JPH07188917A - コリメーション装置 - Google Patents
コリメーション装置Info
- Publication number
- JPH07188917A JPH07188917A JP6267396A JP26739694A JPH07188917A JP H07188917 A JPH07188917 A JP H07188917A JP 6267396 A JP6267396 A JP 6267396A JP 26739694 A JP26739694 A JP 26739694A JP H07188917 A JPH07188917 A JP H07188917A
- Authority
- JP
- Japan
- Prior art keywords
- plasma
- deposition system
- antenna
- target
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3402—Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
- H01J37/3405—Magnetron sputtering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3411—Constructional aspects of the reactor
- H01J37/3438—Electrodes other than cathode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3322—Problems associated with coating
- H01J2237/3327—Coating high aspect ratio workpieces
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
Abstract
(57)【要約】
【目的】 本発明は、出力を上げることなく製造の目的
にかなった高いスループットが実現可能な、コリメーシ
ョンフィルタを備えたプラズマ堆積システムを提供する
ことを目的とする。 【構成】 本発明による、堆積材料をターゲットからウ
エハ上へスパッタするプラズマ堆積システムは、チャン
バと、プラズマ処理中にウエハを保持するプラットフォ
ームと、ターゲットがその上に配置され操作中に前記チ
ャンバ内にプラズマを発生させるソースと、チャンバを
ターゲットが配置される上キャビティとウエハが配置さ
れる下キャビティとに分割しターゲットからスパッタさ
れた材料を通過させる等電位導電面と、上キャビティの
内部に配置されプラズマを包囲しRF出力をソース生成
プラズマ内に結合させる上アンテナとを備える。
にかなった高いスループットが実現可能な、コリメーシ
ョンフィルタを備えたプラズマ堆積システムを提供する
ことを目的とする。 【構成】 本発明による、堆積材料をターゲットからウ
エハ上へスパッタするプラズマ堆積システムは、チャン
バと、プラズマ処理中にウエハを保持するプラットフォ
ームと、ターゲットがその上に配置され操作中に前記チ
ャンバ内にプラズマを発生させるソースと、チャンバを
ターゲットが配置される上キャビティとウエハが配置さ
れる下キャビティとに分割しターゲットからスパッタさ
れた材料を通過させる等電位導電面と、上キャビティの
内部に配置されプラズマを包囲しRF出力をソース生成
プラズマ内に結合させる上アンテナとを備える。
Description
【0001】
【産業上の利用分野】本発明は、集積回路及び半導体デ
バイスの製造に用いられる物理気相堆積装置に関する。
バイスの製造に用いられる物理気相堆積装置に関する。
【0002】
【従来の技術】物理気相堆積(PVD)は、プラズマの
手段を用いてターゲット材(例えば、Ti)を目的物
(例えば、半導体ウエハ)の上に堆積させるプロセスで
ある。このプロセスは、不活性ガス(例えば、アルゴ
ン)を含有する真空チャンバにおいて行われる。プラズ
マはチャンバ内において、負にバイアスされたターゲッ
トとウエハとの間で発生し、不活性ガスをイオン化す
る。正に荷電したイオン化ガスの原子は、負にバイアス
されたターゲットの方へ引かれ、ターゲット材の原子を
ターゲットから発射させる(即ち、スパッタさせる)に
充分大きなエネルギをもってターゲットに衝突する。タ
ーゲットからスパッタされた原子は、ウエハの方へと推
進し、そこで堆積材料の層を形成する。
手段を用いてターゲット材(例えば、Ti)を目的物
(例えば、半導体ウエハ)の上に堆積させるプロセスで
ある。このプロセスは、不活性ガス(例えば、アルゴ
ン)を含有する真空チャンバにおいて行われる。プラズ
マはチャンバ内において、負にバイアスされたターゲッ
トとウエハとの間で発生し、不活性ガスをイオン化す
る。正に荷電したイオン化ガスの原子は、負にバイアス
されたターゲットの方へ引かれ、ターゲット材の原子を
ターゲットから発射させる(即ち、スパッタさせる)に
充分大きなエネルギをもってターゲットに衝突する。タ
ーゲットからスパッタされた原子は、ウエハの方へと推
進し、そこで堆積材料の層を形成する。
【0003】スパッタリング中にターゲットからやって
くる材料の軌跡は、ある方角の範囲をもって分布してい
る。典型的には、スパッタされた材料の大部分はターゲ
ットに対して垂直の方向に進行するが、この垂直の方向
から外れた方向にも、ある程度の量の材料が進行する。
この外れた方向へ進行するスパッタされた材料は、ウエ
ハ表面上の切れ目ないし隙間(dicontinuities)において
得られる精細度(definition)を制約する傾向がある。と
りわけ、垂直ではない方向の軌跡に沿って進行する材料
は、孔(thru holes)や道(vias)等の造作(ぞうさく)(f
eatures)の側壁面上に堆積し、これら造作の作製におけ
る微小度を制限する。非常に小さい孔においては、側壁
面に堆積する材料が遂には孔を塞ぎ、孔の底部上へは新
たな材料が堆積されなくなる。
くる材料の軌跡は、ある方角の範囲をもって分布してい
る。典型的には、スパッタされた材料の大部分はターゲ
ットに対して垂直の方向に進行するが、この垂直の方向
から外れた方向にも、ある程度の量の材料が進行する。
この外れた方向へ進行するスパッタされた材料は、ウエ
ハ表面上の切れ目ないし隙間(dicontinuities)において
得られる精細度(definition)を制約する傾向がある。と
りわけ、垂直ではない方向の軌跡に沿って進行する材料
は、孔(thru holes)や道(vias)等の造作(ぞうさく)(f
eatures)の側壁面上に堆積し、これら造作の作製におけ
る微小度を制限する。非常に小さい孔においては、側壁
面に堆積する材料が遂には孔を塞ぎ、孔の底部上へは新
たな材料が堆積されなくなる。
【0004】垂直な方向から所定の角度以上で外れた軌
跡で進むスパッタされた材料を濾過して取り除くため
に、コリメーションフィルタ(collimation filter)が用
いられる。このコリメーションフィルタは、ターゲット
とウエハとの間に置かれる。一般にこれは、通過させる
穴が並んだ、ある決まった厚さをもつ金属板である。ス
ループットを最大にするために、ハニカム構造(即ち、
六角形穴のパターン)が用いられる。この穴は、特定の
アスペクト比、即ち直径に対する長さの比を有してい
る。このアスペクト比によって、行われる濾過の程度が
決まる。高めのアスペクト比では、狭い角度の(即ち、
所定の角度が小さい)フィルタとなる。しかし、アスペ
クト比が高めのものを用いた場合、スループットがかな
り減少する。従って、コリメーションフィルタの厚さと
穴のサイズとを適正に選択することは、まさにプロセス
の最適化の問題である。
跡で進むスパッタされた材料を濾過して取り除くため
に、コリメーションフィルタ(collimation filter)が用
いられる。このコリメーションフィルタは、ターゲット
とウエハとの間に置かれる。一般にこれは、通過させる
穴が並んだ、ある決まった厚さをもつ金属板である。ス
ループットを最大にするために、ハニカム構造(即ち、
六角形穴のパターン)が用いられる。この穴は、特定の
アスペクト比、即ち直径に対する長さの比を有してい
る。このアスペクト比によって、行われる濾過の程度が
決まる。高めのアスペクト比では、狭い角度の(即ち、
所定の角度が小さい)フィルタとなる。しかし、アスペ
クト比が高めのものを用いた場合、スループットがかな
り減少する。従って、コリメーションフィルタの厚さと
穴のサイズとを適正に選択することは、まさにプロセス
の最適化の問題である。
【0005】
【発明が解決しようとする課題】それにもかかわらず、
従来のシステムにおける代表的なフィルタの設計では、
材料の約20%しかフィルタを通過しないだろう。この
分以外は、垂直な方向から所定の角度以上外れたスパッ
タされた材料であるということであり、これはフィルタ
上に堆積する。この例では、このコリメーションフィル
タがスループットを約5.の係数だけ減少させる。
従来のシステムにおける代表的なフィルタの設計では、
材料の約20%しかフィルタを通過しないだろう。この
分以外は、垂直な方向から所定の角度以上外れたスパッ
タされた材料であるということであり、これはフィルタ
上に堆積する。この例では、このコリメーションフィル
タがスループットを約5.の係数だけ減少させる。
【0006】このスループットの減少を補うため、ユー
ザーは通常、ターゲットの操作出力を上昇させてきた。
例えば、5kW程度の出力レベルでの運転では、出力は
約20kWに上昇される。出力レベルを上昇すれば、ス
パッタリングの速度も上昇する。しかしこのことは、同
時に他の問題、例えば、ウエハの温度が上昇し、堆積層
内において求めない材料が相互作用する問題等を引き起
こす。
ザーは通常、ターゲットの操作出力を上昇させてきた。
例えば、5kW程度の出力レベルでの運転では、出力は
約20kWに上昇される。出力レベルを上昇すれば、ス
パッタリングの速度も上昇する。しかしこのことは、同
時に他の問題、例えば、ウエハの温度が上昇し、堆積層
内において求めない材料が相互作用する問題等を引き起
こす。
【0007】
【課題を解決するための手段及び作用】プラズマスパッ
タリングチャンバ内のイオン化の多くはターゲットに非
常に近いところでで生ずるため、プラズマ以外の部分の
至る所にイオン化を促進する空間をかなり残しているこ
とが、見出されている。また、RF出力は、チャンバ内
部のコイルやリングアンテナを通してDC発生プラズマ
と効果的に結合可能であることも見出されている。結合
されたRF出力は、リングの材料のスパッタリングを引
き起こすよりも、むしろイオン化の促進に貢献する。
タリングチャンバ内のイオン化の多くはターゲットに非
常に近いところでで生ずるため、プラズマ以外の部分の
至る所にイオン化を促進する空間をかなり残しているこ
とが、見出されている。また、RF出力は、チャンバ内
部のコイルやリングアンテナを通してDC発生プラズマ
と効果的に結合可能であることも見出されている。結合
されたRF出力は、リングの材料のスパッタリングを引
き起こすよりも、むしろイオン化の促進に貢献する。
【0008】ある一面においては概して、この発明はタ
ーゲットからウエハ上へ材料をスパッタ堆積するための
プラズマ堆積システムである。このシステムは;チャン
バと;プラズマ処理中にウエハを保持するプラットフォ
ームと;ターゲットが配置されるソース(source)と;タ
ーゲットが位置する上キャビティとウエハが位置する下
キャビティとにチャンバを分割する等電位導電面(equip
otential conductiveplane)と;上キャビティの内部に
位置し、該プラズマに囲まれる上アンテナと;を包含す
る。ソースは、操作の間にプラズマを発生させる。等電
位導電面は、材料をターゲットからスパッタせしめて、
下キャビティ内へ通過させる。そして、上アンテナは、
ソース生成プラズマ(source-generated plasma) へRF
出力を結合させる。
ーゲットからウエハ上へ材料をスパッタ堆積するための
プラズマ堆積システムである。このシステムは;チャン
バと;プラズマ処理中にウエハを保持するプラットフォ
ームと;ターゲットが配置されるソース(source)と;タ
ーゲットが位置する上キャビティとウエハが位置する下
キャビティとにチャンバを分割する等電位導電面(equip
otential conductiveplane)と;上キャビティの内部に
位置し、該プラズマに囲まれる上アンテナと;を包含す
る。ソースは、操作の間にプラズマを発生させる。等電
位導電面は、材料をターゲットからスパッタせしめて、
下キャビティ内へ通過させる。そして、上アンテナは、
ソース生成プラズマ(source-generated plasma) へRF
出力を結合させる。
【0009】好適な具体例においては、このプラズマ堆
積システムは、下キャビティに位置して、下キャビティ
内に第2のプラズマを発生させる下アンテナも包含す
る。また、等電位導電面は、耐火性材料(refractory ma
terial) (例えば、チタン)でできたコリメーションフ
ィルタである。
積システムは、下キャビティに位置して、下キャビティ
内に第2のプラズマを発生させる下アンテナも包含す
る。また、等電位導電面は、耐火性材料(refractory ma
terial) (例えば、チタン)でできたコリメーションフ
ィルタである。
【0010】別の一面においては概して、この発明はタ
ーゲットからウエハ上へ材料をスパッタ堆積するための
プラズマ堆積システムである。このシステムは;チャン
バと;プラズマ処理中にウエハを保持するプラットフォ
ームと;ターゲットが配置されるソースと;チャンバの
内部に位置し、該プラズマに囲まれるアンテナと;を包
含する。ソースは、操作の間にプラズマを発生させ、ア
ンテナは、ソース生成プラズマへ、RF供給源からのR
F出力を結合させるためのものである。
ーゲットからウエハ上へ材料をスパッタ堆積するための
プラズマ堆積システムである。このシステムは;チャン
バと;プラズマ処理中にウエハを保持するプラットフォ
ームと;ターゲットが配置されるソースと;チャンバの
内部に位置し、該プラズマに囲まれるアンテナと;を包
含する。ソースは、操作の間にプラズマを発生させ、ア
ンテナは、ソース生成プラズマへ、RF供給源からのR
F出力を結合させるためのものである。
【0011】従来のプラズマ堆積技術では、現実にはユ
ーザーは、膜を生成する条件の制御を制約し、従って、
生成した膜の性質を制約していた。例を挙げれば、スル
ープットを著しく減少させる理由のため、ソースの出力
レベル(及び温度)をあるポイントよりも下げることは
実際には行われていなかった。DC出力レベルを低くし
て操作すれば、より望ましい性質の膜が得られるのだろ
うが、製造用途ではスループットが高いことが必須であ
る。従って、生成する膜の性質で妥協せざるを得ない。
上アンテナはユーザーに、製造用途に許容されるスルー
プットにプラズマ堆積プロセスを良好に制御せしめ、膜
の性質をより広い範囲で得る機会をユーザーに与える。
ーザーは、膜を生成する条件の制御を制約し、従って、
生成した膜の性質を制約していた。例を挙げれば、スル
ープットを著しく減少させる理由のため、ソースの出力
レベル(及び温度)をあるポイントよりも下げることは
実際には行われていなかった。DC出力レベルを低くし
て操作すれば、より望ましい性質の膜が得られるのだろ
うが、製造用途ではスループットが高いことが必須であ
る。従って、生成する膜の性質で妥協せざるを得ない。
上アンテナはユーザーに、製造用途に許容されるスルー
プットにプラズマ堆積プロセスを良好に制御せしめ、膜
の性質をより広い範囲で得る機会をユーザーに与える。
【0012】下キャビティのアンテナは、プラズマ堆積
プロセスにわたった最適化のより良い制御をユーザーが
行うことを可能にする。例えば、窒素付着係数(nitroge
n sticking coeficient)は温度に大きく依存し、これは
TiとN2 とが反応してTiNを形成することを可能と
する。しかし、これら2つの反応体は、温度によって互
いに反対の方向に動く。この付着係数は温度が下がれば
向上するが、これら反応ガス種の反応性は減少する。従
来のシステムでは、許容される付着係数を維持しつつも
最良の反応性を得る最適なプロセス温度が一般に存在し
た。従って、従来のプラズマ堆積技術を用いた場合は、
この最適温度が得られるような適切な出力レベルで操作
を行う必要がある。しかし、この発明によれば、ユーザ
ーは、ソース生成プラズマの出力レベルを上げなくと
も、良好な付着係数で低い温度におけるN2 の反応性を
上昇させることが可能となる。従って、この発明によ
り、ユーザーは反応性を犠牲にすることなく低い温度
(及び低い出力レベル)で操作を行うことが可能となる
ため、より正規組成な(stoichiometric)膜や、異なっ
た、おそらくより望ましい性質の膜を生成することが可
能となる。
プロセスにわたった最適化のより良い制御をユーザーが
行うことを可能にする。例えば、窒素付着係数(nitroge
n sticking coeficient)は温度に大きく依存し、これは
TiとN2 とが反応してTiNを形成することを可能と
する。しかし、これら2つの反応体は、温度によって互
いに反対の方向に動く。この付着係数は温度が下がれば
向上するが、これら反応ガス種の反応性は減少する。従
来のシステムでは、許容される付着係数を維持しつつも
最良の反応性を得る最適なプロセス温度が一般に存在し
た。従って、従来のプラズマ堆積技術を用いた場合は、
この最適温度が得られるような適切な出力レベルで操作
を行う必要がある。しかし、この発明によれば、ユーザ
ーは、ソース生成プラズマの出力レベルを上げなくと
も、良好な付着係数で低い温度におけるN2 の反応性を
上昇させることが可能となる。従って、この発明によ
り、ユーザーは反応性を犠牲にすることなく低い温度
(及び低い出力レベル)で操作を行うことが可能となる
ため、より正規組成な(stoichiometric)膜や、異なっ
た、おそらくより望ましい性質の膜を生成することが可
能となる。
【0013】また、下キャビティのアンテナにより、ユ
ーザーは、ターゲットからスパッタされて到達する化学
種のエネルギーを、更に容易に制御することが可能とな
る。このことにより、ユーザーは、プロセスの最適化に
対して更に良好な制御を行うことが可能となる。例え
ば、アルミニウムのプラナリゼーション(planarizatio
n)の操作を従来技術を用いて行った場合、通常はDC又
はRFバイアスをウエハ上に印加し、堆積した原子の接
触を促す。しかし、この方法は、別の問題を生じさせ
る。到達した原子は非常に大きなエネルギーを有してお
り、生成した膜の性質を変え、更には膜に欠陥を生じさ
せる傾向がある。下キャビティのリングアンテナを用い
てウエハの上方のインピーダンスを変化させることによ
り、ユーザーは、ウエハ上に高いレベルを印加して上記
の操作を行うことなく、有利な方法で膜の性質を変える
ことが可能となる。下アンテナは、ウエハにRFやDC
を結合させるのではなく、プラズマにそれを結合させ、
プラズマ電位に衝突のエネルギーを増進させる。従っ
て、ユーザーは、ウエハに非常に低い電圧を用いること
が可能となるため、到達した原子のエネルギーが非常に
小さくなり、形成中の膜を崩壊させることがほとんどな
くなるだろう。このことにより、ユーザーは膜の密度及
び障壁の性質に影響を及ぼす表面状態を、大変良好に制
御することが可能となる。
ーザーは、ターゲットからスパッタされて到達する化学
種のエネルギーを、更に容易に制御することが可能とな
る。このことにより、ユーザーは、プロセスの最適化に
対して更に良好な制御を行うことが可能となる。例え
ば、アルミニウムのプラナリゼーション(planarizatio
n)の操作を従来技術を用いて行った場合、通常はDC又
はRFバイアスをウエハ上に印加し、堆積した原子の接
触を促す。しかし、この方法は、別の問題を生じさせ
る。到達した原子は非常に大きなエネルギーを有してお
り、生成した膜の性質を変え、更には膜に欠陥を生じさ
せる傾向がある。下キャビティのリングアンテナを用い
てウエハの上方のインピーダンスを変化させることによ
り、ユーザーは、ウエハ上に高いレベルを印加して上記
の操作を行うことなく、有利な方法で膜の性質を変える
ことが可能となる。下アンテナは、ウエハにRFやDC
を結合させるのではなく、プラズマにそれを結合させ、
プラズマ電位に衝突のエネルギーを増進させる。従っ
て、ユーザーは、ウエハに非常に低い電圧を用いること
が可能となるため、到達した原子のエネルギーが非常に
小さくなり、形成中の膜を崩壊させることがほとんどな
くなるだろう。このことにより、ユーザーは膜の密度及
び障壁の性質に影響を及ぼす表面状態を、大変良好に制
御することが可能となる。
【0014】
【実施例】図1に示されるように、スパッタ堆積システ
ムは、堆積チャンバ10と、スパッタターゲット14が
配置されるソース組立て体12と、ターゲット14から
スパッタされた材料が堆積されるウエハ18を支持する
可動プラットフォーム16とを包含する。ソース組立て
体及びその上のターゲットは、絶縁体リング20によ
り、チャンバの他の部分から電気的に絶縁されている。
下側のプラットフォームは、機械的リフト機構22によ
って昇降可能である。このリフト機構は、プラットフォ
ーム上にウエハを置いた後、ウエハをクランピングリン
グ24と接触するまで上昇させる。クランピングリング
は、ウエハの直径よりもわずかに小さく処理中にプラッ
トフォームを材料の堆積から遮蔽する中央アパーチャ2
6を有する。
ムは、堆積チャンバ10と、スパッタターゲット14が
配置されるソース組立て体12と、ターゲット14から
スパッタされた材料が堆積されるウエハ18を支持する
可動プラットフォーム16とを包含する。ソース組立て
体及びその上のターゲットは、絶縁体リング20によ
り、チャンバの他の部分から電気的に絶縁されている。
下側のプラットフォームは、機械的リフト機構22によ
って昇降可能である。このリフト機構は、プラットフォ
ーム上にウエハを置いた後、ウエハをクランピングリン
グ24と接触するまで上昇させる。クランピングリング
は、ウエハの直径よりもわずかに小さく処理中にプラッ
トフォームを材料の堆積から遮蔽する中央アパーチャ2
6を有する。
【0015】真空ライン30を介してチャンバと接続さ
れる真空ポンプ28は、プロセスの操作を開始する時に
チャンバを脱気するために用いられる。チャンバに流入
及び流出する不活性ガス(例えば、アルゴン)及び反応
ガス(例えばN2 )の流れは、ガス制御回路機構32に
より制御される。プラズマ堆積プロセスを開始し維持す
るための出力は、DC電圧供給器34によりターゲット
に供給される。DC供給器の負の端子は、線36を介し
てターゲットと接続され、DC供給器の正の端子は、他
方の線38を介してチャンバの壁に接続される。
れる真空ポンプ28は、プロセスの操作を開始する時に
チャンバを脱気するために用いられる。チャンバに流入
及び流出する不活性ガス(例えば、アルゴン)及び反応
ガス(例えばN2 )の流れは、ガス制御回路機構32に
より制御される。プラズマ堆積プロセスを開始し維持す
るための出力は、DC電圧供給器34によりターゲット
に供給される。DC供給器の負の端子は、線36を介し
てターゲットと接続され、DC供給器の正の端子は、他
方の線38を介してチャンバの壁に接続される。
【0016】ここに説明される具体例においては、ソー
スは、1組の磁石(図示されず)を包含しターゲット材
の背後に位置されるマグネトロンである。この磁石は、
ターゲットの外面から電子が急速に脱出することを妨げ
ることにより、並びに、これらを長時間にわたりターゲ
ットから短い距離以内に保って不活性ガス(例えばA
r)を多様にイオン化させることにより、スパッタリン
グの効率を高める。このようなソースにおいては、スパ
ッタリング中のターゲットの侵食の均一性を向上する目
的で、磁石はターゲットの背面の周りを回転する。
スは、1組の磁石(図示されず)を包含しターゲット材
の背後に位置されるマグネトロンである。この磁石は、
ターゲットの外面から電子が急速に脱出することを妨げ
ることにより、並びに、これらを長時間にわたりターゲ
ットから短い距離以内に保って不活性ガス(例えばA
r)を多様にイオン化させることにより、スパッタリン
グの効率を高める。このようなソースにおいては、スパ
ッタリング中のターゲットの侵食の均一性を向上する目
的で、磁石はターゲットの背面の周りを回転する。
【0017】コリメーションフィルタ40は、チャンバ
10を上キャビティ42と下キャビティ44とに分割す
る。コリメーションフィルタ40は接地され、よってこ
の2つのキャビティを分割する地面(ground plane)を形
成する。上キャビティ内部とその内周の周りには、チャ
ンバの壁面上への材料の堆積を防止する円筒シールド4
6が存在する。また同様に、下キャビティも同様の目的
にかなう円筒シールド48を包含する。これらのシール
ドは2つとも地電位に接続されている。
10を上キャビティ42と下キャビティ44とに分割す
る。コリメーションフィルタ40は接地され、よってこ
の2つのキャビティを分割する地面(ground plane)を形
成する。上キャビティ内部とその内周の周りには、チャ
ンバの壁面上への材料の堆積を防止する円筒シールド4
6が存在する。また同様に、下キャビティも同様の目的
にかなう円筒シールド48を包含する。これらのシール
ドは2つとも地電位に接続されている。
【0018】上キャビティの内部では、上リングアンテ
ナ50が、RF出力をソース12により発生されたプラ
ズマに結合させる。RF整合回路網(RF matching netwo
rk)54を介して上リングアンテナと結合されたRF発
生器52は、上リングアンテナにRF出力を提供する。
上リングアンテナの片方の側への電気的な接続は、チャ
ンバの壁面のフィードスルー56を介してなされる。上
リングアンテナの他方の側は、チャンバ内の他方のフィ
ードスルー58を介して、大地と電気的に接続される。
ナ50が、RF出力をソース12により発生されたプラ
ズマに結合させる。RF整合回路網(RF matching netwo
rk)54を介して上リングアンテナと結合されたRF発
生器52は、上リングアンテナにRF出力を提供する。
上リングアンテナの片方の側への電気的な接続は、チャ
ンバの壁面のフィードスルー56を介してなされる。上
リングアンテナの他方の側は、チャンバ内の他方のフィ
ードスルー58を介して、大地と電気的に接続される。
【0019】下キャビティの内部では、第2のリングア
ンテナ60が、コリメーションフィルタを通ってウエハ
へと通過して行くスパッタされた化学種にRF出力を結
合する。第2のRF整合回路網64を介して下リングア
ンテナ60と結合された第2のRF発生器62は、下リ
ングアンテナにRF出力を提供する。上リングアンテナ
の場合と同様に、下リングアンテナの片方の側への電気
的な接続は、チャンバの壁面のフィードスルー66を介
してなされる。上リングアンテナの他方の側は、チャン
バ内の他方のフィードスルー68を介して、大地と電気
的に接続される。
ンテナ60が、コリメーションフィルタを通ってウエハ
へと通過して行くスパッタされた化学種にRF出力を結
合する。第2のRF整合回路網64を介して下リングア
ンテナ60と結合された第2のRF発生器62は、下リ
ングアンテナにRF出力を提供する。上リングアンテナ
の場合と同様に、下リングアンテナの片方の側への電気
的な接続は、チャンバの壁面のフィードスルー66を介
してなされる。上リングアンテナの他方の側は、チャン
バ内の他方のフィードスルー68を介して、大地と電気
的に接続される。
【0020】代表的には、下リングアンテナ及び上リン
グアンテナへ供給されるRF出力は約5kW未満である
が、用途によっては、もっと高いレベル(例えば20k
W)を用いることが望ましい場合があるだろう。正確な
出力レベルは、所望の結果に依存し、よって用途毎に正
確な出力レベルは変化するだろう。
グアンテナへ供給されるRF出力は約5kW未満である
が、用途によっては、もっと高いレベル(例えば20k
W)を用いることが望ましい場合があるだろう。正確な
出力レベルは、所望の結果に依存し、よって用途毎に正
確な出力レベルは変化するだろう。
【0021】各RF整合回路網は、これらに対応したリ
ングアンテナに高い電流が得られる(即ち、アンテナへ
のエネルギーを効率的よく結合する)ように、対応した
アンテナに発振回路を形成する。これらは、処理操作中
にユーザーがこれらをプラズマへ最適に結合するように
同調することを可能にする可変部品を包含する。このよ
うな同調型の整合回路網は当業者にとって周知であるた
め、その詳細はここでは説明しない。
ングアンテナに高い電流が得られる(即ち、アンテナへ
のエネルギーを効率的よく結合する)ように、対応した
アンテナに発振回路を形成する。これらは、処理操作中
にユーザーがこれらをプラズマへ最適に結合するように
同調することを可能にする可変部品を包含する。このよ
うな同調型の整合回路網は当業者にとって周知であるた
め、その詳細はここでは説明しない。
【0022】ここに説明されている具体例では、8イン
チ(約20cm)のウエハを処理し、ターゲットのサイ
ズは約13インチ(約33cm)である。ターゲット材
料としては、例えば、Ti、TiN、W − オーミッ
ク接続やデバイスバリアを作るための典型的な材料 −
を含む、多様な材料であってもよい。ウエハがいっぱ
いに上昇された位置にある場合に、ターゲットとウエハ
との間の間隔は、代表的には約94mmである。コリメ
ーションフィルタは、ターゲットとウエハとのほぼ中間
に位置する。これは、ハニカム構造をもち、チタン等の
耐火性材料で形成され、厚さ約0.950インチ(約
2.41cm)、穴が直径約0.625インチ(約1.
59cm)である。上アンテナ及び下アンテナは、それ
ぞれ、対応するキャビティの中のほぼ中間点の位置をと
り、チャンバの内周の周りに配置される。
チ(約20cm)のウエハを処理し、ターゲットのサイ
ズは約13インチ(約33cm)である。ターゲット材
料としては、例えば、Ti、TiN、W − オーミッ
ク接続やデバイスバリアを作るための典型的な材料 −
を含む、多様な材料であってもよい。ウエハがいっぱ
いに上昇された位置にある場合に、ターゲットとウエハ
との間の間隔は、代表的には約94mmである。コリメ
ーションフィルタは、ターゲットとウエハとのほぼ中間
に位置する。これは、ハニカム構造をもち、チタン等の
耐火性材料で形成され、厚さ約0.950インチ(約
2.41cm)、穴が直径約0.625インチ(約1.
59cm)である。上アンテナ及び下アンテナは、それ
ぞれ、対応するキャビティの中のほぼ中間点の位置をと
り、チャンバの内周の周りに配置される。
【0023】上アンテナ及び下アンテナは、ユーザーが
プラズマへエネルギーを輸送できる手段を与えるため、
イオンの全生成量に劇的に影響する。上リングアンテナ
及び下リングアンテナは、導電性材料であってプラズマ
スパッタリングチャンバ内に存在する条件下で耐性をも
つ材料(例えば、アルミニウムや銅)で形成されてい
る。これらは、単一又は複数の巻数のコイルであっても
よく、この巻数は当然ながら、RF発生器の周波数に依
存する。ここに説明される実施例では、400kHz〜
40MHzの範囲のRF周波数が用いられる。
プラズマへエネルギーを輸送できる手段を与えるため、
イオンの全生成量に劇的に影響する。上リングアンテナ
及び下リングアンテナは、導電性材料であってプラズマ
スパッタリングチャンバ内に存在する条件下で耐性をも
つ材料(例えば、アルミニウムや銅)で形成されてい
る。これらは、単一又は複数の巻数のコイルであっても
よく、この巻数は当然ながら、RF発生器の周波数に依
存する。ここに説明される実施例では、400kHz〜
40MHzの範囲のRF周波数が用いられる。
【0024】上キャビティ内では、プラズマはDC電圧
供給器によって発生され、上アンテナはこのプラズマへ
新たなエネルギを結合させる手段を与える。プラズマに
新たなエネルギを輸送することにより、ユーザーは、D
C電圧供給器によって決まる出力レベルにおいてターゲ
ットのスパッタに使用可能な不活性ガスイオンの数を増
加させることができる。即ち、上アンテナは、ターゲッ
トのソースインピーダンスを降下させるように作用す
る。従って、上アンテナの助けによって、ユーザーは与
えられた出力レベルにおけるスループットを上昇させる
ことが可能であるため、コリメーションフィルタによっ
て生ずるスループットの減少を補うことが可能である。
また、スパッタ分布はソースインピーダンスに依存して
いるため、上アンテナはユーザーにスパッタ分布の形状
の制御を可能にする。更に、上アンテナはターゲットか
らスパッタされた材料をイオン化する傾向があり、これ
はスパッタされた材料の軌跡を直線化して、ターゲット
に対して垂直な方向に沿ってプラズマを更に密集させる
傾向をもつ。従って、フィルタ上に堆積される材料の量
を減少させてスループットを上昇させることが可能とな
る。
供給器によって発生され、上アンテナはこのプラズマへ
新たなエネルギを結合させる手段を与える。プラズマに
新たなエネルギを輸送することにより、ユーザーは、D
C電圧供給器によって決まる出力レベルにおいてターゲ
ットのスパッタに使用可能な不活性ガスイオンの数を増
加させることができる。即ち、上アンテナは、ターゲッ
トのソースインピーダンスを降下させるように作用す
る。従って、上アンテナの助けによって、ユーザーは与
えられた出力レベルにおけるスループットを上昇させる
ことが可能であるため、コリメーションフィルタによっ
て生ずるスループットの減少を補うことが可能である。
また、スパッタ分布はソースインピーダンスに依存して
いるため、上アンテナはユーザーにスパッタ分布の形状
の制御を可能にする。更に、上アンテナはターゲットか
らスパッタされた材料をイオン化する傾向があり、これ
はスパッタされた材料の軌跡を直線化して、ターゲット
に対して垂直な方向に沿ってプラズマを更に密集させる
傾向をもつ。従って、フィルタ上に堆積される材料の量
を減少させてスループットを上昇させることが可能とな
る。
【0025】上アンテナによって実現されたスパッタリ
ングの効率の向上は、マグネトロン以外のソースを用い
て更に現実的なものになるであろうことは、注目すべき
である。効率の良くないソースに起因する効率の損失
は、上アンテナの有益な効果によって補われるだろう。
マグネトロンを取り去ることは、ターゲットの侵食の均
一性を改善するという付加的な利点をもつ。
ングの効率の向上は、マグネトロン以外のソースを用い
て更に現実的なものになるであろうことは、注目すべき
である。効率の良くないソースに起因する効率の損失
は、上アンテナの有益な効果によって補われるだろう。
マグネトロンを取り去ることは、ターゲットの侵食の均
一性を改善するという付加的な利点をもつ。
【0026】下キャビティが上キャビティと地面(即
ち、コリメーションフィルタ)によって分割されている
ため、上キャビティからのプラズマは、典型的には下キ
ャビティ内に浸透することはない。従って、下アンテナ
及びこれをドライブするRF発生器を用いることで、下
キャビティ内に別のプラズマを根付かせ(strike)これを
維持する。下キャビティに発生した第2のプラズマを介
して、ユーザーは反応化学種(例えば、N2 )のイオン
化を促進することが可能であり、この反応化学種はスパ
ッタされた化学種との反応速度をその後変化させるだろ
う。反応ガス種の反応性を制御することが重要であり従
って性質の異なる膜を生成することが重要であるよう
な、例えば、密着性TiN堆積プロセスのようなプロセ
スに、上述の性能は特に有用であろう。
ち、コリメーションフィルタ)によって分割されている
ため、上キャビティからのプラズマは、典型的には下キ
ャビティ内に浸透することはない。従って、下アンテナ
及びこれをドライブするRF発生器を用いることで、下
キャビティ内に別のプラズマを根付かせ(strike)これを
維持する。下キャビティに発生した第2のプラズマを介
して、ユーザーは反応化学種(例えば、N2 )のイオン
化を促進することが可能であり、この反応化学種はスパ
ッタされた化学種との反応速度をその後変化させるだろ
う。反応ガス種の反応性を制御することが重要であり従
って性質の異なる膜を生成することが重要であるよう
な、例えば、密着性TiN堆積プロセスのようなプロセ
スに、上述の性能は特に有用であろう。
【0027】下アンテナへRF出力を印加すれば、ター
ゲットのスパッタ速度には影響しないが、ウエハ上への
スパッタされた化学種の衝突エネルギー及びイオン化が
上昇することに注目されたい。従って、下アンテナを用
いて、衝突エネルギーを最適化し、堆積された材料の性
質とバリアの性質とを制御することが可能である。
ゲットのスパッタ速度には影響しないが、ウエハ上への
スパッタされた化学種の衝突エネルギー及びイオン化が
上昇することに注目されたい。従って、下アンテナを用
いて、衝突エネルギーを最適化し、堆積された材料の性
質とバリアの性質とを制御することが可能である。
【0028】図2に示されるように、容量的結合システ
ム(capacitively coupled system )では、上リングアン
テナ及び下リングアンテナはそれぞれ、コイルによって
ではなく、連続円筒板ないしリング80及び82とによ
って形成される。RF出力は、円筒板を介してプラズマ
内へと結合される。しかし、他の全ての面において、チ
ャンバの内部の設計は前述のものと同様である。無論、
誘導性負荷ではなく容量性負荷に効率良く結合されるよ
うに設計された、別々のRF整合回路84及び86が提
供される。また、容量的結合システムにおいては、ター
ゲットからウエハに向いた磁場をチャンバ内に作ること
が望ましいであろう。このような磁場は、プラズマを制
限することの助けとなり、その密度を増進させる。この
磁場は、図に図式に沿って示されているような、チャン
バの外側に配置されチャンバを囲む1組のヘルムホルツ
コイル90によって発生させることが可能である。
ム(capacitively coupled system )では、上リングアン
テナ及び下リングアンテナはそれぞれ、コイルによって
ではなく、連続円筒板ないしリング80及び82とによ
って形成される。RF出力は、円筒板を介してプラズマ
内へと結合される。しかし、他の全ての面において、チ
ャンバの内部の設計は前述のものと同様である。無論、
誘導性負荷ではなく容量性負荷に効率良く結合されるよ
うに設計された、別々のRF整合回路84及び86が提
供される。また、容量的結合システムにおいては、ター
ゲットからウエハに向いた磁場をチャンバ内に作ること
が望ましいであろう。このような磁場は、プラズマを制
限することの助けとなり、その密度を増進させる。この
磁場は、図に図式に沿って示されているような、チャン
バの外側に配置されチャンバを囲む1組のヘルムホルツ
コイル90によって発生させることが可能である。
【0029】他の具体例も可能である。例えば、上アン
テナは、コリメーションフィルタや下アンテナなしに、
それ自身で堆積チャンバに用いることが可能である。こ
の応用例では、上アンテナは前述のように、ターゲット
のインピーダンスとイオン化の効率をコントロールする
作用を行う。また、前出の具体例ではDC電圧供給器が
出力ソースとして用いられたが、この代りとしてRFソ
ースやDC電圧供給器とRF出力ソースとの混成を用い
てもよい。更に、DCバイアスをウエハに印加してもよ
い。
テナは、コリメーションフィルタや下アンテナなしに、
それ自身で堆積チャンバに用いることが可能である。こ
の応用例では、上アンテナは前述のように、ターゲット
のインピーダンスとイオン化の効率をコントロールする
作用を行う。また、前出の具体例ではDC電圧供給器が
出力ソースとして用いられたが、この代りとしてRFソ
ースやDC電圧供給器とRF出力ソースとの混成を用い
てもよい。更に、DCバイアスをウエハに印加してもよ
い。
【0030】
【発明の効果】以上詳細に説明してきたように、本発明
によれば、出力を上げることなく製造用途にかなう高い
スループットが実現可能な、コリメーションフィルタを
備えたプラズマ堆積システムが提供される。
によれば、出力を上げることなく製造用途にかなう高い
スループットが実現可能な、コリメーションフィルタを
備えたプラズマ堆積システムが提供される。
【0031】従って、良好なスループットを保ちつつ
も、様々な組成の膜を形成することが可能となる。
も、様々な組成の膜を形成することが可能となる。
【図1】コリメーションフィルタを包含し、上下のキャ
ビティRFバイアスリングがチャンバ内のプラズマに誘
導的に結合したスパッタ堆積チャンバの断面図である。
ビティRFバイアスリングがチャンバ内のプラズマに誘
導的に結合したスパッタ堆積チャンバの断面図である。
【図2】コリメーションフィルタを包含し、上下のキャ
ビティRFバイアスリングがチャンバ内のプラズマに容
量的に結合した第2の態様で用いたスパッタ堆積チャン
バの断面図である。
ビティRFバイアスリングがチャンバ内のプラズマに容
量的に結合した第2の態様で用いたスパッタ堆積チャン
バの断面図である。
10…堆積チャンバ、12…ソース組立て体、14…ス
パッタターゲット、16…可動プラットフォーム、18
…ウエハ、20…絶縁体リング、22…リフト機構、2
4…クランピングリング、26…中央アパーチャ、28
…真空ポンプ、30…真空ライン、32…ガス制御回路
機構、34…DC電圧供給器、36、38…線、40…
コリメーションフィルタ、42…上キャビティ、44…
下キャビティ、46、48…円筒シールド、50…上リ
ングアンテナ、52…RF発生器、54…RF整合回路
網、56、58、66、68…フィールドスルー、60
…下リングアンテナ、62…第2のRF発生器、64…
第2のRF整合回路網、80、82…連続円筒板ないし
リング、84、86…RF整合回路、90…ヘルムホル
ツコイル。
パッタターゲット、16…可動プラットフォーム、18
…ウエハ、20…絶縁体リング、22…リフト機構、2
4…クランピングリング、26…中央アパーチャ、28
…真空ポンプ、30…真空ライン、32…ガス制御回路
機構、34…DC電圧供給器、36、38…線、40…
コリメーションフィルタ、42…上キャビティ、44…
下キャビティ、46、48…円筒シールド、50…上リ
ングアンテナ、52…RF発生器、54…RF整合回路
網、56、58、66、68…フィールドスルー、60
…下リングアンテナ、62…第2のRF発生器、64…
第2のRF整合回路網、80、82…連続円筒板ないし
リング、84、86…RF整合回路、90…ヘルムホル
ツコイル。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 アイヴォ ジェイ. ラアイジメイカーズ アメリカ合衆国, カリフォルニア州 95125, サン ノゼ, ブライアーウッ ド ドライヴ 2442 (72)発明者 ヒロジ ハナワ アメリカ合衆国, カリフォルニア州 95051, サンタ クララ, フローラ ヴィスタ 3427
Claims (20)
- 【請求項1】 ターゲットから材料をウエハ上へスパッ
タ堆積するプラズマ堆積システムであって、 チャンバと、 プラズマ処理中にウエハを保持するプラットフォーム
と、 ターゲットが上に配置される、操作中に前記チャンバ内
にプラズマを発生させるソースと、 前記チャンバをターゲットが配置される上キャビティと
ウエハが配置される下キャビティとに分割する、前記タ
ーゲットからスパッタされた材料を通過させる等電位導
電面と、 上キャビティの内部に配置されプラズマを包囲する、R
F出力をソース生成プラズマ内に結合させる上アンテナ
とを備えるプラズマ堆積システム。 - 【請求項2】 前記下キャビティの内部に配置されて前
記下キャビティ内に第2のプラズマを発生させる下アン
テナを更に備える請求項1に記載のプラズマ堆積システ
ム。 - 【請求項3】 前記等電位導電面がコリメーションフィ
ルタである請求項1に記載のプラズマ堆積システム。 - 【請求項4】 前記コリメーションフィルタが耐火性金
属で作られる請求項3に記載のプラズマ堆積システム。 - 【請求項5】 前記コリメーションフィルタがチタンで
作られる請求項4に記載のプラズマ堆積システム。 - 【請求項6】 前記上アンテナに接続される第1の整合
回路と、 前記第1の整合回路を介して前記上アンテナにRF出力
を提供する第1のRF発生器とを更に備える請求項2に
記載のプラズマ堆積システム。 - 【請求項7】 前記下アンテナに接続される第2の整合
回路と、 前記第2の整合回路を介して前記下アンテナにRF出力
を提供する第2のRF発生器とを更に備える請求項6に
記載のプラズマ堆積システム。 - 【請求項8】 前記上アンテナが、前記ソース生成プラ
ズマ内にRF出力を誘導的に結合させるコイルである請
求項1に記載のプラズマ堆積システム。 - 【請求項9】 前記上キャビティの前記コイルが複数の
巻数をもつ請求項8に記載のプラズマ堆積システム。 - 【請求項10】 前記下アンテナが、前記第2のプラズ
マ内にRF出力を誘導的に結合させるコイルである請求
項2に記載のプラズマ堆積システム。 - 【請求項11】 前記下キャビティの前記コイルが複数
の巻数をもつ請求項10に記載のプラズマ堆積システ
ム。 - 【請求項12】 前記上アンテナが、前記ソース生成プ
ラズマ内にRF出力を容量的に結合させる円筒板である
請求項1に記載のプラズマ堆積システム。 - 【請求項13】 前記下アンテナが、前記第2のプラズ
マ内にRF出力を容量的に結合させる円筒板である請求
項2に記載のプラズマ堆積システム。 - 【請求項14】 前記ソースに接続されたDC出力供給
器を更に備え、前記DC出力供給器は前記ソース生成プ
ラズマを発生させる請求項1に記載のプラズマ堆積シス
テム。 - 【請求項15】 ターゲットから材料をウエハ上へスパ
ッタ堆積するプラズマ堆積システムであって、 チャンバと、 プラズマ処理中にウエハを保持するプラットフォーム
と、 ターゲットが上に配置される、操作中に前記チャンバ内
にプラズマを発生させるソースと、 前記チャンバをターゲットが配置される上キャビティと
ウエハが配置される下キャビティとに分割する、前記タ
ーゲットからスパッタされた材料を通過させる等電位導
電面と、 上キャビティの内部に配置されプラズマを包囲する、R
F出力をソース生成プラズマ内に結合させる上アンテナ
と、 前記上アンテナに接続された第1の整合回路と、 前記第1の整合回路を介して前記上アンテナへRF出力
を提供する第1のRF発生器と、 前記下キャビティの内部に配置され、前記下キャビティ
内に第2のプラズマを発生させる下アンテナと、 前記下アンテナに接続される第2の整合回路と、 前記第2の整合回路を介して前記下アンテナにRF出力
を提供する第2のRF発生器とを備えるプラズマ堆積シ
ステム。 - 【請求項16】 ターゲットから材料をウエハ上へスパ
ッタ堆積するプラズマ堆積システムであって、 チャンバと、 プラズマ処理中にウエハを保持するプラットフォーム
と、 ターゲットが上に配置される、操作中に前記チャンバ内
にプラズマを発生させるソースと、 チャンバの内部に配置されプラズマを包囲する、RF供
給器からのRF出力をソース生成プラズマ内に結合させ
るアンテナと、を備えるプラズマ堆積システム。 - 【請求項17】 前記上アンテナに接続される第1の整
合回路と、 前記第1の整合回路を介して前記上アンテナにRF出力
を提供する第1のRF発生器とを更に備える請求項16
に記載のプラズマ堆積システム。 - 【請求項18】 前記上アンテナが、前記ソース生成プ
ラズマ内にRF出力を誘導的に結合させるコイルである
請求項17に記載のプラズマ堆積システム。 - 【請求項19】 前記上キャビティの前記コイルが複数
の巻数をもつ請求項18に記載のプラズマ堆積システ
ム。 - 【請求項20】 前記ソースに接続されたDC出力供給
器を更に備え、前記DC出力供給器は前記ソース生成プ
ラズマを発生させる請求項17に記載のプラズマ堆積シ
ステム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/145,744 US5431799A (en) | 1993-10-29 | 1993-10-29 | Collimation hardware with RF bias rings to enhance sputter and/or substrate cavity ion generation efficiency |
US08/145744 | 1993-10-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07188917A true JPH07188917A (ja) | 1995-07-25 |
Family
ID=22514337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6267396A Pending JPH07188917A (ja) | 1993-10-29 | 1994-10-31 | コリメーション装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US5431799A (ja) |
EP (1) | EP0653776A1 (ja) |
JP (1) | JPH07188917A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000513881A (ja) * | 1997-05-16 | 2000-10-17 | アプライド マテリアルズ インコーポレイテッド | イオン化メタルプラズマ堆積のための中央コイル式デザイン |
JP2009001902A (ja) * | 1996-05-09 | 2009-01-08 | Applied Materials Inc | プラズマの発生及びスパッタのためのコイル |
US8398832B2 (en) | 1996-05-09 | 2013-03-19 | Applied Materials Inc. | Coils for generating a plasma and for sputtering |
Families Citing this family (83)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2671835B2 (ja) * | 1994-10-20 | 1997-11-05 | 日本電気株式会社 | スパッタ装置とその装置を用いた半導体装置の製造方法 |
JPH08264487A (ja) * | 1994-12-14 | 1996-10-11 | Applied Materials Inc | リエントリー形状コンタクト・ホールをコーティングまたは埋めるための堆積プロセス |
US6132564A (en) * | 1997-11-17 | 2000-10-17 | Tokyo Electron Limited | In-situ pre-metallization clean and metallization of semiconductor wafers |
US6224724B1 (en) | 1995-02-23 | 2001-05-01 | Tokyo Electron Limited | Physical vapor processing of a surface with non-uniformity compensation |
JP3122601B2 (ja) * | 1995-06-15 | 2001-01-09 | 東京エレクトロン株式会社 | プラズマ成膜方法及びその装置 |
US5653811A (en) | 1995-07-19 | 1997-08-05 | Chan; Chung | System for the plasma treatment of large area substrates |
US6264812B1 (en) * | 1995-11-15 | 2001-07-24 | Applied Materials, Inc. | Method and apparatus for generating a plasma |
US5985102A (en) * | 1996-01-29 | 1999-11-16 | Micron Technology, Inc. | Kit for electrically isolating collimator of PVD chamber, chamber so modified, and method of using |
US5705042A (en) * | 1996-01-29 | 1998-01-06 | Micron Technology, Inc. | Electrically isolated collimator and method |
US6340417B1 (en) * | 1996-03-14 | 2002-01-22 | Advanced Micro Devices, Inc. | Reactor and method for ionized metal deposition |
US6827824B1 (en) * | 1996-04-12 | 2004-12-07 | Micron Technology, Inc. | Enhanced collimated deposition |
US5846883A (en) * | 1996-07-10 | 1998-12-08 | Cvc, Inc. | Method for multi-zone high-density inductively-coupled plasma generation |
US5707498A (en) * | 1996-07-12 | 1998-01-13 | Applied Materials, Inc. | Avoiding contamination from induction coil in ionized sputtering |
US6254737B1 (en) * | 1996-10-08 | 2001-07-03 | Applied Materials, Inc. | Active shield for generating a plasma for sputtering |
US5961793A (en) * | 1996-10-31 | 1999-10-05 | Applied Materials, Inc. | Method of reducing generation of particulate matter in a sputtering chamber |
TW358964B (en) * | 1996-11-21 | 1999-05-21 | Applied Materials Inc | Method and apparatus for improving sidewall coverage during sputtering in a chamber having an inductively coupled plasma |
US6254747B1 (en) * | 1996-12-25 | 2001-07-03 | Nihon Shinku Gijutsu Kabushiki Kaisha | Magnetron sputtering source enclosed by a mirror-finished metallic cover |
US6451179B1 (en) | 1997-01-30 | 2002-09-17 | Applied Materials, Inc. | Method and apparatus for enhancing sidewall coverage during sputtering in a chamber having an inductively coupled plasma |
JPH10251849A (ja) * | 1997-03-07 | 1998-09-22 | Tadahiro Omi | スパッタリング装置 |
US5911113A (en) * | 1997-03-18 | 1999-06-08 | Applied Materials, Inc. | Silicon-doped titanium wetting layer for aluminum plug |
JP3846970B2 (ja) * | 1997-04-14 | 2006-11-15 | キヤノンアネルバ株式会社 | イオン化スパッタリング装置 |
US5800688A (en) * | 1997-04-21 | 1998-09-01 | Tokyo Electron Limited | Apparatus for ionized sputtering |
US5948215A (en) * | 1997-04-21 | 1999-09-07 | Tokyo Electron Limited | Method and apparatus for ionized sputtering |
US6210539B1 (en) | 1997-05-14 | 2001-04-03 | Applied Materials, Inc. | Method and apparatus for producing a uniform density plasma above a substrate |
US6103070A (en) * | 1997-05-14 | 2000-08-15 | Applied Materials, Inc. | Powered shield source for high density plasma |
US6361661B2 (en) | 1997-05-16 | 2002-03-26 | Applies Materials, Inc. | Hybrid coil design for ionized deposition |
US5830330A (en) * | 1997-05-22 | 1998-11-03 | Tokyo Electron Limited | Method and apparatus for low pressure sputtering |
US6083363A (en) * | 1997-07-02 | 2000-07-04 | Tokyo Electron Limited | Apparatus and method for uniform, low-damage anisotropic plasma processing |
US6042700A (en) * | 1997-09-15 | 2000-03-28 | Applied Materials, Inc. | Adjustment of deposition uniformity in an inductively coupled plasma source |
US6023038A (en) * | 1997-09-16 | 2000-02-08 | Applied Materials, Inc. | Resistive heating of powered coil to reduce transient heating/start up effects multiple loadlock system |
US6238527B1 (en) * | 1997-10-08 | 2001-05-29 | Canon Kabushiki Kaisha | Thin film forming apparatus and method of forming thin film of compound by using the same |
US6136165A (en) * | 1997-11-26 | 2000-10-24 | Cvc Products, Inc. | Apparatus for inductively-coupled-plasma-enhanced ionized physical-vapor deposition |
DE19755837A1 (de) * | 1997-12-16 | 1999-06-17 | Leybold Ag | Sputteranlage |
US6269765B1 (en) * | 1998-02-11 | 2001-08-07 | Silicon Genesis Corporation | Collection devices for plasma immersion ion implantation |
US6274459B1 (en) | 1998-02-17 | 2001-08-14 | Silicon Genesis Corporation | Method for non mass selected ion implant profile control |
US6287436B1 (en) | 1998-02-27 | 2001-09-11 | Innovent, Inc. | Brazed honeycomb collimator |
US6506287B1 (en) | 1998-03-16 | 2003-01-14 | Applied Materials, Inc. | Overlap design of one-turn coil |
US6093966A (en) * | 1998-03-20 | 2000-07-25 | Motorola, Inc. | Semiconductor device with a copper barrier layer and formation thereof |
US6146508A (en) * | 1998-04-22 | 2000-11-14 | Applied Materials, Inc. | Sputtering method and apparatus with small diameter RF coil |
US6162332A (en) * | 1998-05-07 | 2000-12-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and apparatus for preventing arcing in sputter chamber |
US6660134B1 (en) | 1998-07-10 | 2003-12-09 | Applied Materials, Inc. | Feedthrough overlap coil |
TW434636B (en) | 1998-07-13 | 2001-05-16 | Applied Komatsu Technology Inc | RF matching network with distributed outputs |
WO2000003055A1 (en) * | 1998-07-13 | 2000-01-20 | Tokyo Electron Arizona, Inc. | Shield for ionized physical vapor deposition apparatus |
US6057244A (en) * | 1998-07-31 | 2000-05-02 | Applied Materials, Inc. | Method for improved sputter etch processing |
US6231725B1 (en) | 1998-08-04 | 2001-05-15 | Applied Materials, Inc. | Apparatus for sputtering material onto a workpiece with the aid of a plasma |
US6592728B1 (en) * | 1998-08-04 | 2003-07-15 | Veeco-Cvc, Inc. | Dual collimated deposition apparatus and method of use |
JP3187011B2 (ja) * | 1998-08-31 | 2001-07-11 | 日本電気株式会社 | 半導体装置の製造方法 |
US6132575A (en) * | 1998-09-28 | 2000-10-17 | Alcatel | Magnetron reactor for providing a high density, inductively coupled plasma source for sputtering metal and dielectric films |
US6238528B1 (en) | 1998-10-13 | 2001-05-29 | Applied Materials, Inc. | Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source |
GB2342927B (en) * | 1998-10-23 | 2003-05-07 | Trikon Holdings Ltd | Apparatus and methods for sputtering |
US6579421B1 (en) * | 1999-01-07 | 2003-06-17 | Applied Materials, Inc. | Transverse magnetic field for ionized sputter deposition |
JP2000226655A (ja) * | 1999-02-02 | 2000-08-15 | Matsushita Electric Ind Co Ltd | スパッタリング装置 |
US6458723B1 (en) | 1999-06-24 | 2002-10-01 | Silicon Genesis Corporation | High temperature implant apparatus |
US6409890B1 (en) * | 1999-07-27 | 2002-06-25 | Applied Materials, Inc. | Method and apparatus for forming a uniform layer on a workpiece during sputtering |
US6143140A (en) * | 1999-08-16 | 2000-11-07 | Applied Materials, Inc. | Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field |
US6168696B1 (en) | 1999-09-01 | 2001-01-02 | Micron Technology, Inc. | Non-knurled induction coil for ionized metal deposition, sputtering apparatus including same, and method of constructing the apparatus |
US10047430B2 (en) | 1999-10-08 | 2018-08-14 | Applied Materials, Inc. | Self-ionized and inductively-coupled plasma for sputtering and resputtering |
US8696875B2 (en) * | 1999-10-08 | 2014-04-15 | Applied Materials, Inc. | Self-ionized and inductively-coupled plasma for sputtering and resputtering |
US6610184B2 (en) * | 2001-11-14 | 2003-08-26 | Applied Materials, Inc. | Magnet array in conjunction with rotating magnetron for plasma sputtering |
US6458251B1 (en) * | 1999-11-16 | 2002-10-01 | Applied Materials, Inc. | Pressure modulation method to obtain improved step coverage of seed layer |
US6312568B2 (en) | 1999-12-07 | 2001-11-06 | Applied Materials, Inc. | Two-step AIN-PVD for improved film properties |
US6699375B1 (en) * | 2000-06-29 | 2004-03-02 | Applied Materials, Inc. | Method of extending process kit consumable recycling life |
US6471830B1 (en) | 2000-10-03 | 2002-10-29 | Veeco/Cvc, Inc. | Inductively-coupled-plasma ionized physical-vapor deposition apparatus, method and system |
US6764940B1 (en) | 2001-03-13 | 2004-07-20 | Novellus Systems, Inc. | Method for depositing a diffusion barrier for copper interconnect applications |
US7041201B2 (en) | 2001-11-14 | 2006-05-09 | Applied Materials, Inc. | Sidewall magnet improving uniformity of inductively coupled plasma and shields used therewith |
US7298091B2 (en) * | 2002-02-01 | 2007-11-20 | The Regents Of The University Of California | Matching network for RF plasma source |
US7504006B2 (en) * | 2002-08-01 | 2009-03-17 | Applied Materials, Inc. | Self-ionized and capacitively-coupled plasma for sputtering and resputtering |
US8298933B2 (en) | 2003-04-11 | 2012-10-30 | Novellus Systems, Inc. | Conformal films on semiconductor substrates |
US7842605B1 (en) | 2003-04-11 | 2010-11-30 | Novellus Systems, Inc. | Atomic layer profiling of diffusion barrier and metal seed layers |
US20050098427A1 (en) * | 2003-11-11 | 2005-05-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | RF coil design for improved film uniformity of an ion metal plasma source |
US7695590B2 (en) | 2004-03-26 | 2010-04-13 | Applied Materials, Inc. | Chemical vapor deposition plasma reactor having plural ion shower grids |
US20050211547A1 (en) * | 2004-03-26 | 2005-09-29 | Applied Materials, Inc. | Reactive sputter deposition plasma reactor and process using plural ion shower grids |
US7767561B2 (en) | 2004-07-20 | 2010-08-03 | Applied Materials, Inc. | Plasma immersion ion implantation reactor having an ion shower grid |
US8058156B2 (en) | 2004-07-20 | 2011-11-15 | Applied Materials, Inc. | Plasma immersion ion implantation reactor having multiple ion shower grids |
US7456095B2 (en) * | 2005-10-03 | 2008-11-25 | International Business Machines Corporation | Method and apparatus for forming nickel silicide with low defect density in FET devices |
US7510634B1 (en) | 2006-11-10 | 2009-03-31 | Novellus Systems, Inc. | Apparatus and methods for deposition and/or etch selectivity |
KR20160145849A (ko) * | 2008-06-17 | 2016-12-20 | 어플라이드 머티어리얼스, 인코포레이티드 | 균일한 증착을 위한 장치 및 방법 |
KR20160087391A (ko) * | 2008-08-28 | 2016-07-21 | 가부시키가이샤 이엠디 | 스퍼터링 박막형성장치 |
KR20140068962A (ko) * | 2011-08-30 | 2014-06-09 | 가부시키가이샤 이엠디 | 스퍼터링 박막 형성 장치 |
CN103849848B (zh) * | 2012-11-28 | 2016-08-31 | 北京北方微电子基地设备工艺研究中心有限责任公司 | 物理气相沉积装置 |
US10692706B2 (en) * | 2013-03-12 | 2020-06-23 | Applied Materials, Inc. | Methods and apparatus for reducing sputtering of a grounded shield in a process chamber |
JP7034912B2 (ja) | 2015-10-27 | 2022-03-14 | アプライド マテリアルズ インコーポレイテッド | Pvdスパッタチャンバ向けのバイアス可能なフラックスオプティマイザ/コリメータ |
CN113474483A (zh) * | 2019-02-07 | 2021-10-01 | 朗姆研究公司 | 能时间和/或空间上调制一或更多等离子体的衬底处理 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3649502A (en) * | 1969-08-14 | 1972-03-14 | Precision Instr Co | Apparatus for supported discharge sputter-coating of a substrate |
JPS61190070A (ja) * | 1985-02-20 | 1986-08-23 | Hitachi Ltd | スパツタ装置 |
JP2515731B2 (ja) * | 1985-10-25 | 1996-07-10 | 株式会社日立製作所 | 薄膜形成装置および薄膜形成方法 |
US4668338A (en) * | 1985-12-30 | 1987-05-26 | Applied Materials, Inc. | Magnetron-enhanced plasma etching process |
US4824544A (en) * | 1987-10-29 | 1989-04-25 | International Business Machines Corporation | Large area cathode lift-off sputter deposition device |
US4931158A (en) * | 1988-03-22 | 1990-06-05 | The Regents Of The Univ. Of Calif. | Deposition of films onto large area substrates using modified reactive magnetron sputtering |
US4962063A (en) * | 1988-11-10 | 1990-10-09 | Applied Materials, Inc. | Multistep planarized chemical vapor deposition process with the use of low melting inorganic material for flowing while depositing |
US5108569A (en) * | 1989-11-30 | 1992-04-28 | Applied Materials, Inc. | Process and apparatus for forming stoichiometric layer of a metal compound by closed loop voltage controlled reactive sputtering |
US5021121A (en) * | 1990-02-16 | 1991-06-04 | Applied Materials, Inc. | Process for RIE etching silicon dioxide |
US5202008A (en) * | 1990-03-02 | 1993-04-13 | Applied Materials, Inc. | Method for preparing a shield to reduce particles in a physical vapor deposition chamber |
EP0451642B1 (en) * | 1990-03-30 | 1996-08-21 | Applied Materials, Inc. | Sputtering system |
US5178739A (en) * | 1990-10-31 | 1993-01-12 | International Business Machines Corporation | Apparatus for depositing material into high aspect ratio holes |
KR100255703B1 (ko) * | 1991-06-27 | 2000-05-01 | 조셉 제이. 스위니 | 전자기 rf연결부를 사용하는 플라즈마 처리기 및 방법 |
-
1993
- 1993-10-29 US US08/145,744 patent/US5431799A/en not_active Expired - Fee Related
-
1994
- 1994-10-05 EP EP94307308A patent/EP0653776A1/en not_active Withdrawn
- 1994-10-31 JP JP6267396A patent/JPH07188917A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009001902A (ja) * | 1996-05-09 | 2009-01-08 | Applied Materials Inc | プラズマの発生及びスパッタのためのコイル |
US8398832B2 (en) | 1996-05-09 | 2013-03-19 | Applied Materials Inc. | Coils for generating a plasma and for sputtering |
JP2000513881A (ja) * | 1997-05-16 | 2000-10-17 | アプライド マテリアルズ インコーポレイテッド | イオン化メタルプラズマ堆積のための中央コイル式デザイン |
Also Published As
Publication number | Publication date |
---|---|
EP0653776A1 (en) | 1995-05-17 |
US5431799A (en) | 1995-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH07188917A (ja) | コリメーション装置 | |
US6368469B1 (en) | Coils for generating a plasma and for sputtering | |
US6238528B1 (en) | Plasma density modulator for improved plasma density uniformity and thickness uniformity in an ionized metal plasma source | |
US6254737B1 (en) | Active shield for generating a plasma for sputtering | |
US6042700A (en) | Adjustment of deposition uniformity in an inductively coupled plasma source | |
US5178739A (en) | Apparatus for depositing material into high aspect ratio holes | |
CN107250425B (zh) | 通过靶使用期控制一或多个膜性质的自动电容调节器电流补偿 | |
US6660134B1 (en) | Feedthrough overlap coil | |
US20130168232A1 (en) | Coils for generating a plasma and for sputtering | |
EP0978138A1 (en) | Method and apparatus for ionized sputtering of materials | |
US6506287B1 (en) | Overlap design of one-turn coil | |
US6824658B2 (en) | Partial turn coil for generating a plasma | |
EP0836219A2 (en) | Active shield for generating a plasma for sputtering | |
US6077402A (en) | Central coil design for ionized metal plasma deposition | |
JPH1060637A (ja) | 基板上に材料を堆積する方法及び装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050712 |