルミニウム粉末を用い、ジメチルシリコーンが40体
積%、炭素繊維およびアルミニウム粉末が60体積%と
なるように調合して製造した放熱材(実施例2)を使用
した。
For the measurement, the heat dissipation material (Example 1) manufactured by the above-mentioned method and the same method as in Example 1 were used.
Vapor grown carbon fibers of 0.1 μm × 1 mm were used as the heat emissive material, aluminum powder having an average particle diameter of 20 μm was used as the heat conductive material, and 40% by volume of dimethyl silicone and 60% by volume of carbon fibers and aluminum powder were used. A heat-dissipating material (Example 2) prepared by mixing as described above was used.

【0023】また、比較のために、平均粒子径10μm
の銅粉を60体積%、ジメチルシリコーンを40体積%
として実施例1の製造方法に準じて製造された厚さ1.
5mmの熱放射性材料を使用した場合(比較例1)と、
放熱材を使用しない場合(比較例2)についても測定し
た。
For comparison, the average particle size is 10 μm.
60% by volume of copper powder and 40% by volume of dimethyl silicone
As the thickness 1. manufactured according to the manufacturing method of Example 1.
When using a 5 mm heat emissive material (Comparative Example 1),
The measurement was also performed for the case where no heat dissipation material was used (Comparative Example 2).

【0024】測定結果を[表2]に示す。The measurement results are shown in [Table 2].

【0025】[0025]

【表2】 [Table 2]

【0026】表2から明らかなように、熱放射性材料を
使用しない従来の放熱材(比較例1)および放熱材を使
用しない場合(比較例2)と比較し、本実施例の放熱材
を使用した場合のICチップの温度は低く、放熱材によ
り効率よく放熱が行われていることがわかる。
As is apparent from Table 2, the heat dissipating material of this embodiment is used in comparison with the conventional heat dissipating material not using the heat emissive material (Comparative Example 1) and the case not using the heat dissipating material (Comparative Example 2). In this case, the temperature of the IC chip is low, and it can be seen that heat is efficiently dissipated by the heat dissipating material.

【0027】以上、本発明の一実施例について説明した
が、本発明の構成は上記実施例に限定されるものではな
く、本発明の要旨を逸脱しない範囲において、様々な態
様で実施することができる。例えば、上記実施例におい
ては、熱放射性材料および熱伝導性材料の混合比率が異
なる3種類のシート材を重ね合わせて圧縮することによ
り、3層構造の放熱材を製造したが、この層は、最低2
層でもよく、また4層以上で構成してもよい。
Although one embodiment of the present invention has been described above, the configuration of the present invention is not limited to the above embodiment, and various modifications may be made without departing from the scope of the present invention. it can. For example, in the above-described embodiment, a three-layer heat dissipation material was manufactured by stacking and compressing three kinds of sheet materials having different mixing ratios of the heat radiative material and the heat conductive material. At least 2
It may be a layer, or may be composed of four or more layers.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本実施例の構成を表す説明図である。FIG. 1 is an explanatory diagram showing the configuration of this embodiment.

【符号の説明】[Explanation of symbols]

2・・・放熱材 4・・・発熱体 6・・・ジ
メチルシリコーン 8・・・コージライト粉粒体 10・・・銅粉
2 ... Heat dissipation material 4 ... Heating element 6 ... Dimethyl silicone 8 ... Cordierite powder granules 10 ... Copper powder

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 熱伝導率の大きい熱伝導材料と熱放射率
の大きい熱放射材料とを混合した混合材料により所定の
形状に形成してなる放熱材であって、 発熱体からの熱を受けるべき端面は、上記熱放射材料の
比率を小さくすると共に、該端面から他端面に向けて徐
々に上記熱放射材料の比率を大きくしてなることを特徴
とする放熱材。
1. A heat-dissipating material formed in a predetermined shape from a mixed material in which a heat-conducting material having a high thermal conductivity and a heat-radiating material having a high thermal emissivity are mixed, and receives heat from a heating element. The heat radiating material is characterized in that the power end face has a small proportion of the heat radiating material and a gradually increasing proportion of the heat radiating material from the end face to the other end face.
JP33815193A 1993-12-28 1993-12-28 Heat dissipation material Expired - Fee Related JP2638461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33815193A JP2638461B2 (en) 1993-12-28 1993-12-28 Heat dissipation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33815193A JP2638461B2 (en) 1993-12-28 1993-12-28 Heat dissipation material

Publications (2)

Publication Number Publication Date
JPH07190675A true JPH07190675A (en) 1995-07-28
JP2638461B2 JP2638461B2 (en) 1997-08-06

Family

ID=18315398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33815193A Expired - Fee Related JP2638461B2 (en) 1993-12-28 1993-12-28 Heat dissipation material

Country Status (1)

Country Link
JP (1) JP2638461B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821612A (en) * 1995-08-21 1998-10-13 Kitigawa Industries Co., Ltd. Heat radiative electronic component
US6704197B2 (en) 2001-05-17 2004-03-09 Denso Corporation Electronic unit having desired heat radiation properties
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
JP2012109508A (en) * 2010-10-29 2012-06-07 Jnc Corp Heat dissipation member for electronic device, electronic device, and method for manufacturing electronic device
JP2015122463A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Cooling structure
JP2018178032A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition and electronic component and electronic device using the same
JPWO2019030905A1 (en) * 2017-08-10 2020-08-20 一般社団法人ウエタ Radiant plate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807198B2 (en) 1994-10-12 1998-10-08 北川工業株式会社 Heat radiator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5821612A (en) * 1995-08-21 1998-10-13 Kitigawa Industries Co., Ltd. Heat radiative electronic component
DE19630002B4 (en) * 1995-08-21 2010-11-18 Kitagawa Industries Co., Ltd., Nagoya An electronic heat radiating member and a method of manufacturing a heat radiating member
US6704197B2 (en) 2001-05-17 2004-03-09 Denso Corporation Electronic unit having desired heat radiation properties
JP2008039381A (en) * 2006-07-12 2008-02-21 Sekisui Chem Co Ltd Synthetic resin tube for radiation heating/cooling and panel for radiation heating/cooling
JP2012109508A (en) * 2010-10-29 2012-06-07 Jnc Corp Heat dissipation member for electronic device, electronic device, and method for manufacturing electronic device
JP2015122463A (en) * 2013-12-25 2015-07-02 パナソニックIpマネジメント株式会社 Cooling structure
JP2018178032A (en) * 2017-04-19 2018-11-15 パナソニックIpマネジメント株式会社 Resin composition and electronic component and electronic device using the same
JPWO2019030905A1 (en) * 2017-08-10 2020-08-20 一般社団法人ウエタ Radiant plate

Also Published As

Publication number Publication date
JP2638461B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US20070053166A1 (en) Heat dissipation device and composite material with high thermal conductivity
JP2009088117A (en) Thermoelectric module substrate and thermoelectric module using the substrate
JP2003060134A (en) Heat conductive sheet
JP2006527912A (en) A device comprising at least one heat source formed by a functional element to be cooled, at least one heat sink, and at least one intermediate layer made of a heat-conducting material placed between the heat source and the heat sink, and in particular Materials used in such devices
JP2638461B2 (en) Heat dissipation material
JPH1126661A (en) Radiation spacer
JP2002164481A (en) Heat conductive sheet
CN112602189A (en) Method for manufacturing semiconductor device, thermally conductive sheet, and method for manufacturing thermally conductive sheet
KR20190046828A (en) Heat dissipation structure of electric circuit device
JP7101871B2 (en) Agglomerated boron nitride particles, heat conductive resin composition and heat dissipation member
US5649593A (en) Radiator member
JP2698036B2 (en) Heat dissipation material for electronic components
JPH07162177A (en) Radiator
TWM540741U (en) Multi-layer composite heat conduction structure
JP4514344B2 (en) Thermally conductive resin molding and its use
CN110951199B (en) Insulating heat conduction material for semiconductor and preparation method thereof
CN206451697U (en) Multilayer Composite Heat Conduction Structure
JPH1119948A (en) Manufacture of radiation member for electronic part
KR100999738B1 (en) Polymer ceramic multi-walled-carbon nanotube composition for heat sink manufacture of induction range and method of manufacturing same
JP3558548B2 (en) Resin molding, method of manufacturing the same, and heat radiating member for electronic component using the same
JP2000185328A (en) Thermal conductive silicone molded article, method for producing the same, and use
CN112602190A (en) Method for manufacturing semiconductor device and heat conductive sheet
KR20070057356A (en) Thermal pads for electronic components with improved thermal conductivity and electrical insulation
JPH05299545A (en) Heat dissipation body
JP2000286370A (en) Heat dissipating members for electronic components

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120425

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 15

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees