JPH07190373A - Catalytic combustor starting method for gas-turbine engine - Google Patents
Catalytic combustor starting method for gas-turbine engineInfo
- Publication number
- JPH07190373A JPH07190373A JP33159793A JP33159793A JPH07190373A JP H07190373 A JPH07190373 A JP H07190373A JP 33159793 A JP33159793 A JP 33159793A JP 33159793 A JP33159793 A JP 33159793A JP H07190373 A JPH07190373 A JP H07190373A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- fuel
- temperature
- catalytic
- turbine engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、コンプレッサから供給
される圧縮空気と燃料噴射ノズルから供給される燃料と
が混合される燃料混合部と、前記圧縮空気及び前記燃料
よりなる混合気を触媒反応で燃焼させる触媒燃焼部とを
備えたガスタービンエンジン用触媒燃焼器の始動方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel mixing portion in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed with a mixture of the compressed air and the fuel. The present invention relates to a method for starting a catalytic combustor for a gas turbine engine, the method including a catalytic combustion unit that burns the fuel in a fuel cell.
【0002】[0002]
【従来の技術】レシプロエンジンと同様にガスタービン
エンジンにおいても排気ガス中に有害な窒素酸化物(以
下NOxという)が発生し、そのNOxの排出量は混合
気の燃焼温度が高いほど増加する。従来のガスタービン
エンジン用燃焼器では、混合気の燃焼温度が極めて高温
(例えば2000℃)に達するために、NOxの排出量
を低減することが困難であった。そこで、燃焼器の内部
に設けた触媒に混合気を接触させて燃焼させる、所謂触
媒燃焼方式にガスタービンエンジン用燃焼器が提案され
ている。かかる触媒燃焼方式によれば、燃焼器における
混合気の燃焼が比較的低温で行われるため、排気ガス中
のNOxを大幅に削減することが可能となる。2. Description of the Related Art In a gas turbine engine as well as in a reciprocating engine, harmful nitrogen oxides (hereinafter referred to as NOx) are generated in the exhaust gas, and the NOx emission amount increases as the combustion temperature of the air-fuel mixture increases. In the conventional combustor for gas turbine engine, it is difficult to reduce the emission amount of NOx because the combustion temperature of the air-fuel mixture reaches an extremely high temperature (for example, 2000 ° C.). Therefore, a combustor for a gas turbine engine has been proposed as a so-called catalytic combustion method in which a gas mixture is brought into contact with a catalyst provided inside the combustor and burned. According to this catalytic combustion method, since the combustion of the air-fuel mixture in the combustor is performed at a relatively low temperature, it is possible to significantly reduce NOx in the exhaust gas.
【0003】ところで、上記触媒燃焼器を備えたガスタ
ービンエンジンは、一旦定常燃運転状態に移行すると触
媒担体の温度が触媒活性化温度以上に維持されるが、そ
の始動時においては予熱手段を用いて触媒担体の温度を
触媒活性化温度以上に予熱する必要がある。そこで、ガ
スタービンエンジンの始動時に、触媒燃焼器に供給され
る圧縮空気或いは触媒燃焼器の触媒担体を電気的な予熱
手段を用いて触媒活性化温度以上に予熱するものが提案
されている(例えば、特開昭60−36813号公報、
特開昭59−180220号公報参照)。In the gas turbine engine equipped with the above-mentioned catalytic combustor, the temperature of the catalyst carrier is maintained at the catalyst activation temperature or higher once the steady combustion operation state is entered, but the preheating means is used at the time of starting. Therefore, it is necessary to preheat the temperature of the catalyst carrier above the catalyst activation temperature. Therefore, it is proposed to preheat the compressed air supplied to the catalytic combustor or the catalyst carrier of the catalytic combustor to the catalyst activation temperature or higher by using an electric preheating means at the time of starting the gas turbine engine (for example, JP-A-60-36813,
(See JP-A-59-180220).
【0004】[0004]
【発明が解決しようとする課題】しかしながら、上記従
来のガスタービンエンジン用触媒燃焼器は始動直後から
定常燃焼状態を得ることが困難であり、定常燃焼状態に
移行するまでの間に未燃焼ガスが排出されてしまう問題
があった。However, it is difficult for the above-mentioned conventional catalytic combustor for gas turbine engine to obtain a steady combustion state immediately after the start, and unburned gas is generated before the transition to the steady combustion state. There was a problem of being discharged.
【0005】本発明は前述の事情に鑑みてなされたもの
で、ガスタービンエンジンの始動時に予熱手段を適切に
制御することにより、速やかに定常燃焼状態に移行させ
て未燃焼ガスの排出を抑制するとともに、その始動時に
前記予熱に要する時間を短縮して速やかな始動を可能に
し、且つ予熱による触媒担体の損傷を防止することを目
的とする。The present invention has been made in view of the above-mentioned circumstances, and by appropriately controlling the preheating means at the time of starting the gas turbine engine, the steady combustion state can be rapidly changed to suppress the discharge of unburned gas. At the same time, it is an object of the present invention to shorten the time required for the preheating at the time of starting, to enable quick starting, and to prevent the catalyst carrier from being damaged by preheating.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載された発明は、コンプレッサから供
給される圧縮空気と燃料噴射ノズルから供給される燃料
とが混合される燃料混合部と、前記圧縮空気及び前記燃
料よりなる混合気を触媒反応で燃焼させる触媒燃焼部
と、前記圧縮空気を電気的に予熱し得る圧縮空気予熱手
段と、前記触媒燃焼部の触媒担体を電気的に予熱し得る
触媒担体予熱手段とを備えたガスタービンエンジン用触
媒燃焼器の始動方法において、燃料噴射ノズルからの燃
料供給による燃焼開始前に、触媒燃焼部の入口空気温度
を触媒活性化温度以上に予熱するとともに、触媒担体の
温度又は触媒燃焼部の出口空気温度を前記入口空気温度
以上に予熱することを特徴とする。In order to achieve the above object, the invention described in claim 1 is a fuel mixture in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed. Part, a catalytic combustion part for combusting a mixture of the compressed air and the fuel by a catalytic reaction, a compressed air preheating means for electrically preheating the compressed air, and a catalyst carrier of the catalytic combustion part electrically. In a method for starting a catalytic combustor for a gas turbine engine, which comprises a catalyst carrier preheating means capable of preheating, the inlet air temperature of the catalytic combustion part is equal to or higher than the catalyst activation temperature before the combustion by the fuel supply from the fuel injection nozzle is started. In addition to preheating, the temperature of the catalyst carrier or the outlet air temperature of the catalyst combustion section is preheated to the inlet air temperature or higher.
【0007】また請求項2に記載された発明は、請求項
1の構成に加えて、混合気の流れ方向に沿う触媒担体の
温度分布を、下流側温度が上流側温度よりも高くなるよ
うに設定することを特徴とする。In addition to the structure of claim 1, the invention described in claim 2 makes the temperature distribution of the catalyst carrier along the flow direction of the air-fuel mixture such that the downstream temperature is higher than the upstream temperature. It is characterized by setting.
【0008】また請求項3に記載された発明は、請求項
2の構成に加えて、触媒担体を混合気の流れ方向に沿っ
て複数段に配設し、下流側の触媒担体の温度を上流側の
触媒担体の温度よりも高くなるように設定することを特
徴とする。According to a third aspect of the invention, in addition to the structure of the second aspect, the catalyst carriers are arranged in a plurality of stages along the flow direction of the air-fuel mixture, and the temperature of the downstream catalyst carrier is set to the upstream side. It is characterized in that the temperature is set to be higher than the temperature of the side catalyst carrier.
【0009】また請求項4に記載された発明は、請求項
2の構成に加えて、触媒担体の温度分布を、触媒担体予
熱手段に対する通電量及び/又は触媒担体に供給する圧
縮空気量により制御することを特徴とする。In addition to the structure of claim 2, the invention according to claim 4 controls the temperature distribution of the catalyst carrier by the amount of electricity supplied to the catalyst carrier preheating means and / or the amount of compressed air supplied to the catalyst carrier. It is characterized by doing.
【0010】また請求項5に記載された発明は、請求項
1の構成に加えて、触媒担体予熱手段を触媒担体の入口
直前に配設したことを特徴とする。The invention described in claim 5 is characterized in that, in addition to the constitution of claim 1, the catalyst carrier preheating means is arranged immediately before the inlet of the catalyst carrier.
【0011】また請求項6に記載された発明は、コンプ
レッサから供給される圧縮空気と燃料噴射ノズルから供
給される燃料とが混合される燃料混合部と、前記圧縮空
気及び前記燃料よりなる混合気を触媒反応で燃焼させる
触媒燃焼部と、前記圧縮空気及び/又は前記触媒燃焼部
の触媒担体を電気的に予熱し得る予熱手段とを備えたガ
スタービンエンジン用触媒燃焼器の始動方法において、
スタータによる始動開始に先立って予熱手段に所定時間
通電することを特徴とする。According to a sixth aspect of the invention, there is provided a fuel mixing section in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed, and a mixture composed of the compressed air and the fuel. In a method for starting a catalytic combustor for a gas turbine engine, comprising: a catalytic combustion part for combusting a gas by a catalytic reaction; and a preheating means capable of electrically preheating the compressed air and / or the catalyst carrier of the catalytic combustion part,
It is characterized in that the preheating means is energized for a predetermined time before the start of the start-up by the starter.
【0012】また請求項7に記載された発明は、請求項
6の構成に加えて、スタータによる始動開始後の所定時
間、予熱手段に供給される圧縮空気をバイパス及び/又
は抽気することを特徴とする。In addition to the structure of claim 6, the invention described in claim 7 is characterized in that the compressed air supplied to the preheating means is bypassed and / or extracted for a predetermined time after the start of the starter. And
【0013】また請求項8に記載された発明は、コンプ
レッサから供給される圧縮空気と燃料噴射ノズルから供
給される燃料とが混合される燃料混合部と、前記圧縮空
気及び前記燃料よりなる混合気を触媒反応で燃焼させる
触媒燃焼部と、前記触媒燃焼部の触媒担体を電気的に予
熱し得る触媒担体予熱手段とを備えたガスタービンエン
ジン用触媒燃焼器の始動方法において、触媒担体予熱手
段により触媒担体の温度又は触媒出口空気温度が所定温
度に達したとき、燃料噴射ノズルからの燃料供給を開始
し、それと同時又は所定時間後に触媒担体予熱手段への
通電を停止することを特徴とする。Further, the invention described in claim 8 is a fuel mixing section in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed, and a mixture composed of the compressed air and the fuel. In a method for starting a catalyst combustor for a gas turbine engine, comprising: a catalyst combustion part for combusting a catalyst by a catalytic reaction; and a catalyst carrier preheating means capable of electrically preheating the catalyst carrier of the catalyst combustion part. When the temperature of the catalyst carrier or the temperature of the catalyst outlet air reaches a predetermined temperature, fuel supply from the fuel injection nozzle is started, and at the same time as or after a predetermined time, power supply to the catalyst carrier preheating means is stopped.
【0014】また請求項9に記載された発明は、コンプ
レッサから供給される圧縮空気と燃料噴射ノズルから供
給される燃料とが混合される燃料混合部と、前記圧縮空
気及び前記燃料よりなる混合気を触媒反応で燃焼させる
触媒燃焼部とを備えたガスタービンエンジン用触媒燃焼
器において、始動時にタービンの入口空気温度を400
℃以下に保持することを特徴とする。Further, the invention described in claim 9 is that a fuel mixing portion in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed, and a mixture gas composed of the compressed air and the fuel. In a catalytic combustor for a gas turbine engine, comprising:
It is characterized in that the temperature is kept below ℃.
【0015】また請求項10に記載された発明は、請求
項9の構成に加えて、触媒燃焼部を通過する空気量と触
媒燃焼部をバイパスする空気量との比率を制御してター
ビンの入口空気温度を400℃以下に保持することを特
徴とする。In addition to the structure of claim 9, the invention described in claim 10 controls the ratio of the amount of air passing through the catalytic combustion portion and the amount of air bypassing the catalytic combustion portion to control the inlet of the turbine. The air temperature is kept at 400 ° C. or lower.
【0016】また請求項11に記載された発明は、コン
プレッサから供給される圧縮空気と燃料噴射ノズルから
供給される燃料とが混合される燃料混合部と、前記圧縮
空気及び前記燃料よりなる混合気を触媒反応で燃焼させ
る触媒燃焼部とを備えたガスタービンエンジン用触媒燃
焼器の始動方法において、燃料供給開始前後のエンジン
回転数が急激に変化しないようにスタータ負荷を制御す
ることを特徴とする。According to the invention described in claim 11, a fuel mixing portion in which compressed air supplied from a compressor and fuel supplied from a fuel injection nozzle are mixed, and a mixture composed of the compressed air and the fuel are mixed. In a method for starting a catalytic combustor for a gas turbine engine, which comprises a catalytic combustion unit for combusting a gas by a catalytic reaction, the starter load is controlled so that the engine speed before and after the start of fuel supply does not suddenly change. .
【0017】また請求項12に記載された発明は、コン
プレッサから供給される圧縮空気と燃料噴射ノズルから
供給される燃料とが混合される燃料混合部と、前記圧縮
空気及び前記燃料よりなる混合気を触媒反応で燃焼させ
る触媒燃焼部とを備えたガスタービンエンジン用触媒燃
焼器の始動方法において、燃料供給開始前後の触媒通過
空気量が急激に変化しないように触媒バイパス空気量を
制御することを特徴とする。According to a twelfth aspect of the present invention, a fuel mixing section in which the compressed air supplied from the compressor and the fuel supplied from the fuel injection nozzle are mixed, and a mixture composed of the compressed air and the fuel. In a method of starting a catalytic combustor for a gas turbine engine, which comprises a catalytic combustion unit for combusting a catalyst by a catalytic reaction, it is possible to control the amount of catalyst bypass air so that the amount of air passing through the catalyst does not change rapidly before and after the start of fuel supply. Characterize.
【0018】また請求項13に記載された発明は、コン
プレッサから供給される圧縮空気と燃料噴射ノズルから
供給される燃料とが混合される燃料混合部と、前記圧縮
空気及び前記燃料よりなる混合気を触媒反応で燃焼させ
る触媒燃焼部と、触媒燃焼部の下流において混合気を気
相反応で燃焼させる気相燃焼部とを備えたガスタービン
エンジン用触媒燃焼器の始動方法において、気相燃焼部
の空気を予熱する手段を持つことを特徴とする。According to a thirteenth aspect of the present invention, there is provided a fuel mixing section in which the compressed air supplied from the compressor and the fuel supplied from the fuel injection nozzle are mixed, and a mixture composed of the compressed air and the fuel. In a method for starting a catalytic combustor for a gas turbine engine, comprising: a catalytic combustion part for combusting a gas by a catalytic reaction; and a gas phase combustion part for combusting an air-fuel mixture in a gas phase reaction downstream of the catalytic combustion part. It is characterized by having a means for preheating the air.
【0019】また請求項14に記載された発明は、請求
項13の構成に加えて、前記気相燃焼部の空気を予熱す
る手段が、触媒上流に設置したプリヒータ、触媒担体を
電気的に予熱し得る触媒ヒータ、触媒直後に設置したプ
リヒータ及び触媒下流に配置した壁面ヒータの何れか又
はこれらの組合せであることを特徴とする。According to a fourteenth aspect of the present invention, in addition to the configuration of the thirteenth aspect, the means for preheating the air in the gas phase combustion section electrically preheats the preheater and the catalyst carrier installed upstream of the catalyst. One of a possible catalyst heater, a preheater installed immediately after the catalyst, and a wall heater disposed downstream of the catalyst, or a combination thereof.
【0020】また請求項15に記載された発明は、請求
項13の構成に加えて、前記気相燃焼部の空気温度又は
触媒下流の壁面温度を所定温度に予熱した後、燃料の供
給を開始することを特徴とする。In addition to the structure of the thirteenth aspect of the present invention, the fuel supply is started after the air temperature of the gas phase combustion section or the wall surface temperature downstream of the catalyst is preheated to a predetermined temperature. It is characterized by doing.
【0021】[0021]
【実施例】以下、図面に基づいて本発明の実施例を説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0022】図1〜図4は本発明の第1実施例を示すも
ので、図1はガスタービンエンジンの縦断面図、図2は
図1の要部拡大図、図3は図2の3−3線断面図、図4
はガスタービンエンジン内部の温度分布を示す図であ
る。1 to 4 show a first embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a gas turbine engine, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG. -3 line sectional view, FIG.
FIG. 3 is a diagram showing a temperature distribution inside a gas turbine engine.
【0023】1軸式のガスタービンエンジンGは軸受
1,2で支承された回転軸3を備えており、この回転軸
3には遠心式のコンプレッサ4と遠心式のタービン5と
が設けられる。コンプレッサ4はコンプレッサロータ6
とスクロール7とを備えており、エアクリーナ8及び吸
気通路9を介して吸入した空気を高温高圧状態に圧縮し
て前部圧縮空気通路10に供給する。前部圧縮空気通路
10には燃焼ガスの熱を回収する熱交換器11の一部が
臨んでおり、この熱交換器11を通過して更に加熱され
た圧縮空気は後部圧縮空気通路12に供給される。後部
圧縮空気通路12の中間部にはソレノイド13に接続さ
れたバイパス弁14が装着されており、このバイパス弁
14の上流位置と後述する燃焼ガス通路15とがバイパ
ス通路16によって接続される。The single-shaft gas turbine engine G has a rotary shaft 3 supported by bearings 1 and 2, and a rotary compressor 4 and a centrifugal turbine 5 are provided on the rotary shaft 3. The compressor 4 is the compressor rotor 6
The air sucked through the air cleaner 8 and the intake passage 9 is compressed into a high temperature and high pressure state and supplied to the front compressed air passage 10. A part of the heat exchanger 11 that recovers the heat of the combustion gas faces the front compressed air passage 10, and the compressed air that has been further heated after passing through the heat exchanger 11 is supplied to the rear compressed air passage 12. To be done. A bypass valve 14 connected to a solenoid 13 is attached to an intermediate portion of the rear compressed air passage 12, and an upstream position of the bypass valve 14 and a combustion gas passage 15 described later are connected by a bypass passage 16.
【0024】後部圧縮空気通路12の下流側には、ガス
タービンエンジンGの始動時に通電されて発熱する環状
の圧縮空気予熱手段17が設けられる。圧縮空気予熱手
段17の下流には燃料混合部18を構成する筒体が設け
られており、その入口開口181 に燃料を供給するため
の燃料噴射ノズル19が装着される。燃料混合部18の
内部において、その外周に形成した複数の圧縮空気導入
口182 及び前記入口開口181 から導入された圧縮空
気が、燃料噴射ノズル19から供給された燃料と混合し
て混合気が形成される。On the downstream side of the rear compressed air passage 12, there is provided an annular compressed air preheating means 17 which is energized to generate heat when the gas turbine engine G is started. A cylinder that constitutes the fuel mixing section 18 is provided downstream of the compressed air preheating means 17, and a fuel injection nozzle 19 for supplying fuel to the inlet opening 18 1 thereof is mounted. Inside the fuel mixing section 18, a plurality of compressed air inlets 18 2 formed on the outer periphery of the fuel mixing section 18 and the compressed air introduced from the inlet openings 18 1 are mixed with the fuel supplied from the fuel injection nozzle 19 to form a mixture. Is formed.
【0025】混合気はスワラー20を通過して更に均一
に混合された後、一対の整流板21,22を通過して触
媒燃焼部23に供給される。触媒燃焼部23はハニカム
状に形成された上流側の触媒担体24と下流側の触媒担
体25とを直列に配設してなり、各触媒担体24,25
の表面には混合気を触媒反応により燃焼させるための触
媒が担持される。前記触媒担体24,25は電気抵抗の
大きい材料で形成されており、それ自体が触媒担体予熱
手段26,27を構成する。触媒担体予熱手段26,2
7は、ガスタービンエンジンGの始動時に通電されて発
熱する。The air-fuel mixture passes through the swirler 20 and is further uniformly mixed, and then passes through the pair of straightening plates 21 and 22 and is supplied to the catalytic combustion unit 23. The catalyst combustion unit 23 is formed by arranging an upstream side catalyst carrier 24 and a downstream side catalyst carrier 25 formed in a honeycomb shape in series.
A catalyst for burning the air-fuel mixture by a catalytic reaction is carried on the surface of the. The catalyst carriers 24 and 25 are made of a material having a high electric resistance, and the catalyst carriers 24 and 25 themselves constitute catalyst carrier preheating means 26 and 27. Catalyst carrier preheating means 26, 2
7 is energized and generates heat when the gas turbine engine G is started.
【0026】触媒燃焼部23に連なる燃焼ガス通路15
の下流端に設けられるタービン5はガイドベーン28と
タービンロータ29とからなり、燃焼ガスの圧力で回転
して回転軸3を駆動する。タービン5を通過した排気ガ
スは、排気ガス通路30に設けた排気ガス浄化触媒31
を通過した後、前記熱交換器11を通過して排出され
る。Combustion gas passage 15 connected to the catalytic combustion unit 23
The turbine 5 provided at the downstream end of the is composed of a guide vane 28 and a turbine rotor 29, and rotates by the pressure of combustion gas to drive the rotating shaft 3. The exhaust gas that has passed through the turbine 5 is exhaust gas purification catalyst 31 provided in the exhaust gas passage 30.
After passing through, the heat is passed through the heat exchanger 11 and discharged.
【0027】ガスタービンエンジンGの運転を制御すべ
く、マイクロコンピュータよりなる電子制御ユニットU
が設けられる。電子制御ユニットUの入力回路には、触
媒燃焼部23の入口空気温度を検出する触媒燃焼部入口
空気温度センサS1 、触媒燃焼部23の出口空気温度を
検出する触媒燃焼部出口空気温度センサS2 、上流側の
触媒担体24の温度を検出する上流側触媒担体温度セン
サS3 、下流側の触媒担体25の温度を検出する下流側
触媒担体温度センサS4 及びタービン5の入口空気温度
を検出するタービン入口空気温度センサS5 が接続さ
れ、また出力回路には、圧縮空気予熱手段17、上流側
の触媒担体予熱手段26、下流側の触媒担体予熱手段2
7、燃料噴射ノズル19、バイパス弁14のソレノイド
13及び回転軸3に接続された始動用のスタータ32
が、それぞれドライバーD1 〜D6 を介して接続され
る。An electronic control unit U comprising a microcomputer for controlling the operation of the gas turbine engine G
Is provided. The input circuit of the electronic control unit U includes a catalyst combustion unit inlet air temperature sensor S 1 for detecting the inlet air temperature of the catalyst combustion unit 23 and a catalyst combustion unit outlet air temperature sensor S for detecting the outlet air temperature of the catalyst combustion unit 23. 2 , an upstream catalyst carrier temperature sensor S 3 that detects the temperature of the upstream catalyst carrier 24, a downstream catalyst carrier temperature sensor S 4 that detects the temperature of the downstream catalyst carrier 25, and the inlet air temperature of the turbine 5 A turbine inlet air temperature sensor S 5 is connected, and the output circuit is provided with compressed air preheating means 17, upstream side catalyst carrier preheating means 26, and downstream side catalyst carrier preheating means 2.
7, a fuel injection nozzle 19, a solenoid 13 of the bypass valve 14, and a starter 32 for starting which is connected to the rotary shaft 3.
Are connected via the drivers D 1 to D 6 , respectively.
【0028】次に、前述の構成を備えた本発明の実施例
の作用について説明する。Next, the operation of the embodiment of the present invention having the above construction will be described.
【0029】ガスタービンエンジンGが定常運転状態に
あるとき、エアクリーナ8を通過して吸気通路9に吸入
された空気はコンプレッサ4で高温高圧に圧縮されて前
部圧縮空気通路10に流入し、そこで熱交換器11を通
過して更に高温に加熱された状態で後部圧縮空気通路1
2に流入する。定常運転状態ではバイパス弁14は開弁
状態に保持されており、バイパス弁14を通過した圧縮
空気は圧縮空気予熱手段17を通過して燃料混合部18
に供給される。定常運転状態では、圧縮空気はコンプレ
ッサ4及び熱交換器11で既に触媒活性化温度以上に加
熱されており、圧縮空気予熱手段17に対する通電は行
われない。When the gas turbine engine G is in a steady operation state, the air that has passed through the air cleaner 8 and has been sucked into the intake passage 9 is compressed to high temperature and high pressure by the compressor 4 and flows into the front compressed air passage 10, where it is compressed. The rear compressed air passage 1 while passing through the heat exchanger 11 and being heated to a higher temperature
Inflow to 2. In the steady operation state, the bypass valve 14 is held in the open state, and the compressed air that has passed through the bypass valve 14 passes through the compressed air preheating means 17 and the fuel mixing section 18
Is supplied to. In the steady operation state, the compressed air is already heated to the catalyst activation temperature or higher in the compressor 4 and the heat exchanger 11, and the compressed air preheating means 17 is not energized.
【0030】圧縮空気は燃料混合部18で燃料噴射ノズ
ル19から噴射された燃料と混合して混合気となり、触
媒燃焼部23に流入して触媒担体24,25に担持され
た触媒に接触して燃焼する。このとき、触媒担体24,
25の温度は既に触媒活性化温度以上に加熱されてお
り、触媒担体予熱手段26,27に対する通電は行われ
ない。触媒燃焼部23で発生した燃焼ガスは燃焼ガス通
路15を介してガスタービン5に供給され、ガスタービ
ン5を駆動して排気ガス通路30に流出した排気ガス
は、排気ガス浄化触媒31及び熱交換器11を通過して
排出される。The compressed air is mixed with the fuel injected from the fuel injection nozzle 19 in the fuel mixing section 18 to form an air-fuel mixture, which flows into the catalyst combustion section 23 and contacts the catalyst carried on the catalyst carriers 24 and 25. To burn. At this time, the catalyst carrier 24,
The temperature of 25 has already been heated above the catalyst activation temperature, and the catalyst carrier preheating means 26 and 27 are not energized. The combustion gas generated in the catalytic combustion unit 23 is supplied to the gas turbine 5 through the combustion gas passage 15, and the exhaust gas that drives the gas turbine 5 and flows out into the exhaust gas passage 30 is exhaust gas purification catalyst 31 and heat exchange. It passes through the container 11 and is discharged.
【0031】次に、ガスタービンエンジンGの始動方法
について説明する。Next, a method for starting the gas turbine engine G will be described.
【0032】先ず、電子制御ユニットUからの指令によ
って圧縮空気予熱手段17及び触媒担体予熱手段26,
27に通電する。このとき、スタータ32は未だ駆動さ
れていないため、コンプレッサ4から圧縮空気予熱手段
17及び触媒担体予熱手段26,27に圧縮空気が供給
されることは無い。従って、圧縮空気に熱を奪われるこ
となく、前記通電によって圧縮空気予熱手段17及び触
媒担体予熱手段26,27自体の温度は速やかに上昇す
る。First, in response to a command from the electronic control unit U, the compressed air preheating means 17 and the catalyst carrier preheating means 26,
Energize 27. At this time, since the starter 32 has not been driven yet, the compressed air is not supplied from the compressor 4 to the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27. Therefore, the temperature of the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 itself is rapidly raised by the energization without the heat being taken by the compressed air.
【0033】圧縮空気予熱手段17及び触媒担体予熱手
段26,27への所定時間の通電後に、電子制御ユニッ
トUからの指令によってスタータ32が始動される。ス
タータ32が始動してからその回転数が所定値に達する
までの間、電子制御ユニットUからの指令によってバイ
パス弁14が閉弁される。これにより、圧縮空気は圧縮
空気予熱手段17及び触媒担体予熱手段26,27を通
過することなく、後部圧縮空気通路12からバイパス通
路16を介して燃焼ガス通路15に供給されることにな
り、スタータ32が始動して回転が上昇するまでの間、
圧縮空気によって圧縮空気予熱手段17及び触媒担体予
熱手段26,27の温度上昇が阻害されることがない。
尚、バイパス弁14によって圧縮空気をバイパスさせる
代わりに、圧縮空気を圧縮空気通路10,12から外部
に排出することも可能である。After the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 are energized for a predetermined time, the starter 32 is started by a command from the electronic control unit U. The bypass valve 14 is closed by a command from the electronic control unit U from the start of the starter 32 until the rotation speed thereof reaches a predetermined value. As a result, the compressed air is supplied from the rear compressed air passage 12 to the combustion gas passage 15 via the bypass passage 16 without passing through the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27, and the starter is started. Until 32 starts and the rotation increases
The temperature rise of the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 is not hindered by the compressed air.
Instead of bypassing the compressed air by the bypass valve 14, it is also possible to discharge the compressed air from the compressed air passages 10 and 12 to the outside.
【0034】スタータ32の回転数が所定値に達すると
バイパス弁14が開弁され、コンプレッサ4から供給さ
れた圧縮空気が圧縮空気予熱手段17及び触媒担体予熱
手段26,27を通過するようになるが、その間も圧縮
空気予熱手段17及び触媒担体予熱手段26,27は継
続的に通電され、圧縮空気温度及び触媒担体温度は更に
上昇する。そして、触媒燃焼部入口空気温度センサS1
で検出された触媒燃焼部23の入口空気温度が触媒活性
化温度以上になり、且つ上流側触媒担体温度センサS3
及び下流側触媒担体温度センサS4 で検出された両触媒
担体24,25の温度が前記入口空気温度以上になる
と、燃料噴射ノズル19からの燃料噴射を開始し、同時
或いは所定時間後に圧縮空気予熱手段17及び触媒担体
予熱手段26,27への通電を共に停止する。When the rotation speed of the starter 32 reaches a predetermined value, the bypass valve 14 is opened, and the compressed air supplied from the compressor 4 passes through the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27. However, during that time, the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 are continuously energized, and the compressed air temperature and the catalyst carrier temperature further rise. Then, the catalyst combustion unit inlet air temperature sensor S 1
The inlet air temperature of the catalyst combustion section 23 detected in step S3 becomes equal to or higher than the catalyst activation temperature, and the upstream side catalyst carrier temperature sensor S 3
And when the temperature of both catalyst carriers 24 and 25 detected by the downstream side catalyst carrier temperature sensor S 4 becomes equal to or higher than the inlet air temperature, fuel injection from the fuel injection nozzle 19 is started, and at the same time or after a predetermined time, compressed air preheating is performed. Both the means 17 and the catalyst carrier preheating means 26, 27 are de-energized.
【0035】尚、上流側触媒担体温度センサS3 及び下
流側触媒担体温度センサS4 で検出された両触媒担体2
4,25の温度に代えて、触媒燃焼部出口空気温度セン
サS 2 で検出された触媒燃焼部23の出口空気温度を用
いても良い。即ち、触媒燃焼部入口空気温度センサS1
で検出された入口空気温度が触媒活性化温度以上にな
り、且つ触媒燃焼部出口空気温度センサS2 で検出され
た出口空気温度が前記入口空気温度以上になったとき
に、燃料噴射ノズル19からの燃料噴射を開始しても良
い。The upstream catalyst carrier temperature sensor S3And below
Flow side catalyst carrier temperature sensor SFourBoth catalyst carriers detected in 2
Instead of the temperatures of 4, 25, the catalyst combustion unit outlet air temperature sensor
S 2The outlet air temperature of the catalytic combustion unit 23 detected by
You may stay. That is, the catalyst combustion unit inlet air temperature sensor S1
The inlet air temperature detected by the
And the catalyst combustion outlet air temperature sensor S2Detected by
When the outlet air temperature exceeds the inlet air temperature
In addition, the fuel injection from the fuel injection nozzle 19 may be started.
Yes.
【0036】而して、前記予熱によって触媒燃焼部23
の入口空気温度及び両触媒担体24,25の温度(又は
触媒燃焼部23の入口空気温度)が共に触媒活性化温度
以上に予熱されているため、触媒燃焼部23に供給され
た混合気は触媒反応によって燃焼を開始し、ガスタービ
ンエンジンGが始動される。上述のように、燃料噴射の
開始と同時或いは所定時間後に圧縮空気予熱手段17及
び触媒担体予熱手段26,27への通電を停止すること
により、混合気の燃焼による発熱と電気的発熱とによる
触媒担体24,25の過熱溶損を未然に回避することが
できる。Thus, by the preheating, the catalytic combustion unit 23
Since the inlet air temperature of the catalyst and the temperatures of both catalyst carriers 24 and 25 (or the inlet air temperature of the catalyst combustion section 23) are both preheated to the catalyst activation temperature or higher, the air-fuel mixture supplied to the catalyst combustion section 23 becomes a catalyst. The reaction starts combustion, and the gas turbine engine G is started. As described above, by stopping the energization of the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 at the same time as the start of the fuel injection or after a predetermined time, the catalyst generated by the heat generation due to the combustion of the air-fuel mixture and the electric heat generation. It is possible to avoid the overheating and melting loss of the carriers 24 and 25.
【0037】しかも、スタータ32の始動に先立って圧
縮空気予熱手段17及び触媒担体予熱手段26,27に
通電し、且つスタータ32の始動後の所定時間バイパス
弁14を閉弁することにより、前記圧縮空気予熱手段1
7及び触媒担体予熱手段26,27自体の温度を速やか
に上昇させることができ、ガスタービンエンジンGの始
動に要する時間を大幅に短縮することができる。Moreover, the compressed air preheating means 17 and the catalyst carrier preheating means 26, 27 are energized prior to the start of the starter 32, and the bypass valve 14 is closed for a predetermined time after the starter 32 is started, whereby the compression is performed. Air preheating means 1
7 and the catalyst carrier preheating means 26, 27 themselves can be quickly raised in temperature, and the time required to start the gas turbine engine G can be greatly shortened.
【0038】前記ガスタービンエンジンGの始動時に
は、タービン入口空気温度センサS5により検出される
タービン入口空気温度が400℃以下に維持されるよう
に、電子制御ユニットUの指令によってバイパス弁14
が開閉制御される。即ち、タービン入口空気温度が40
0℃を越えた場合にバイパス弁14を開弁し、圧縮空気
を圧縮空気予熱手段17及び触媒担体予熱手段26,2
7をバイパスさせることにより、タービン入口空気温度
を400℃以下に低下させる。When the gas turbine engine G is started, the bypass valve 14 is commanded by the electronic control unit U so that the turbine inlet air temperature detected by the turbine inlet air temperature sensor S 5 is maintained at 400 ° C. or lower.
Is controlled to open and close. That is, the turbine inlet air temperature is 40
When the temperature exceeds 0 ° C., the bypass valve 14 is opened, and compressed air is heated by compressed air preheating means 17 and catalyst carrier preheating means 26, 2.
Bypassing 7 reduces the turbine inlet air temperature to 400 ° C. or less.
【0039】始動時のタービン入口空気温度が500〜
1000℃程に設定されている従来のガスタービンエン
ジンでは、着火前後で回転数、圧力、空気流量等が瞬間
的に変動する傾向があるが、従来の拡散燃焼器を用いた
場合にはその安定燃焼範囲が広いために問題にならなか
った。一方、触媒燃焼器は前記拡散燃焼器に比べて安定
燃焼範囲が狭いため、着火直後に失火や不完全燃焼が発
生してしまう可能性がある。しかしながら、上述のよう
にタービン入口空気温度を400℃以下に維持して始動
を行うことにより、着火前後における諸条件の変動を触
媒の燃焼範囲内に抑えて安定した始動を行うことができ
る。The turbine inlet air temperature at startup is 500 to
In a conventional gas turbine engine set at about 1000 ° C, the rotational speed, pressure, air flow rate, etc. tend to fluctuate momentarily before and after ignition, but when a conventional diffusion combustor is used, the stability is stable. There was no problem because the combustion range was wide. On the other hand, since the catalytic combustor has a narrower stable combustion range than the diffusion combustor, misfire or incomplete combustion may occur immediately after ignition. However, by maintaining the turbine inlet air temperature at 400 ° C. or lower as described above and starting the engine, it is possible to suppress variations in various conditions before and after ignition within the combustion range of the catalyst, and to perform stable startup.
【0040】ところで、ガスタービンエンジンGの始動
時において、着火から定常運転状態に移行するまでの期
間は未燃焼ガスが排出され易いため、速やかに定常燃焼
状態に移行させて前記期間を可及的に短くすることが望
ましい。そのためには、予熱によって着火時における触
媒燃焼部23の入口空気温度と触媒担体24,25内の
温度分布とを、定常燃焼状態におけるそれに予め一致さ
せておけば良い。By the way, at the time of starting the gas turbine engine G, unburned gas is easily discharged during the period from the ignition to the transition to the steady operation state. It is desirable to shorten to. For that purpose, the inlet air temperature of the catalyst combustion unit 23 and the temperature distribution inside the catalyst carriers 24 and 25 at the time of ignition by preheating may be made to agree with those in the steady combustion state in advance.
【0041】図4(A)は定常運転状態における前記温
度分布を示すもので、触媒燃焼部23の入口空気温度は
触媒活性化温度以上であり、触媒担体24,25内の温
度分布は前記入口空気温度よりも高く、且つ上流側から
下流側に向けて次第に上昇している。図4(B)は予熱
によって得られた着火直前の温度分布を示すもので、触
媒燃焼部23の入口空気温度及び触媒担体24,25内
の温度分布は、図4(A)に示す定常運転状態における
ものと略一致している。ここで、触媒担体24,25内
の温度分布は以下のようにして得ることができる。FIG. 4 (A) shows the temperature distribution in a steady operation state, the inlet air temperature of the catalyst combustion section 23 is higher than the catalyst activation temperature, and the temperature distribution in the catalyst carriers 24 and 25 is the inlet. It is higher than the air temperature and gradually increases from the upstream side to the downstream side. FIG. 4 (B) shows the temperature distribution immediately before ignition obtained by preheating. The inlet air temperature of the catalyst combustion part 23 and the temperature distributions in the catalyst carriers 24, 25 show the steady operation shown in FIG. 4 (A). It is almost the same as in the state. Here, the temperature distribution in the catalyst carriers 24 and 25 can be obtained as follows.
【0042】即ち、下流側の触媒担体25の触媒担体予
熱手段27に対する通電量を、上流側の触媒担体24の
触媒担体予熱手段26に対する通電量よりも大きくする
ことにより、両触媒担体24,25に破線で示す温度差
が与えられる。この状態で圧縮空気を触媒燃焼部23に
供給すると、触媒担体24,25の温度よりも低温の圧
縮空気に熱を奪われて該触媒担体24,25の上流側程
大きく温度低下し、最終的に図4(B)に実線で示す温
度勾配を得ることができる。而して、多段に配設した触
媒担体24,25に対する通電量及び圧縮空気供給量を
制御することにより、予め定常運転状態の温度分布に極
めて近い温度分布を与え、着火直後に速やかに定常運転
状態に移行させて未燃焼ガスの排出を防止することがで
きる。That is, by making the amount of electricity supplied to the catalyst carrier preheating means 27 of the downstream catalyst carrier 25 larger than the amount of electricity supplied to the catalyst carrier preheating means 26 of the upstream catalyst carrier 24, both catalyst carriers 24, 25 The temperature difference indicated by the broken line is given. When compressed air is supplied to the catalytic combustion section 23 in this state, heat is taken by the compressed air having a temperature lower than the temperatures of the catalyst carriers 24 and 25, and the temperature of the catalyst carriers 24 and 25 is greatly decreased on the upstream side of the catalyst carriers 24 and 25. The temperature gradient shown by the solid line in FIG. 4B can be obtained. Thus, by controlling the energization amount and the compressed air supply amount for the catalyst carriers 24 and 25 arranged in multiple stages, a temperature distribution very close to the temperature distribution in the steady operation state is given in advance, and the steady operation is immediately performed immediately after ignition. It is possible to prevent the discharge of unburned gas by shifting to the state.
【0043】図5は本発明の第2実施例を示すものであ
る。FIG. 5 shows a second embodiment of the present invention.
【0044】この実施例では、上流側の触媒担体24及
び下流側の触媒担体25自体に触媒担体予熱手段26,
27を設ける代わりに、両触媒担体24,25の入口直
前に該両触媒担体24,25を予熱する触媒担体予熱手
段33,34をそれぞれ設けている。触媒担体予熱手段
33,34はガスタービンエンジンGの始動時に電子制
御ユニットUからの指令により通電されて発熱し、両触
媒担体24,25の温度を触媒活性化温度以上に予熱す
る。In this embodiment, the catalyst carrier preheating means 26, is provided on the upstream side catalyst carrier 24 and the downstream side catalyst carrier 25 itself.
Instead of providing 27, catalyst carrier preheating means 33, 34 for preheating both catalyst carriers 24, 25 are provided immediately before the entrance of both catalyst carriers 24, 25. When the gas turbine engine G is started, the catalyst carrier preheating means 33, 34 are energized by the command from the electronic control unit U to generate heat, and preheat the temperature of both catalyst carriers 24, 25 to the catalyst activation temperature or higher.
【0045】このように、触媒担体24,25の入口直
前に触媒担体予熱手段33,34を設けたことにより、
触媒担体24,25自体に触媒担体予熱手段26,27
を設けた場合に発生し易い混合気の自然発火を防止する
ことが可能となる。その結果、燃料供給と同時に触媒反
応を開始させて速やかに定常燃焼状態に移行させ、未燃
焼ガスの排出を一層確実に防止することができる。As described above, by providing the catalyst carrier preheating means 33, 34 immediately before the entrance of the catalyst carriers 24, 25,
Catalyst carrier preheating means 26, 27 are provided on the catalyst carriers 24, 25 themselves.
It is possible to prevent spontaneous combustion of the air-fuel mixture that tends to occur when the above is provided. As a result, the catalytic reaction can be started at the same time as the fuel supply, and the steady combustion state can be promptly transitioned to more reliably prevent the unburned gas from being discharged.
【0046】図6は本発明の第3実施例を示すものであ
る。FIG. 6 shows a third embodiment of the present invention.
【0047】この実施例では、触媒燃焼部23の下流側
に気相燃焼部35が設けられる。気相燃焼部35の入口
には、ガスタービンエンジンGの始動時に気相燃焼部3
5の壁面351 を所定温度以上に予熱するための気相燃
焼部予熱手段36が設けられる。気相燃焼部予熱手段3
6は触媒燃焼部23を通過した圧縮空気を更に加熱する
ことにより、その加熱された圧縮空気を介して前記気相
燃焼部35の壁面35 1 を予熱する。而して、ガスター
ビンエンジンGの触媒担体24,25の温度が触媒活性
化温度以上に予熱され、且つ気相燃焼部35の壁面35
1 が加熱された圧縮空気により所定温度以上に予熱され
るため、始動時に壁面351 近傍で未燃焼混合気の温度
が低下して反応が完結しないまま排出されるのを防ぐと
ともに、触媒燃焼部23を通過した圧縮空気を加熱する
ことにより、ガスタービンエンジンGの定常燃焼状態に
極めて近い温度分布が与えられる。従って、この予熱状
態から燃料を供給して混合気の燃焼を開始させると、速
やかに定常燃焼状態に移行して未燃焼ガスの排出が抑制
される。In this embodiment, the downstream side of the catalytic combustion unit 23
The gas-phase combustion unit 35 is provided in the. Inlet of vapor phase combustion section 35
In the gas-phase combustion unit 3 when the gas turbine engine G is started,
Wall surface 51Gas-phase combustion for preheating above a specified temperature
A baking part preheating means 36 is provided. Preheating means for vapor phase combustion section 3
6 further heats the compressed air that has passed through the catalytic combustion unit 23.
The vapor phase through its heated compressed air
Wall surface 35 of combustion section 35 1Preheat. And Gaster
The temperature of the catalyst carriers 24 and 25 of the bin engine G is catalytically active.
Wall surface 35 of the vapor-phase combustion section 35 that has been preheated to a temperature above
1Is preheated above a certain temperature by heated compressed air
Therefore, when starting, the wall surface 351Temperature of unburned mixture near
And to prevent the reaction from being discharged without completion
Both heat the compressed air that has passed through the catalytic combustion unit 23.
As a result, a steady combustion state of the gas turbine engine G is achieved.
A very close temperature distribution is given. Therefore, this preheating condition
When fuel is supplied from the state to start combustion of the air-fuel mixture,
Eliminates unburned gas emissions by quickly transitioning to a steady combustion state
To be done.
【0048】図7は本発明の第4実施例を示すものであ
る。FIG. 7 shows a fourth embodiment of the present invention.
【0049】この実施例では、気相燃焼部35の壁面3
51 に、ガスタービンエンジンGの始動時に気相燃焼部
35の空気を予熱するための気相燃焼部予熱手段36が
設けられる。気相燃焼部予熱手段36は気相燃焼部35
の壁面351 を予熱することにより、始動時に壁面35
1 近傍で未燃焼混合気の温度が低下して反応が完結しな
いまま排出されるのを防ぐとともに、触媒燃焼部23を
通過した圧縮空気を更に加熱する。In this embodiment, the wall surface 3 of the vapor-phase combustion section 35 is used.
5 1, the gas phase combustion portion preheating means 36 for preheating the air in the gas phase combustion portion 35 at the start of the gas turbine engine G is provided. The vapor-phase combustion section preheating means 36 is a gas-phase combustion section 35.
By preheating the wall surface 35 1 of the
In the vicinity of 1 , the temperature of the unburned air-fuel mixture is prevented from lowering and the reaction is prevented from being discharged without being completed, and the compressed air that has passed through the catalytic combustion section 23 is further heated.
【0050】而して、ガスタービンエンジンGの触媒担
体24,25の温度が触媒活性化温度以上に予熱され、
且つ気相燃焼部35の壁面351 及び気相燃焼部35の
空気が所定温度(例えば、触媒活性化温度)以上に予熱
されることにより、ガスタービンエンジンGの定常燃焼
状態に極めて近い温度分布が与えられる。従って、この
予熱状態から燃料を供給して混合気の燃焼を開始させる
と、速やかに定常燃焼状態に移行して未燃焼ガスの排出
が抑制される。Thus, the temperature of the catalyst carriers 24 and 25 of the gas turbine engine G is preheated to the catalyst activation temperature or higher,
And air predetermined temperature of the wall 35 1 and the gas phase combustion portion 35 of the gas phase combustion portion 35 (e.g., catalyst activation temperature) by being preheated to above, the temperature distribution very close to a steady combustion state of the gas turbine engine G Is given. Therefore, when the fuel is supplied from this preheated state to start the combustion of the air-fuel mixture, the steady combustion state is promptly transitioned and the discharge of the unburned gas is suppressed.
【0051】以上、本発明の実施例を詳述したが、本発
明は、前記実施例に限定されるものでなく、種々の設計
変更を行うことが可能である。Although the embodiment of the present invention has been described in detail above, the present invention is not limited to the above embodiment, and various design changes can be made.
【0052】[0052]
【発明の効果】以上のように請求項1に記載された発明
によれば、燃料混合部と触媒燃焼部と圧縮空気予熱手段
と触媒担体予熱手段とを備えたガスタービンエンジン用
触媒燃焼器の始動方法において、燃料噴射ノズルからの
燃料供給による燃焼開始前に、触媒燃焼部の入口空気温
度を触媒活性化温度以上に予熱するとともに、触媒担体
の温度又は触媒燃焼部の出口空気温度を前記入口空気温
度以上に予熱することにより、燃焼開始時における触媒
燃焼部の入口空気温度と触媒担体の温度又は触媒燃焼部
の出口空気温度とを予め定常燃焼状態における温度分布
に近い状態とし、混合気の着火後に速やかに定常燃焼状
態に移行させて未燃焼ガスの支出を抑制することができ
る。As described above, according to the invention as set forth in claim 1, there is provided a catalytic combustor for a gas turbine engine equipped with a fuel mixing section, a catalytic combustion section, compressed air preheating means and catalyst carrier preheating means. In the starting method, before starting the combustion by the fuel supply from the fuel injection nozzle, the inlet air temperature of the catalyst combustion section is preheated to the catalyst activation temperature or more, and the temperature of the catalyst carrier or the outlet air temperature of the catalyst combustion section is set to the inlet. By preheating above the air temperature, the inlet air temperature of the catalyst combustion section at the start of combustion and the temperature of the catalyst carrier or the outlet air temperature of the catalyst combustion section are brought to a state close to the temperature distribution in the steady combustion state in advance, and It is possible to promptly shift to a steady combustion state after ignition and suppress the consumption of unburned gas.
【0053】また請求項2に記載された発明によれば、
混合気の流れ方向に沿う触媒担体の温度分布を、下流側
温度が上流側温度よりも高くなるように設定することに
より、定常燃焼状態における温度分布を正確に再現し、
定常燃焼状態への移行を一層速やかに行わせることがで
きる。According to the invention described in claim 2,
By setting the temperature distribution of the catalyst carrier along the flow direction of the air-fuel mixture so that the downstream temperature is higher than the upstream temperature, the temperature distribution in the steady combustion state is accurately reproduced,
The transition to the steady combustion state can be performed more quickly.
【0054】また請求項3に記載された発明によれば、
触媒担体を混合気の流れ方向に沿って複数段に配設し、
下流側の触媒担体の温度を上流側の触媒担体の温度より
も高くなるように設定することにより、定常燃焼状態に
おける温度分布を容易に達成することができる。According to the invention described in claim 3,
The catalyst carriers are arranged in multiple stages along the flow direction of the air-fuel mixture,
By setting the temperature of the downstream catalyst carrier to be higher than the temperature of the upstream catalyst carrier, the temperature distribution in the steady combustion state can be easily achieved.
【0055】また請求項4に記載された発明によれば、
触媒担体の温度分布を、触媒担体予熱手段に対する通電
量及び/又は触媒担体に供給する圧縮空気量により制御
することにより、定常燃焼状態における温度分布を一層
正確に再現することができる。According to the invention described in claim 4,
By controlling the temperature distribution of the catalyst carrier by the amount of electricity supplied to the catalyst carrier preheating means and / or the amount of compressed air supplied to the catalyst carrier, the temperature distribution in the steady combustion state can be reproduced more accurately.
【0056】また請求項5に記載された発明によれば、
触媒担体予熱手段を触媒担体の入口直前に配設したこと
により、混合気の自然発火を回避しながら触媒担体を加
熱することができる。According to the invention described in claim 5,
By disposing the catalyst carrier preheating means immediately before the entrance of the catalyst carrier, the catalyst carrier can be heated while avoiding spontaneous ignition of the air-fuel mixture.
【0057】また請求項6に記載された発明によれば、
燃料混合部と触媒燃焼部と予熱手段とを備えたガスター
ビンエンジン用触媒燃焼器の始動方法において、スター
タによる始動開始に先立って予熱手段に所定時間通電す
ることにより、予熱手段への通電中に圧縮空気の供給を
停止して該予熱手段自体の温度を速やかに上昇させ、始
動に要する時間を短縮することができる。According to the invention described in claim 6,
In a method for starting a catalytic combustor for a gas turbine engine, which includes a fuel mixing section, a catalytic combustion section, and a preheating means, by energizing the preheating means for a predetermined time before starting by the starter, during energization of the preheating means. The time required for starting can be shortened by stopping the supply of compressed air to quickly raise the temperature of the preheating means itself.
【0058】また請求項7に記載された発明によれば、
スタータによる始動開始後の所定時間、予熱手段に供給
される圧縮空気をバイパス及び/又は抽気することによ
り、予熱手段への圧縮空気の供給を抑制して該予熱手段
自体の温度を速やかに上昇させながらスタータを必要な
回転数まで上昇させ、始動に要する時間を一層短縮する
ことができる。According to the invention described in claim 7,
By bypassing and / or extracting the compressed air supplied to the preheating means for a predetermined time after starting by the starter, the supply of the compressed air to the preheating means is suppressed and the temperature of the preheating means itself is quickly increased. However, the starter can be raised to the required number of revolutions to further reduce the time required for starting.
【0059】また請求項8に記載された発明によれば、
燃料混合部と触媒燃焼部と触媒担体予熱手段とを備えた
ガスタービンエンジン用触媒燃焼器の始動方法におい
て、触媒担体予熱手段により触媒担体の温度又は触媒出
口空気温度が所定温度に達したとき、燃料噴射ノズルか
らの燃料供給を開始し、それと同時又は所定時間後に触
媒担体予熱手段への通電を停止することにより、定常燃
焼状態の温度分布を速やかに達成するとともに燃焼開始
後の触媒担体の過熱を抑制して該触媒担体の損傷を防止
することができる。According to the invention described in claim 8,
In a method for starting a catalyst combustor for a gas turbine engine including a fuel mixing section, a catalyst combustion section, and a catalyst carrier preheating means, when the temperature of the catalyst carrier or the catalyst outlet air temperature by the catalyst carrier preheating means reaches a predetermined temperature, By starting the fuel supply from the fuel injection nozzle and stopping the energization to the catalyst carrier preheating means at the same time or after a predetermined time, the temperature distribution in the steady combustion state is quickly achieved and the catalyst carrier is overheated after the start of combustion. Can be suppressed and damage to the catalyst carrier can be prevented.
【0060】また請求項9に記載された発明によれば、
燃料混合部と触媒燃焼部とを備えたガスタービンエンジ
ン用触媒燃焼器の始動方法において、始動時にタービン
の入口空気温度を400℃以下に保持することにより、
着火直後における回転数、圧力、空気流量等の急変を抑
制して燃焼状態を安定させ、速やかに定常燃焼状態に移
行させることができる。According to the invention described in claim 9,
In a method for starting a catalytic combustor for a gas turbine engine, which includes a fuel mixing section and a catalytic combustion section, by maintaining an inlet air temperature of the turbine at 400 ° C. or lower at the time of starting,
It is possible to suppress a sudden change in the number of revolutions, pressure, air flow rate, etc. immediately after ignition, stabilize the combustion state, and quickly shift to the steady combustion state.
【0061】また請求項10に記載された発明によれ
ば、触媒燃焼部を通過する空気量と触媒燃焼部をバイパ
スする空気量との比率を制御してタービンの入口空気温
度を400℃以下に保持することにより、前記入口空気
温度の制御を容易且つ確実に行うことができる。According to the invention described in claim 10, the ratio of the amount of air passing through the catalytic combustion part and the amount of air bypassing the catalytic combustion part is controlled so that the inlet air temperature of the turbine is 400 ° C. or lower. By holding the temperature, the inlet air temperature can be easily and reliably controlled.
【0062】また請求項11に記載された発明によれ
ば、燃料混合部と触媒燃焼部とを備えたガスタービンエ
ンジン用触媒燃焼器の始動方法において、燃料供給開始
前後のエンジン回転数が急激に変化しないようにスター
タ負荷を制御することにより、ガスタービンエンジンの
確実な始動が可能になる。According to the invention described in claim 11, in the method of starting a catalytic combustor for a gas turbine engine having a fuel mixing section and a catalytic combustion section, the engine speed before and after the start of fuel supply is sharply increased. By controlling the starter load so that it does not change, it is possible to reliably start the gas turbine engine.
【0063】また請求項12に記載された発明によれ
ば、燃料混合部と触媒燃焼部とを備えたガスタービンエ
ンジン用触媒燃焼器の始動方法において、燃料供給開始
前後の触媒通過空気量が急激に変化しないように触媒バ
イパス空気量を制御することにより、ガスタービンエン
ジンの確実な始動が可能になる。According to the twelfth aspect of the present invention, in the method for starting a catalytic combustor for a gas turbine engine having a fuel mixing section and a catalytic combustion section, the amount of air passing through the catalyst before and after starting fuel supply is sharp. By controlling the catalyst bypass air amount so that it does not change to, it is possible to reliably start the gas turbine engine.
【0064】また請求項13に記載された発明によれ
ば、燃料混合部と触媒燃焼部と気相燃焼部とを備えたガ
スタービンエンジン用触媒燃焼器の始動方法において、
気相燃焼部の空気を予熱する手段を持つことにより、気
相燃焼部で速やかに気相反応を起こさせて定常運転状態
に移行させることができる。According to a thirteenth aspect of the present invention, there is provided a method for starting a catalytic combustor for a gas turbine engine, comprising a fuel mixing section, a catalytic combustion section, and a gas phase combustion section.
By providing a means for preheating the air in the gas-phase combustion section, it is possible to cause a gas-phase reaction in the gas-phase combustion section quickly and shift to a steady operation state.
【0065】また請求項14に記載された発明によれ
ば、気相燃焼部の空気を予熱する手段が、触媒上流に設
置したプリヒータ、触媒担体を電気的に予熱し得る触媒
ヒータ、触媒直後に設置したプリヒータ及び触媒下流に
配置した壁面ヒータの何れか又はこれらの組合せである
ことにより、気相燃焼部の空気を確実に予熱することが
できる。According to the fourteenth aspect of the present invention, the means for preheating the air in the gas-phase combustion section includes a preheater installed upstream of the catalyst, a catalyst heater capable of electrically preheating the catalyst carrier, and immediately after the catalyst. Any one of the installed preheater and the wall surface heater disposed downstream of the catalyst or a combination thereof can reliably preheat the air in the gas phase combustion section.
【0066】また請求項15に記載された発明によれ
ば、気相燃焼部の空気温度又は触媒下流の壁面温度を所
定温度に予熱した後、燃料の供給を開始することによ
り、ガスタービンエンジンを速やかに定常燃焼状態に移
行させて未燃焼ガスの排出を抑制することができる。According to the fifteenth aspect of the present invention, the gas turbine engine is started by preheating the air temperature of the gas phase combustion section or the wall surface temperature downstream of the catalyst to a predetermined temperature and then starting the fuel supply. It is possible to quickly shift to a steady combustion state and suppress the discharge of unburned gas.
【図1】ガスタービンエンジンの縦断面図FIG. 1 is a vertical sectional view of a gas turbine engine.
【図2】図1の要部拡大図FIG. 2 is an enlarged view of a main part of FIG.
【図3】図2の3−3線断面図3 is a sectional view taken along line 3-3 of FIG.
【図4】ガスタービンエンジン内部の温度分布を示す図FIG. 4 is a diagram showing a temperature distribution inside a gas turbine engine.
【図5】第2実施例に係る、ガスタービンエンジンの部
分図FIG. 5 is a partial view of a gas turbine engine according to a second embodiment.
【図6】第3実施例に係る、ガスタービンエンジンの部
分図FIG. 6 is a partial view of a gas turbine engine according to a third embodiment.
【図7】第4実施例に係る、ガスタービンエンジンの部
分図FIG. 7 is a partial view of a gas turbine engine according to a fourth embodiment.
4 コンプレッサ 5 タービン 17 圧縮空気予熱手段 18 燃料混合部 19 燃料噴射ノズル 23 触媒燃焼部 24 触媒担体 25 触媒担体 26 触媒担体予熱手段 27 触媒担体予熱手段 32 スタータ 33 触媒担体予熱手段 34 触媒担体予熱手段 35 気相燃焼部 351 壁面 36 気相燃焼部予熱手段Reference Signs List 4 compressor 5 turbine 17 compressed air preheating means 18 fuel mixing section 19 fuel injection nozzle 23 catalyst combustion section 24 catalyst carrier 25 catalyst carrier 26 catalyst carrier preheating means 27 catalyst carrier preheating means 32 starter 33 catalyst carrier preheating means 34 catalyst carrier preheating means 35 Gas-phase combustion part 35 1 Wall surface 36 Gas-phase combustion part preheating means
───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂内 隆 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 宇津木 英一 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 大屋 建 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 藁科 直美 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 木村 英海 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 (72)発明者 中田 秀彦 埼玉県和光市中央1丁目4番1号 株式会 社本田技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Sakauchi 1-4-1 Chuo, Wako-shi, Saitama Inside the Honda R & D Co., Ltd. (72) Inventor Eiichi Utsuki 1-4-1 Chuo, Wako-shi, Saitama No. Incorporated in Honda R & D Co., Ltd. (72) Inventor Ken Ken Oya 1-4-1 Chuo, Wako-shi, Saitama Incorporated in Honda R & D Co., Ltd. (72) Naomi Warashina 1-4-1 Chuo, Wako, Saitama No. Incorporated in Honda R & D Co., Ltd. (72) Hidemi Kimura 1-4-1, Chuo, Wako-shi, Saitama Incorporated in Honda R & D Co., Ltd. (72) Hidehiko Nakata 1-4, Wako-Chu, Saitama No. 1 Stock Company Honda Technical Research Institute
Claims (15)
空気と燃料噴射ノズル(19)から供給される燃料とが
混合される燃料混合部(18)と、前記圧縮空気及び前
記燃料よりなる混合気を触媒反応で燃焼させる触媒燃焼
部(23)と、前記圧縮空気を電気的に予熱し得る圧縮
空気予熱手段(17)と、前記触媒燃焼部(23)の触
媒担体(24,25)を電気的に予熱し得る触媒担体予
熱手段(26,27;33,34)とを備えたガスター
ビンエンジン用触媒燃焼器の始動方法において、 燃料噴射ノズル(19)からの燃料供給による燃焼開始
前に、触媒燃焼部(23)の入口空気温度を触媒活性化
温度以上に予熱するとともに、触媒担体(24,25)
の温度又は触媒燃焼部(23)の出口空気温度を前記入
口空気温度以上に予熱することを特徴とする、ガスター
ビンエンジン用触媒燃焼器の始動方法。1. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. A catalyst combustion part (23) for combusting the catalyst by a catalytic reaction, a compressed air preheating means (17) capable of electrically preheating the compressed air, and a catalyst carrier (24, 25) of the catalyst combustion part (23). In a method of starting a catalytic combustor for a gas turbine engine, which comprises a catalyst carrier preheating means (26, 27; 33, 34) capable of preheating with heat, before starting combustion by fuel supply from a fuel injection nozzle (19), While preheating the inlet air temperature of the catalyst combustion section (23) to the catalyst activation temperature or higher, the catalyst carrier (24, 25)
Or the outlet air temperature of the catalytic combustion part (23) is preheated to the inlet air temperature or higher, the method for starting a catalytic combustor for a gas turbine engine.
4,25)の温度分布を、下流側温度が上流側温度より
も高くなるように設定することを特徴とする、請求項1
記載のガスタービンエンジン用触媒燃焼器の始動方法。2. A catalyst carrier (2) along the flow direction of the air-fuel mixture.
4, 25) is set so that the temperature on the downstream side is higher than the temperature on the upstream side.
A method for starting a catalytic combustor for a gas turbine engine as described above.
方向に沿って複数段に配設し、下流側の触媒担体(2
5)の温度を上流側の触媒担体(24)の温度よりも高
くなるように設定することを特徴とする、請求項2記載
のガスタービンエンジン用触媒燃焼器の始動方法。3. The catalyst carriers (24, 25) are arranged in a plurality of stages along the flow direction of the air-fuel mixture, and the catalyst carriers (2) on the downstream side are arranged.
The method for starting a catalytic combustor for a gas turbine engine according to claim 2, wherein the temperature of 5) is set to be higher than the temperature of the catalyst carrier (24) on the upstream side.
触媒担体予熱手段(26,27)に対する通電量及び/
又は触媒担体(24,25)に供給する圧縮空気量によ
り制御することを特徴とする、請求項2記載のガスター
ビンエンジン用触媒燃焼器の始動方法。4. The temperature distribution of the catalyst carrier (24, 25)
Amount of electricity supplied to catalyst carrier preheating means (26, 27) and /
Alternatively, the method of starting a catalytic combustor for a gas turbine engine according to claim 2, wherein the method is controlled by the amount of compressed air supplied to the catalyst carrier (24, 25).
担体(24,25)の入口直前に配設したことを特徴と
する、請求項1記載のガスタービンエンジン用触媒燃焼
器の始動方法。5. The method for starting a catalytic combustor for a gas turbine engine according to claim 1, wherein the catalyst carrier preheating means (33, 34) is arranged immediately before the inlet of the catalyst carrier (24, 25). .
空気と燃料噴射ノズル(19)から供給される燃料とが
混合される燃料混合部(18)と、前記圧縮空気及び前
記燃料よりなる混合気を触媒反応で燃焼させる触媒燃焼
部(23)と、前記圧縮空気及び/又は前記触媒燃焼部
(23)の触媒担体(24,25)を電気的に予熱し得
る予熱手段(17,26,27)とを備えたガスタービ
ンエンジン用触媒燃焼器の始動方法において、 スタータ(32)による始動開始に先立って予熱手段
(17,26,27)に所定時間通電することを特徴と
する、ガスタービンエンジン用触媒燃焼器の始動方法。6. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. Catalyst combustion section (23) for combusting air by catalytic reaction and preheating means (17, 26, 27) capable of electrically preheating the compressed air and / or the catalyst carrier (24, 25) of the catalyst combustion section (23). In the method for starting a catalytic combustor for a gas turbine engine, the preheating means (17, 26, 27) is energized for a predetermined time before the start by the starter (32). For starting a catalytic burner for automobiles.
定時間、予熱手段(17,26,27)に供給される圧
縮空気をバイパス及び/又は抽気することを特徴とす
る、請求項6記載のガスタービンエンジン用触媒燃焼器
の始動方法。7. The compressed air supplied to the preheating means (17, 26, 27) is bypassed and / or bleeded for a predetermined time after the start of the starter (32). A method for starting a catalytic combustor for a gas turbine engine.
空気と燃料噴射ノズル(19)から供給される燃料とが
混合される燃料混合部(18)と、前記圧縮空気及び前
記燃料よりなる混合気を触媒反応で燃焼させる触媒燃焼
部(23)と、前記触媒燃焼部(23)の触媒担体(2
4,25)を電気的に予熱し得る触媒担体予熱手段(2
6,27)とを備えたガスタービンエンジン用触媒燃焼
器の始動方法において、 触媒担体予熱手段(26,27)により触媒担体(2
4,25)の温度又は触媒出口空気温度が所定温度に達
したとき、燃料噴射ノズル(19)からの燃料供給を開
始し、それと同時又は所定時間後に触媒担体予熱手段
(26,27)への通電を停止することを特徴とする、
ガスタービンエンジン用触媒燃焼器の始動方法。8. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. And a catalyst carrier (2) of the catalyst combustion unit (23) for combusting
4, 25) for electrically preheating catalyst carrier preheating means (2
In the method for starting a catalyst combustor for a gas turbine engine, the catalyst carrier preheating means (26, 27) comprises
4, 25) or the catalyst outlet air temperature reaches a predetermined temperature, fuel supply from the fuel injection nozzle (19) is started, and at the same time or after a predetermined time, to the catalyst carrier preheating means (26, 27). Characterized by stopping energization,
A method for starting a catalytic combustor for a gas turbine engine.
空気と燃料噴射ノズル(19)から供給される燃料とが
混合される燃料混合部(18)と、前記圧縮空気及び前
記燃料よりなる混合気を触媒反応で燃焼させる触媒燃焼
部(23)とを備えたガスタービンエンジン用触媒燃焼
器において、 始動時にタービン(5)の入口空気温度を400℃以下
に保持することを特徴とする、ガスタービンエンジン用
触媒燃焼器の始動方法。9. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. A catalytic combustor for a gas turbine engine, comprising: a catalytic combustion part (23) for combusting a gas by a catalytic reaction, characterized in that an inlet air temperature of the turbine (5) is maintained at 400 ° C. or lower at the time of starting. A method for starting a catalytic combustor for an engine.
と触媒燃焼部(23)をバイパスする空気量との比率を
制御してタービン(5)の入口空気温度を400℃以下
に保持することを特徴とする、請求項9記載のガスター
ビンエンジン用触媒燃焼器の始動方法。10. The inlet air temperature of the turbine (5) is maintained at 400 ° C. or lower by controlling the ratio of the amount of air passing through the catalytic combustion unit (23) and the amount of air bypassing the catalytic combustion unit (23). The method for starting a catalytic combustor for a gas turbine engine according to claim 9, wherein
縮空気と燃料噴射ノズル(19)から供給される燃料と
が混合される燃料混合部(18)と、前記圧縮空気及び
前記燃料よりなる混合気を触媒反応で燃焼させる触媒燃
焼部(23)とを備えたガスタービンエンジン用触媒燃
焼器の始動方法において、 燃料供給開始前後のエンジン回転数が急激に変化しない
ようにスタータ負荷を制御することを特徴とする、ガス
タービンエンジン用触媒燃焼器の始動方法。11. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. In a method of starting a catalytic combustor for a gas turbine engine, which comprises a catalytic combustion unit (23) for combusting a gas by a catalytic reaction, controlling the starter load so that the engine speed before and after the start of fuel supply does not suddenly change. A method for starting a catalytic combustor for a gas turbine engine, which is characterized.
縮空気と燃料噴射ノズル(19)から供給される燃料と
が混合される燃料混合部(18)と、前記圧縮空気及び
前記燃料よりなる混合気を触媒反応で燃焼させる触媒燃
焼部(23)とを備えたガスタービンエンジン用触媒燃
焼器の始動方法において、 燃料供給開始前後の触媒通過空気量が急激に変化しない
ように触媒バイパス空気量を制御することを特徴とす
る、ガスタービンエンジン用触媒燃焼器の始動方法。12. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. In a method for starting a catalytic combustor for a gas turbine engine, which comprises a catalytic combustion unit (23) for combusting a gas by a catalytic reaction, the amount of catalyst bypass air is controlled so that the amount of air passing through the catalyst does not change rapidly before and after the start of fuel supply. A method for starting a catalytic combustor for a gas turbine engine, comprising:
縮空気と燃料噴射ノズル(19)から供給される燃料と
が混合される燃料混合部(18)と、前記圧縮空気及び
前記燃料よりなる混合気を触媒反応で燃焼させる触媒燃
焼部(23)と、触媒燃焼部(23)の下流において混
合気を気相反応で燃焼させる気相燃焼部(35)とを備
えたガスタービンエンジン用触媒燃焼器の始動方法にお
いて、 気相燃焼部(35)の空気を予熱する手段(36)を持
つことを特徴とする、ガスタービンエンジン用触媒燃焼
器の始動方法。13. A fuel mixing section (18) in which compressed air supplied from a compressor (4) and fuel supplied from a fuel injection nozzle (19) are mixed, and a mixture composed of the compressed air and the fuel. Catalyst combustor for gas turbine engine, comprising a catalytic combustion part (23) for combusting gas by catalytic reaction, and a gas phase combustion part (35) for combusting air-fuel mixture by gas phase reaction downstream of the catalytic combustion part (23) The starting method of the catalytic combustor for a gas turbine engine, characterized in that it has means (36) for preheating the air in the gas phase combustion section (35).
する手段(36)が、触媒上流に設置したプリヒータ、
触媒担体(24,25)を電気的に予熱し得る触媒ヒー
タ、触媒直後に設置したプリヒータ及び触媒下流に配置
した壁面ヒータの何れか又はこれらの組合せであること
を特徴とする、請求項13記載のガスタービンエンジン
用触媒燃焼器の始動方法。14. A preheater, wherein a means (36) for preheating the air of the vapor phase combustion section (35) is installed upstream of the catalyst,
14. A catalyst heater capable of electrically preheating the catalyst carrier (24, 25), a preheater installed immediately after the catalyst, or a wall heater arranged downstream of the catalyst, or a combination thereof. For starting a catalytic combustor for a gas turbine engine of the above.
は触媒下流の壁面温度を所定温度に予熱した後、燃料の
供給を開始することを特徴とする、請求項13記載のガ
スタービンエンジン用触媒燃焼器の始動方法。15. The gas turbine engine according to claim 13, wherein fuel supply is started after preheating the air temperature of the gas-phase combustion section (35) or the wall surface temperature downstream of the catalyst to a predetermined temperature. For starting a catalytic burner for automobiles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5331597A JP2808404B2 (en) | 1993-12-27 | 1993-12-27 | Starting method of catalytic combustor for gas turbine engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5331597A JP2808404B2 (en) | 1993-12-27 | 1993-12-27 | Starting method of catalytic combustor for gas turbine engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07190373A true JPH07190373A (en) | 1995-07-28 |
JP2808404B2 JP2808404B2 (en) | 1998-10-08 |
Family
ID=18245435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5331597A Expired - Fee Related JP2808404B2 (en) | 1993-12-27 | 1993-12-27 | Starting method of catalytic combustor for gas turbine engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2808404B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339763A (en) * | 2001-05-14 | 2002-11-27 | Toshiba Corp | Gas turbine system |
WO2004029433A1 (en) * | 2002-09-27 | 2004-04-08 | Commonwealth Scientific And Industrial Research Organisation | A system for catalytic combustion |
WO2009022449A1 (en) * | 2007-08-10 | 2009-02-19 | Kawasaki Jukogyo Kabushiki Kaisha | Combustor |
WO2013099916A1 (en) * | 2011-12-28 | 2013-07-04 | 川崎重工業株式会社 | Flow velocity distribution equalizing apparatus |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180220A (en) * | 1983-03-31 | 1984-10-13 | Toshiba Corp | Gas turbine combustor |
JPS6036813A (en) * | 1983-08-05 | 1985-02-26 | Toshiba Corp | Catalyst combustion device |
JPS62131264U (en) * | 1986-02-12 | 1987-08-19 | ||
JPS6334424A (en) * | 1986-07-30 | 1988-02-15 | Hitachi Ltd | Fuel control method for catalytic combustor for gas turbine |
JPS63306303A (en) * | 1987-06-04 | 1988-12-14 | Mitsubishi Heavy Ind Ltd | Combustion method |
JPH0285611A (en) * | 1988-08-22 | 1990-03-27 | Engelhard Corp | Method of starting combustion system |
JPH0350416A (en) * | 1989-07-19 | 1991-03-05 | Toshiba Corp | Gas turbine combustion device of catalyst combustion type |
JPH05256406A (en) * | 1992-03-11 | 1993-10-05 | Honda Motor Co Ltd | Catalyst combustor |
-
1993
- 1993-12-27 JP JP5331597A patent/JP2808404B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59180220A (en) * | 1983-03-31 | 1984-10-13 | Toshiba Corp | Gas turbine combustor |
JPS6036813A (en) * | 1983-08-05 | 1985-02-26 | Toshiba Corp | Catalyst combustion device |
JPS62131264U (en) * | 1986-02-12 | 1987-08-19 | ||
JPS6334424A (en) * | 1986-07-30 | 1988-02-15 | Hitachi Ltd | Fuel control method for catalytic combustor for gas turbine |
JPS63306303A (en) * | 1987-06-04 | 1988-12-14 | Mitsubishi Heavy Ind Ltd | Combustion method |
JPH0285611A (en) * | 1988-08-22 | 1990-03-27 | Engelhard Corp | Method of starting combustion system |
JPH0350416A (en) * | 1989-07-19 | 1991-03-05 | Toshiba Corp | Gas turbine combustion device of catalyst combustion type |
JPH05256406A (en) * | 1992-03-11 | 1993-10-05 | Honda Motor Co Ltd | Catalyst combustor |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002339763A (en) * | 2001-05-14 | 2002-11-27 | Toshiba Corp | Gas turbine system |
JP4585142B2 (en) * | 2001-05-14 | 2010-11-24 | 株式会社東芝 | Gas turbine system |
WO2004029433A1 (en) * | 2002-09-27 | 2004-04-08 | Commonwealth Scientific And Industrial Research Organisation | A system for catalytic combustion |
US7430869B2 (en) | 2002-09-27 | 2008-10-07 | Commonwealth Scientific And Industrial Research Organisation | System for catalytic combustion |
WO2009022449A1 (en) * | 2007-08-10 | 2009-02-19 | Kawasaki Jukogyo Kabushiki Kaisha | Combustor |
US8172568B2 (en) | 2007-08-10 | 2012-05-08 | Kawasaki Jukogyo Kabushiki Kaisha | Combustor |
JP5412283B2 (en) * | 2007-08-10 | 2014-02-12 | 川崎重工業株式会社 | Combustion device |
WO2013099916A1 (en) * | 2011-12-28 | 2013-07-04 | 川崎重工業株式会社 | Flow velocity distribution equalizing apparatus |
CN104024738A (en) * | 2011-12-28 | 2014-09-03 | 川崎重工业株式会社 | Flow velocity distribution equalizing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2808404B2 (en) | 1998-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102319093B1 (en) | Pressurized air supply system, fuel cell system comprising the pressurized air supply system, and starting method of the pressurized air supply system | |
US4112676A (en) | Hybrid combustor with staged injection of pre-mixed fuel | |
JP4049209B2 (en) | Premixed dry gas turbine combustor with lean direct injection of gas fuel | |
EP0805309B1 (en) | Method of operation of a catalytic combustion chamber | |
JP4841679B2 (en) | Gas turbine control device | |
US20040119291A1 (en) | Method and apparatus for indirect catalytic combustor preheating | |
JP2001241663A (en) | Multi-stage multi-plane combustion system for gas turbine engine | |
JPH10311539A (en) | Low-emission combustion system for gas turbine engine | |
JP2000514911A (en) | Catalytic combustion chamber and method for ignition and control of the catalytic combustion chamber | |
JPS6361723A (en) | catalytic combustion device | |
JP3005110B2 (en) | Heat recovery type combustion device | |
JP3875395B2 (en) | Catalytic combustion equipment | |
WO2013094432A1 (en) | Gas turbine engine provided with heat exchanger, and method for starting gas turbine engine | |
WO2013094433A1 (en) | Gas turbine engine and method for starting same | |
JPH07190373A (en) | Catalytic combustor starting method for gas-turbine engine | |
JPH05346207A (en) | Catalytic combustion device | |
JP2781928B2 (en) | Pulse combustor | |
JPH06108879A (en) | Gas turbine utilizing catalyst combustor | |
JP2745352B2 (en) | Gas turbine engine | |
JPH1182170A (en) | Jet engine and driving method thereof | |
JP2003090230A (en) | Gas turbine power plant and mixed gas combustor using the same | |
EP1010947A2 (en) | A gas turbine with a catalytic combustor and method of operating such a gas turbine | |
JP2783009B2 (en) | Control device for gas turbine | |
JP3630040B2 (en) | Intake heating system | |
JPH0828304A (en) | Gas turbine plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |