JPH07187684A - Production of quartz glass and quartz glass made by the same - Google Patents
Production of quartz glass and quartz glass made by the sameInfo
- Publication number
- JPH07187684A JPH07187684A JP5330740A JP33074093A JPH07187684A JP H07187684 A JPH07187684 A JP H07187684A JP 5330740 A JP5330740 A JP 5330740A JP 33074093 A JP33074093 A JP 33074093A JP H07187684 A JPH07187684 A JP H07187684A
- Authority
- JP
- Japan
- Prior art keywords
- quartz glass
- gas
- hydrogen
- combustion
- gaseous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 238000004519 manufacturing process Methods 0.000 title claims description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 83
- 239000001257 hydrogen Substances 0.000 claims abstract description 48
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 48
- 238000002834 transmittance Methods 0.000 claims abstract description 39
- 238000002485 combustion reaction Methods 0.000 claims abstract description 30
- 239000007789 gas Substances 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000002994 raw material Substances 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 4
- 230000003287 optical effect Effects 0.000 claims description 28
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 25
- 229910001882 dioxygen Inorganic materials 0.000 claims description 25
- 238000009826 distribution Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 15
- 238000012937 correction Methods 0.000 claims description 6
- 239000012159 carrier gas Substances 0.000 claims description 5
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 230000004075 alteration Effects 0.000 claims description 3
- 230000006750 UV protection Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 230000002194 synthesizing effect Effects 0.000 description 5
- 238000000233 ultraviolet lithography Methods 0.000 description 5
- 239000000567 combustion gas Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 206010040925 Skin striae Diseases 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000005304 optical glass Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229910008045 Si-Si Inorganic materials 0.000 description 1
- 229910006411 Si—Si Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- KEUKAQNPUBYCIC-UHFFFAOYSA-N ethaneperoxoic acid;hydrogen peroxide Chemical compound OO.CC(=O)OO KEUKAQNPUBYCIC-UHFFFAOYSA-N 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70241—Optical aspects of refractive lens systems, i.e. comprising only refractive elements
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1415—Reactant delivery systems
- C03B19/1423—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1469—Means for changing or stabilising the shape or form of the shaped article or deposit
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/06—Concentric circular ports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/12—Nozzle or orifice plates
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/04—Multi-nested ports
- C03B2207/14—Tapered or flared nozzles or ports angled to central burner axis
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/20—Specific substances in specified ports, e.g. all gas flows specified
- C03B2207/24—Multiple flame type, e.g. double-concentric flame
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/36—Fuel or oxidant details, e.g. flow rate, flow rate ratio, fuel additives
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/40—Mechanical flame shields
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/42—Assembly details; Material or dimensions of burner; Manifolds or supports
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/70—Control measures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は石英ガラスの製造方法に
関するものであり、特に、紫外線レーザ全般に使用され
る光学部材用の合成石英ガラスの製造方法及びそれによ
り製造された石英ガラスに関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing quartz glass, and more particularly to a method for producing synthetic quartz glass for optical members used in ultraviolet lasers in general and quartz glass produced thereby. is there.
【0002】[0002]
【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパと呼ばれる露光装置が用いられて
いる。このステッパの光源は、近年の LSIの高集積化に
ともなって g線( 436nm)から i線( 365nm)、さらには K
rF( 248nm)や ArF( 193nm)エキシマレーザへと短波長化
が進められている。2. Description of the Related Art Conventionally, an exposure apparatus called a stepper has been used in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon. The light source of this stepper is g-line (436 nm) to i-line (365 nm), and further K
Shorter wavelengths are being promoted to rF (248 nm) and ArF (193 nm) excimer lasers.
【0003】一般に、ステッパの照明系あるいは投影レ
ンズとして用いられる光学ガラスは、i線よりも短い波
長領域では光透過率が低下するため、従来の光学ガラス
にかえて合成石英ガラスやCaF2(蛍石)等のフッ化物単
結晶を用いることが提案されている。ステッパに搭載さ
れる光学系は多数のレンズの組み合わせにより構成され
ており、たとえレンズ一枚当たりの透過率低下量が小さ
くとも、それが使用レンズ枚数分だけ積算されてしま
い、照射面での光量の低下につながるため、素材に対し
て高透過率化が要求されている。また、使用波長が短く
なるほど、屈折率分布のほんの小さなムラによってでも
結像性能が極端に悪くなる。Generally, the optical glass used as an illumination system or a projection lens of a stepper has a low light transmittance in a wavelength region shorter than the i-line, and therefore synthetic quartz glass or CaF 2 (fluorite) is used instead of the conventional optical glass. It has been proposed to use a fluoride single crystal such as stone. The optical system mounted on the stepper is composed of a combination of many lenses, and even if the amount of decrease in transmittance per lens is small, it is added up by the number of lenses used, and the amount of light on the irradiation surface is increased. Therefore, high transmittance is required for the material. Further, as the wavelength used becomes shorter, the image forming performance becomes extremely poor even if the refractive index distribution is very small.
【0004】このように、紫外線リソグラフィー用の光
学素子として用いられる石英ガラスには、紫外線の高透
過性と屈折率の高均質性が要求されている。しかし、通
常市販されている合成石英ガラスは、均質性、耐紫外線
性を始めとする品質が不十分であり、前述したような精
密光学機器に使用することはできなかった。このため、
これまでに均質化のための二次処理(特公平03-17775,
特開昭64-28240)や、加圧水素ガス中での熱処理による
耐レーザ性の向上(特開平03-109233 )が提案されてい
る。As described above, quartz glass used as an optical element for ultraviolet lithography is required to have high transmittance of ultraviolet rays and high homogeneity of refractive index. However, the commercially available synthetic quartz glass is insufficient in quality such as homogeneity and ultraviolet resistance, and cannot be used in the above-described precision optical equipment. For this reason,
Up to now, secondary treatment for homogenization (Japanese Patent Publication No. 03-17775,
JP-A 64-28240) and improvement of laser resistance by heat treatment in pressurized hydrogen gas (JP-A 03-109233) have been proposed.
【0005】これらの方法は、一旦、石英ガラスを合成
した後、光学的性能を向上させるために二次的な処理を
施す方法である。These methods are methods in which silica glass is once synthesized and then subjected to secondary treatment in order to improve optical performance.
【0006】[0006]
【発明が解決しようとする課題】石英ガラスに紫外領域
の光が作用すると、E'センターと呼ばれる 5.8eVの吸収
帯が現れ紫外領域の透過率が著しく低下する。ここに水
素分子が存在すると、E'センターを水素分子がターミネ
ートし、紫外領域での石英ガラスの透過率低下量を激減
させることができるという報告がある(米国特許第50
86352号)。When light in the ultraviolet region acts on quartz glass, an absorption band of 5.8 eV called E'center appears, and the transmittance in the ultraviolet region remarkably decreases. It is reported that if hydrogen molecules are present here, hydrogen molecules terminate the E'center, and the amount of reduction in the transmittance of the quartz glass in the ultraviolet region can be drastically reduced (US Pat. No. 50).
86352).
【0007】この様に石英ガラス中における水素分子
は、その紫外線耐久性を著しく向上させる効果がある。
しかしながら、前述のような従来の技術では、石英ガラ
ス中に水素分子を導入するために、一旦、石英ガラスを
合成した後に再び熱処理(水素処理等)を加えなければ
ならないという問題がある。すなわち、この方法である
と水素分子の導入まで熱を少なくとも2回加えることに
なる。それ故、生産性が低下し、最終生産物がコストア
ップする等の問題がある。また、二次処理で水素分子を
導入するためには水素雰囲気中で処理を行わねばなら
ず、発火・爆発等の危険性も伴う。さらに、不純物の混
入、高温での加圧熱処理で還元雰囲気に曝すことによ
る、新たな吸収帯や発光帯の発生という問題もあった。As described above, the hydrogen molecules in the quartz glass have an effect of remarkably improving the ultraviolet durability.
However, the conventional technique as described above has a problem that, in order to introduce hydrogen molecules into the quartz glass, heat treatment (hydrogen treatment or the like) must be performed again after synthesizing the quartz glass once. That is, in this method, heat is applied at least twice until the introduction of hydrogen molecules. Therefore, there are problems that the productivity is lowered and the cost of the final product is increased. Further, in order to introduce hydrogen molecules in the secondary treatment, the treatment must be carried out in a hydrogen atmosphere, and there is a risk of ignition and explosion. Further, there is a problem that a new absorption band or a new emission band is generated due to the inclusion of impurities and the exposure to the reducing atmosphere by the pressure heat treatment at a high temperature.
【0008】加えて、近年、光リソグラフィー技術に用
いるレンズ径が大きくなるにつれ、二次処理で水素分子
を大口径の石英ガラス光学部材に均一に導入するには、
拡散係数から考えてもかなりの長時間を有する。さら
に、紫外線リソグラフィー用のレンズとして用いること
を考えた場合、最もエネルギー密度が高くなるため、よ
り高い水素濃度が必要となる中央部の水素濃度が周辺部
に比較して低くなるという問題があった。In addition, in recent years, as the lens diameter used in the photolithography technique becomes larger, in order to uniformly introduce hydrogen molecules into the large-diameter silica glass optical member by the secondary treatment,
Considering the diffusion coefficient, it has a considerably long time. Further, when it is considered to be used as a lens for ultraviolet lithography, the energy density becomes the highest, so that there is a problem that the hydrogen concentration in the central portion, which requires a higher hydrogen concentration, becomes lower than that in the peripheral portion. .
【0009】本発明は、これらの問題を解決し、紫外光
照射による透過率低下を抑えるのに必要な量の水素分子
を含有し、泡・異物・脈理・歪等含まず、光学的に均質
で高透過率・紫外線耐久性を有する石英ガラスの製造方
法を提供することを目的とする。The present invention contains these hydrogen molecules in an amount necessary for solving these problems and suppressing a decrease in transmittance due to ultraviolet light irradiation, and does not contain bubbles, foreign matters, striae, strain, etc. An object of the present invention is to provide a method for producing a quartz glass that is homogeneous, has high transmittance, and has durability against ultraviolet rays.
【0010】[0010]
【課題を解決する為の手段】そこで本発明は、水素分子
の導入を合成時に行うことにより二次処理が不要になる
ことに着目し、鋭意研究を進めた。その結果、バーナの
中心部に配置されSi化合物ガスを噴出する原料用円状管
の周りの燃焼ガスの割合を水素過剰にすることにより合
成時に高濃度の水素分子が導入され、二次処理が不要に
なることがわかった。そして、さらに、最外部の燃焼用
リング状管とその内部の燃焼用円状管から噴出させる燃
焼ガスの割合については、水素過剰雰囲気が強すぎる
と、合成される石英ガラスの透過率が低くなることがわ
かった。In view of the above, the present invention has focused its attention on the fact that the introduction of hydrogen molecules at the time of synthesis eliminates the need for secondary treatment, and has conducted intensive research. As a result, a high concentration of hydrogen molecules was introduced during the synthesis by making the proportion of the combustion gas around the raw material circular tube that ejects the Si compound gas in the center of the burner excessive, and the secondary treatment was performed. I found it unnecessary. Further, regarding the proportion of the combustion gas ejected from the outermost combustion ring-shaped tube and the combustion circular tube inside thereof, if the hydrogen excess atmosphere is too strong, the transmittance of the synthesized quartz glass becomes low. I understood it.
【0011】よって、本発明においては、「最外部を除
く複数の燃焼用リング状管から噴出させる酸素ガスおよ
び水素ガスの割合」を、理論当量比および「最外部の燃
焼用リング状管とその内部の燃焼用円状管から噴出させ
る酸素ガスおよび水素ガスの割合」と比較して水素過剰
とするものとした。あるいは、本発明においては、「最
外部を除く複数の燃焼用リング状管から噴出させる酸素
ガスおよび水素ガスの割合」を理論当量比と比較して水
素過剰とし、「最外部の燃焼用リング状管とその内部の
燃焼用円状管から噴出させる酸素ガスおよび水素ガスの
割合」を理論当量比と比較して同等または酸素過剰とす
るものとした。Therefore, in the present invention, the "proportion of oxygen gas and hydrogen gas ejected from a plurality of combustion ring-shaped tubes excluding the outermost portion" is defined as the theoretical equivalence ratio and "the outermost combustion ring-shaped tube and its It is assumed that the amount of hydrogen is excessive in comparison with the “proportion of oxygen gas and hydrogen gas ejected from the internal combustion circular tube”. Alternatively, in the present invention, “the ratio of oxygen gas and hydrogen gas ejected from a plurality of combustion ring-shaped tubes excluding the outermost portion” is compared with the theoretical equivalence ratio to make hydrogen excess, and The ratio of the oxygen gas and the hydrogen gas ejected from the tube and the combustion circular tube inside the tube is equal to or more than the theoretical equivalent ratio.
【0012】[0012]
【作用】前述したように、水素分子を導入する方法とし
て、一般的には熱間等方圧プレス( HIP)や高温高圧雰囲
気熱処理炉などによる二次処理を行うことが多い。この
二次処理時に酸素欠乏型欠陥の生成や、Na等不純物の混
入により紫外光学材料として用いる場合に問題となる、
新たなる吸収帯の生成やその処理温度範囲によっては失
透などが起こり得る。As described above, as a method of introducing hydrogen molecules, a secondary treatment is generally performed by a hot isostatic press (HIP), a high temperature high pressure atmosphere heat treatment furnace, or the like. The generation of oxygen-deficient defects during this secondary treatment, or a problem when used as an ultraviolet optical material due to the inclusion of impurities such as Na,
Devitrification may occur depending on the generation of a new absorption band and the processing temperature range.
【0013】本発明の製造方法であれば、このようなデ
メリットがない。さらに、2次処理では大口径な石英ガ
ラス部材に水素を導入することが困難であるのに対し、
本発明の製造方法であれば、合成時に水素分子を導入す
るため、石英ガラスの径によらず高濃度の水素分子濃度
を保たせることができる。この様にして得られた石英ガ
ラスインゴット中の水素分子濃度は、径方向では中心部
において比較的なだらかな分布を持ち、周縁部に近くな
るほど減少する、すなわち凸型の分布になる。凸型の水
素分子濃度の分布をもつ石英ガラスであれば、紫外線リ
ソグラフィー用の光学素子として用いた場合、最もエネ
ルギー密度が高い中心部においても紫外線耐久性が保た
れる。The manufacturing method of the present invention does not have such a demerit. Further, while it is difficult to introduce hydrogen into the large-diameter quartz glass member by the secondary treatment,
According to the production method of the present invention, since hydrogen molecules are introduced during synthesis, it is possible to maintain a high concentration of hydrogen molecules regardless of the diameter of the silica glass. The hydrogen molecule concentration in the quartz glass ingot thus obtained has a comparatively gentle distribution in the central portion in the radial direction, and decreases toward the peripheral portion, that is, a convex distribution. If quartz glass having a convex hydrogen molecule concentration distribution is used as an optical element for ultraviolet lithography, ultraviolet durability is maintained even in the central portion where the energy density is highest.
【0014】以下に合成により水素を合成する機構を説
明する。合成時における石英ガラス中への水素分子の溶
解過程はよく解ってはいないが、キャリアガスと共に噴
射されたSi化合物(原料)ガスが加水分解されて微粒子
(石英ガラス粉)状になる際に、ある割合の水素分子を
巻き込みながらガラス化されると推測される。それ故、
中心部により近い部分が水素過剰であれば、石英ガラス
中に水素分子が溶け込む確率が高くなり水素分子濃度は
高くなるはずである。この様な方法により高濃度の水素
分子を含有させることで、汚染や危険性を考慮せずとも
紫外線耐久性を向上させることが可能になる。しかしな
がらこの方法において、最外部部の燃焼ガス(支燃性ガ
スと助燃性ガス)の割合を水素過剰にすることだけは得
策ではない。この部位は、他の部位に比べガス流量が非
常に多いため水素過剰・酸素欠乏雰囲気になり易く、こ
の様な条件で合成することによりSi−Si等の酸素欠乏型
欠陥が生成してしまい、逆に225nm以下の透過率低下を
招いてしまうからである。The mechanism of synthesizing hydrogen by synthesis will be described below. Although the dissolution process of hydrogen molecules in quartz glass during synthesis is not well understood, when the Si compound (raw material) gas injected together with the carrier gas is hydrolyzed into fine particles (quartz glass powder), It is presumed that vitrification occurs while involving a certain proportion of hydrogen molecules. Therefore,
If there is an excess of hydrogen in the portion closer to the center, the probability that hydrogen molecules will dissolve in the silica glass will increase, and the hydrogen molecule concentration should increase. By containing a high concentration of hydrogen molecules by such a method, it becomes possible to improve the ultraviolet durability without considering contamination or danger. However, in this method, it is not a good idea to make the proportion of the combustion gas (the combustion-supporting gas and the combustion-supporting gas) in the outermost portion excessive with hydrogen. Since this part has a much higher gas flow rate than other parts, it is likely to be in a hydrogen excess / oxygen deficient atmosphere, and by synthesizing under such conditions, oxygen deficient type defects such as Si-Si are generated, On the contrary, this causes a decrease in transmittance of 225 nm or less.
【0015】本発明の石英ガラスの製造方法により製造
される石英ガラスであれば、屈折率分布に関して光リソ
グラフィー用光学素子として直接光学性能に影響する光
学的な物性を満足する。石英ガラスの屈折率分布を細か
く見ると、パワー成分、アス成分、回転対称成分、傾斜
成分、ランダム成分等に分離でき、それぞれが重なりあ
って全体の屈折率分布を形成している。そして、これら
の各成分が光学性能に及ぼす影響はそれぞれ異なってい
る。The quartz glass produced by the method for producing quartz glass according to the present invention satisfies the optical properties of the refractive index distribution, which directly affect the optical performance of the optical element for photolithography. A close look at the refractive index distribution of quartz glass reveals that it can be separated into a power component, an ass component, a rotationally symmetric component, a gradient component, a random component, etc., and these components overlap to form the entire refractive index distribution. The influence of each of these components on the optical performance is different.
【0016】波面収差のRMS値(パワー成分補正後)
は、光学性能に直接影響を与える成分のみを表してい
る。パワー成分補正後としたのは、パワー成分は曲率半
径の誤差と同一であり、例えばレンズとして用いる場合
であればレンズの曲率により補正が可能であり、レンズ
の空気間隔によっても容易に補正が可能であるため、光
学系に使用した場合に像質に直接影響を及ぼさないから
である。RMS value of wavefront aberration (after power component correction)
Indicates only the component that directly affects the optical performance. After the power component correction, the power component is the same as the error of the radius of curvature. For example, when it is used as a lens, it can be corrected by the curvature of the lens, and can also be easily corrected by the air space of the lens. Therefore, when used in an optical system, it does not directly affect the image quality.
【0017】本発明の製造方法によれば、具体的には、
波面収差のRMS(二乗平均平方根)値がパワー成分補
正後に0.02λ以下、光軸方向の屈折率の均質性がパワー
成分補正なしでΔn≦2×10-6、入射光軸を含む断面の
屈折率分布が極値がひとつで中央対称、複屈折≦2nm/cm
であるような石英ガラスが、それぞれ得られる。また、
石英ガラス中のどの部位においても 365nm, 248nm, 1
93nmにおいて10mm内部透過率が 99.9%を超える石英ガラ
スが得られる。この様な石英ガラスは未だ知られていな
かった。According to the manufacturing method of the present invention, specifically,
The RMS (root mean square) value of the wavefront aberration is 0.02λ or less after power component correction, the homogeneity of the refractive index in the optical axis direction is Δn ≦ 2 × 10 -6 without power component correction, and the refraction of the cross section including the incident optical axis Central distribution, with single extreme value distribution, birefringence ≤ 2 nm / cm
Quartz glass such as is obtained respectively. Also,
365nm, 248nm, 1 at any site in quartz glass
Quartz glass with 10 mm internal transmittance of more than 99.9% at 93 nm is obtained. Such quartz glass has not been known yet.
【0018】また、KrFエキシマレーザを 400mJ/cm2・pu
lseで106pulse照射した後、 248nmにおける10mm内部透
過率が 99.9%を超える石英ガラス、あるいは、ArFエキ
シマレーザを 100mJ/cm2・pulseで106pulse照射した後、
193nmにおける10mm内部透過率が 99.9%を超える石英ガ
ラスが得られる。これは、本発明によって得られる石英
ガラスの水素濃度がいずれの場所においても5×1017個/
cm3以上であり、中央部の方が周辺部より高い水素濃度
を持つからである。このような石英ガラスは、紫外線照
射により生成する欠陥が生じにくく、紫外線リソグラフ
ィー用光学素子としての耐久性を満足する。Further, a KrF excimer laser is set to 400 mJ / cm 2 pu
After irradiating 10 6 pulses with lse, 10 mm internal transmittance at 248 nm exceeds 99.9%, or ArF excimer laser is irradiated with 100 mJ / cm 2 pulse for 10 6 pulses,
Quartz glass with a 10 mm internal transmittance of more than 99.9% at 193 nm is obtained. This means that the hydrogen concentration of quartz glass obtained by the present invention is 5 × 10 17 pieces / anywhere.
cm 3 and towards the central portion is because with a higher hydrogen concentration than the peripheral portion. Such quartz glass is less likely to cause defects generated by ultraviolet irradiation, and satisfies the durability as an optical element for ultraviolet lithography.
【0019】なぜならば、本発明の石英ガラスの製造方
法においては、これらの光学性能に悪影響を及ぼす合成
後の2次処理を必要としないためである。これらの石英
ガラスは、紫外線リソグラフィー用光学素子としての使
用に適している。This is because the method for producing quartz glass according to the present invention does not require a post-synthesis secondary treatment which adversely affects the optical performance of these materials. These quartz glasses are suitable for use as an optical element for ultraviolet lithography.
【0020】[0020]
【実施例】本発明における実施例を以下に記す。表1及
び表2に、実施例および比較例の石英ガラスの製造条件
および物性を示す。また、表3は、表1、表2中の符号
(○、△、×)を説明するものである。EXAMPLES Examples of the present invention will be described below. Tables 1 and 2 show manufacturing conditions and physical properties of the quartz glass of Examples and Comparative Examples. Further, Table 3 describes the symbols (◯, Δ, ×) in Tables 1 and 2.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【表3】 [Table 3]
【0024】〔実施例1〕高純度石英ガラスインゴット
は、原料として高純度の珪素の塩素化合物ガスを用い、
図2及び図3に示すような石英ガラス製多重管バーナに
て酸素ガス及び水素ガスを表1に示すような配置・流量
にして燃焼させ、中心部から原料ガスをキャリアガスで
希釈して噴出させる、いわゆる酸水素炎加水分解法ある
いはダイレクト法と呼ばれる方法により合成した。合成
の際、ガラスを積層させる不透明石英ガラス板からなる
ターゲットを一定周期で回転及び揺動させ、更に降下を
同時に行うことによりインゴット上部の位置を常時バー
ナから同距離に保った(特願平05-22293、特願平05-222
94参照)。このようにして複数個のインゴットを合成し
た。これらのインゴット(φ160〜500mm, L800〜1200
mm)から、インゴットの回転中心と一致させる様に、円
板状のテストピース(φ150〜450mm,t50mm)を50〜 1
00mm毎に水平に切り出した。それぞれのサンプルについ
て、高圧水銀灯下において脈理の測定、複屈折測定装置
による歪の測定、及びHe−Neレーザ干渉計を用いオイル
オンプレート法により光軸方向及び光軸垂直方向におけ
る屈折率分布の測定を行った。さらに、屈折率の傾斜成
分を測定するため、その円板をはさむ外側からプリズム
形状のテストピースを取り、最小偏角法で屈折率の絶対
値を測定した。これら切り出したバルク体の上層部を
H30×L150×t10mmの寸法に切断し、側面四面研磨を
施し水素分子濃度測定用試料片とした。また、残りをφ
60×t10mm( 5mmのオリエンテーションフラット付き)
の寸法に切断し、両面及び側面の三面研磨を施し水素分
子濃度測定,透過率測定及びエキシマレーザ照射用試料
片とした(図6参照)。Example 1 A high purity quartz glass ingot uses a high purity chlorine compound gas of silicon as a raw material,
Oxygen gas and hydrogen gas are burned at the arrangement and flow rates shown in Table 1 by a quartz glass multi-tube burner as shown in FIGS. 2 and 3, and the raw material gas is diluted with a carrier gas and ejected from the center. It was synthesized by a so-called oxyhydrogen flame hydrolysis method or a method called a direct method. During synthesis, a target made of an opaque quartz glass plate on which glass is laminated is rotated and oscillated at a constant cycle, and further descended at the same time to keep the position of the upper part of the ingot at the same distance from the burner at all times (Japanese Patent Application No. -22293, Japanese Patent Application No. 05-222
94). In this way, a plurality of ingots were synthesized. These ingots (φ160-500mm, L800-1200)
mm) to a disc-shaped test piece (φ150-450mm, t50mm) 50-1 to match the center of rotation of the ingot.
It was cut horizontally every 00 mm. For each sample, the measurement of striae under a high-pressure mercury lamp, the measurement of strain with a birefringence measuring device, and the refractive index distribution in the optical axis direction and the optical axis vertical direction by an oil-on-plate method using a He-Ne laser interferometer. The measurement was performed. Further, in order to measure the gradient component of the refractive index, a prism-shaped test piece was taken from the outside sandwiching the disc, and the absolute value of the refractive index was measured by the minimum deviation method. The upper layer of these cut bulk bodies
The sample was cut into a size of H30 × L150 × t10 mm, and the side surfaces were polished to obtain a hydrogen molecule concentration measurement sample piece. The rest is φ
60 × t10mm (with 5mm orientation flat)
The sample was cut into a size of 3 and polished on both sides and sides to obtain a hydrogen molecule concentration measurement, transmittance measurement, and excimer laser irradiation sample piece (see FIG. 6).
【0025】水素分子濃度の測定は、レーザラマン分光
光度計により行った。定量は、サンプルを試料台にセッ
トした後、 Ar+レーザ(出力 800mW)を照射した時に発
生するサンプルと直角方向のラマン散乱光のうち、 800
cm-1と4135cm-1の強度を測定し、その強度比をとること
により行った(V.S.Khotimchenko et al., J.Appl.Spect
rosc., 46, 632-635(1987))。The hydrogen molecule concentration was measured by a laser Raman spectrophotometer. Quantification is based on the Raman scattered light in the direction perpendicular to the sample generated when Ar + laser (output 800 mW) is irradiated after setting the sample on the sample table.
measuring the intensity of cm -1 and 4135 cm -1, it was carried out by taking the intensity ratio (VSKhotimchenko et al., J.Appl.Spect
rosc., 46, 632-635 (1987)).
【0026】透過率は、サンプルの10mm厚における内部
透過率を測定した。その測定は、近赤−可視−紫外用ダ
ブルビーム分光光度計を用い、リファレンス側に厚さ 2
mmのサンプルを、測定側に厚さ12mmのサンプル(両者共
に同じロットからサンプリングしたもの)をセットする
ことにより行った。このようにすることにより、サンプ
ル内での多重反射成分及び表面反射成分が取り除かれ、
10mm厚における内部透過率が測定できる。この際、分光
光度計の精度を高めるために、厚さを変えた石英ガラス
標準サンプル( 1mm〜28mm)で、測定波長で厚みによる透
過率変化が起こらないように調整した(特願平5-21121
7)。The transmittance was determined by measuring the internal transmittance of the sample at a thickness of 10 mm. The measurement was performed using a double-beam spectrophotometer for near red-visible-ultraviolet, and a thickness of 2
A mm sample was prepared by setting a 12 mm thick sample (both sampled from the same lot) on the measurement side. By doing so, multiple reflection components and surface reflection components in the sample are removed,
The internal transmittance at a thickness of 10 mm can be measured. At this time, in order to improve the accuracy of the spectrophotometer, the quartz glass standard samples (1 mm to 28 mm) with different thicknesses were adjusted so that the transmittance did not change due to the thickness at the measurement wavelength (Japanese Patent Application No. 5- 21121
7).
【0027】また、エキシマレーザ照射は、照射用試料
片に対して KrFエキシマレーザ( 248nm)及び ArFエキシ
マレーザ( 193nm)を用い、前者についてはエネルギー密
度 400mJ/cm2・pulseで1×106pulseまで、後者について
はエネルギー密度 100mJ/cm2・pulseで1×106pulseまで
照射を行った。ここで諸物性を測定するために用意され
たサンプルは、表1に記載したサンプル1,2である。For the excimer laser irradiation, a KrF excimer laser (248 nm) and an ArF excimer laser (193 nm) were used for the irradiation sample piece, and the former was 1 × 10 6 pulse at an energy density of 400 mJ / cm 2 · pulse. Up to 1 × 10 6 pulse with energy density of 100 mJ / cm 2 · pulse for the latter. Samples prepared for measuring various physical properties are Samples 1 and 2 shown in Table 1.
【0028】その結果、サンプル1では4.1×1018個/cm
3もの非常に多量の水素分子が石英ガラス塊内に溶存し
ていた。原料を四塩化珪素ではなく、トリクロロシラン
を用いて合成(サンプル2)しても、若干少なくはなる
が3.1×1018個/cm3の水素分子が溶存していた。これら
いずれのサンプルにおいても屈折率分布について中央対
称であった。また、屈折率分布においても光軸方向・光
軸垂直方向いずれにおいても良好な結果が得られた。さ
らに、248nm,193nmにおける透過率も 99.9%以上であ
り、エキシマレーザ照射試験後の透過率も、サンプル
1,2共に 99.9%以上であった。As a result, in Sample 1, 4.1 × 10 18 pieces / cm
A very large number of 3 hydrogen molecules were dissolved in the quartz glass block. Even when the raw material was synthesized using trichlorosilane instead of silicon tetrachloride (Sample 2), 3.1 × 10 18 hydrogen molecules / cm 3 were dissolved, although slightly reduced. In all of these samples, the refractive index distribution was center symmetric. Also, good results were obtained in the refractive index distribution both in the optical axis direction and in the direction perpendicular to the optical axis. Further, the transmittances at 248 nm and 193 nm were 99.9% or higher, and the transmittances after the excimer laser irradiation test were 99.9% or higher for both samples 1 and 2.
【0029】〔比較例1〕ここで用意したサンプルは表
1のサンプル3〜6である。サンプル3は水素キャリア
で最外部の燃焼ガスにおける酸水素比を同心円状多重管
の酸水素比より水素過剰にし、サンプル4は酸素キャリ
ア,サンプル5はヘリウムキャリア,サンプル6はアル
ゴンキャリアにし、同心円状のガス放出管から噴出させ
るガスを酸水素比:0.44にすることにより合成したもの
である。サンプル3では実施例1のものよりさらに約
1.7倍も多い水素分子を溶存させることができたが、真
空紫外側に吸収帯も存在し 193nmの初期透過率が悪かっ
た。エキシマレーザ照射試験では、初期に透過率低下が
認められるためエキシマレーザ照射後の透過率、特に A
rF波長における照射後の透過率が悪かった。サンプル4
については、初期に吸収帯も存在せず透過率も良好であ
ったが、水素分子濃度は3.5×1017個/cm3と少なかっ
た。また、Δn,RMSに若干の悪化が認められたもの
の、比較的良い値が得られた。エキシマレーザ照射試験
において、照射後の透過率は KrF, ArF波長共にわずか
ながら透過率の低下が見られた。サンプル5,6では初
期に吸収帯も存在せず初期透過率も良好であったが、水
素分子濃度は非常に少なく1×1017個/cm3以下であった
ため、エキシマレーザ照射試験では、両サンプル共に照
射後の透過率が KrF, ArF共に非常に悪くなっていた。
Δn,RMSについては、若干の悪化が認められたもの
の、比較的良い値が得られた。Comparative Example 1 Samples prepared here are Samples 3 to 6 in Table 1. Sample 3 is a hydrogen carrier, and the oxyhydrogen ratio in the outermost combustion gas is made to be more hydrogen excess than the oxyhydrogen ratio in the concentric multi-tube, sample 4 is an oxygen carrier, sample 5 is a helium carrier, and sample 6 is an argon carrier. It was synthesized by adjusting the oxyhydrogen ratio: 0.44 for the gas ejected from the gas discharge pipe. Sample 3 is about more than that of Example 1.
Although 1.7 times as many hydrogen molecules could be dissolved, the initial transmittance at 193 nm was poor due to the existence of an absorption band outside the vacuum ultraviolet region. In the excimer laser irradiation test, a decrease in transmittance was observed at the beginning, so the transmittance after excimer laser irradiation, especially A
Poor transmittance after irradiation at rF wavelength. Sample 4
Regarding, the initial value did not have an absorption band and the transmittance was good, but the hydrogen molecule concentration was as low as 3.5 × 10 17 pieces / cm 3 . Further, although some deterioration was observed in Δn and RMS, a relatively good value was obtained. In the excimer laser irradiation test, the transmittance after irradiation was slightly decreased for both KrF and ArF wavelengths. In Samples 5 and 6, there was no absorption band at the initial stage and the initial transmittance was good, but the hydrogen molecule concentration was very low and was 1 × 10 17 pieces / cm 3 or less. The transmittance of both samples after irradiation was very poor for both KrF and ArF.
Regarding Δn and RMS, although some deterioration was observed, relatively good values were obtained.
【0030】〔実施例2〕図4及び図5のバーナに変
え、合成実験を行った(サンプル7,8)。合成方法は
表2に示した通りである。サンプルは、二,三重管目か
ら流出する酸水素のガス比を 0.293にしたもの(サンプ
ル7),四,五重管目から流出する酸水素のガス比を
0.293にしたもの(サンプル8)である。実施例1と同
様の条件で各種物性測定を行った。両サンプル共、サン
プル1に比べ若干少ない水素分子濃度ではあったもの
の、1018個/cm3以上溶存していた。サンプル7,サンプ
ル8双方共に屈折率分布についても中央対称であった。
また、両サンプル共Δn,RMSも良好であり、初期透
過率及びエキシマレーザ照射試験後における透過率もKr
F,ArF共に 99.9%以上を保っていた。Example 2 A synthetic experiment was conducted by changing the burner shown in FIGS. 4 and 5 (Samples 7 and 8). The synthesis method is as shown in Table 2. As for the sample, the gas ratio of oxyhydrogen flowing out from the second and triple pipes was set to 0.293 (Sample 7), and the gas ratio of oxyhydrogen flowing out from the fourth and fifth pipes was changed.
It is 0.293 (Sample 8). Various physical properties were measured under the same conditions as in Example 1. In both samples, although the hydrogen molecule concentration was slightly lower than that of Sample 1, it was dissolved at 10 18 pieces / cm 3 or more. The refractive index distributions of both Sample 7 and Sample 8 were also symmetrical.
Both samples have good Δn and RMS, and the initial transmittance and the transmittance after the excimer laser irradiation test are also Kr.
Both F and ArF maintained 99.9% or more.
【0031】〔比較例2〕図4及び図5のバーナを用い
て酸素キャリアで合成実験を行った(サンプル9,1
0)。これらのサンプルについての諸物性は、以下の通
りであった。屈折率分布については中央対称であったも
のの、ΔnやRMSについてはサンプル7,8に比べ若
干悪化していた。また、水素分子濃度もサンプル9で4.
3×1017個/cm 3,サンプル10で検出下限以下(<1016
個/cm3)とサンプル7やサンプル8に比べ格段に小さく
なっていた。初期透過率はいずれも 99.9%以上であった
がエキシマレーザ照射試験後の測定値では、KrF,ArF共
に低下が見られた。また、水素キャリアで最外部の燃焼
ガスにおける酸水素比を同心円状多重管の酸水素比より
水素過剰にして合成したサンプル(サンプル11)につ
いても測定を行った。これについては実施例2のサンプ
ル7,8よりさらに約 1.6,2.7倍も多い水素分子を溶
存させることができたが、真空紫外側に吸収帯も存在し
193nmの初期透過率が悪かった。エキシマレーザ照射試
験では、初期に透過率低下が認められるためエキシマレ
ーザ照射後の透過率、特に ArF波長における照射後の透
過率が悪かった。またΔn,RMSについては悪化する
傾向にあった。[Comparative Example 2] The burner shown in FIGS. 4 and 5 is used.
A synthetic experiment was carried out using an oxygen carrier (Samples 9 and 1).
0). The physical properties of these samples are summarized below.
It was Ri. The refractive index distribution was also centrally symmetric
However, Δn and RMS are younger than Samples 7 and 8.
It was getting worse. Also, the hydrogen molecule concentration is 4.
3 x 1017Pieces / cm 3, Sample 10 below detection limit (<1016
Pieces / cm3) And much smaller than Samples 7 and 8
Was becoming. Initial transmittance was 99.9% or more in all cases
The measured values after the excimer laser irradiation test show that both KrF and ArF
Was observed. Also, the outermost combustion with hydrogen carrier
The oxyhydrogen ratio in gas is determined from the oxyhydrogen ratio of concentric multitubes.
For samples synthesized with excess hydrogen (Sample 11)
I made a measurement even when I was there. About this, the sump of Example 2
Melt about 1.6 or 2.7 times more hydrogen molecules than
However, there is also an absorption band outside the vacuum ultraviolet.
The initial transmittance at 193 nm was poor. Excimer laser irradiation test
In the study, excimer
Transmittance after laser irradiation, especially the transmittance after irradiation at ArF wavelength.
The overkill was bad. Also, Δn and RMS deteriorate
There was a tendency.
【0032】〔実施例3〕実施例1のサンプル1の石英
ガラスから、インゴット外形から幾何学的中央部を維持
しながら加工して得られた石英ガラス光学部材を使用し
て、ArFエキシマレーザを光源とした投影レンズを製作
したところ、所望の設計性能を満足することが確認でき
た。これにより0.3μm以下の解像力を有し、実用上
十分な平坦性を持つ集積回路パターンを得ることができ
た。さらに、長時間光学性能が劣化せず維持されること
が確認された。Example 3 An ArF excimer laser was produced by using a quartz glass optical member obtained by processing the quartz glass of Sample 1 of Example 1 while maintaining the geometric center portion from the outer shape of an ingot. When a projection lens used as a light source was manufactured, it was confirmed that the desired design performance was satisfied. As a result, it was possible to obtain an integrated circuit pattern having a resolution of 0.3 μm or less and having practically sufficient flatness. Furthermore, it was confirmed that the optical performance was maintained for a long time without deterioration.
【0033】[0033]
【発明の効果】以上のように、「最外部を除く複数の燃
焼用リング状管から噴出させる酸素ガスおよび水素ガス
の割合」を、理論当量比および「最外部の燃焼用リング
状管とその内部の燃焼用円状管から噴出させる酸素ガス
および水素ガスの割合」と比較して水素過剰とするこ
と、あるいは「最外部を除く複数の燃焼用リング状管か
ら噴出させる酸素ガスおよび水素ガスの割合」を理論当
量比と比較して水素過剰とし、「最外部の燃焼用リング
状管とその内部の燃焼用円状管から噴出させる酸素ガス
および水素ガスの割合」を理論当量比と比較して同等ま
たは酸素過剰とすることにより、さらに好ましくは水素
キャリアにすることにより、汚染やコストアップ要因と
なる二次処理をすること無しに高均質かつ高い紫外線透
過性および紫外線耐性を持つ合成石英ガラスを得ること
ができ、それにより大口径石英ガラス光学部材を得るこ
とができた。As described above, the "proportion of oxygen gas and hydrogen gas ejected from a plurality of combustion ring-shaped pipes excluding the outermost portion" is defined as the theoretical equivalence ratio and "the outermost combustion ring-shaped pipe and its "Proportion of oxygen gas and hydrogen gas ejected from the internal combustion circular tube" is considered to be excessive hydrogen, or "oxygen gas and hydrogen gas ejected from multiple combustion ring-shaped tubes excluding the outermost portion""Proportion" is compared with the theoretical equivalence ratio to make hydrogen excess, and "Proportion of oxygen gas and hydrogen gas ejected from outermost combustion ring-shaped tube and internal combustion circular tube" is compared with the theoretical equivalence ratio. Equivalent or excess oxygen, more preferably by using a hydrogen carrier, high homogeneity and high UV transparency and UV resistance without secondary treatment which may cause contamination and cost increase. Can be obtained synthetic quartz glass with, it was possible to thereby obtain a large diameter quartz glass optical member.
【図1】 実施例で述べた透過率測定結果の一例であ
る。FIG. 1 is an example of the transmittance measurement results described in the examples.
【図2】 石英ガラス合成時に使用したバーナの外観図
である。FIG. 2 is an external view of a burner used in synthesizing quartz glass.
【図3】 図2の矢印方向からの矢視図であり、図中の
番号は表1の配管内ガス種類及び流量の番号に対応す
る。FIG. 3 is a view from the direction of the arrow in FIG. 2, and the numbers in the figure correspond to the numbers of gas types and flow rates in piping in Table 1.
【図4】 石英ガラス合成時に使用したバーナの外観図
である。FIG. 4 is an external view of a burner used in synthesizing quartz glass.
【図5】 図4の矢印方向からの矢視図であり、図中の
番号は表2の配管内ガス種類及び流量の番号に対応す
る。5 is a view from the direction of the arrow in FIG. 4, and the numbers in the figure correspond to the numbers of gas types and flow rates in the pipe in Table 2.
【図6】 石英インゴットからサンプルを切り出す時の
フローチャートである。FIG. 6 is a flowchart when cutting a sample from a quartz ingot.
1…水素ガス或いは酸素ガス噴出口 2…酸素ガス或いは水素ガス噴出口 5…酸素ガス噴出口 6…水素ガス噴出口 7…キャリアガス+原料ガス噴出口 11…水素ガス或いは酸素ガス噴出口 12…酸素ガス或いは水素ガス噴出口 13…水素ガス或いは酸素ガス噴出口 14…酸素ガス或いは水素ガス噴出口 15…酸素ガス噴出口 16…水素ガス噴出口 17…キャリアガス+原料ガス噴出口 DESCRIPTION OF SYMBOLS 1 ... Hydrogen gas or oxygen gas jet 2 ... Oxygen gas or hydrogen gas jet 5 ... Oxygen gas jet 6 ... Hydrogen gas jet 7 ... Carrier gas + raw material gas jet 11 ... Hydrogen gas or oxygen gas jet 12 ... Oxygen gas or hydrogen gas jet 13 ... Hydrogen gas or oxygen gas jet 14 ... Oxygen gas or hydrogen gas jet 15 ... Oxygen gas jet 16 ... Hydrogen gas jet 17 ... Carrier gas + source gas jet
───────────────────────────────────────────────────── フロントページの続き (72)発明者 平岩 弘之 東京都千代田区丸の内3丁目2番3号 株 式会社ニコン内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Hiraiwa 3 2-3 Marunouchi, Chiyoda-ku, Tokyo Inside Nikon Corporation
Claims (12)
原料用円状管と、これの周囲に同心円状に配置され酸素
ガスおよび水素ガスを噴出する複数の燃焼用リング状管
と、最外部の燃焼用リング状管の内部に配置され酸素を
噴出する複数の燃焼用円状管とを有するバーナにより、
Si化合物ガスと酸素ガスと水素ガスとを噴出し、ターゲ
ット上に石英ガラス粉を堆積しガラス化させ、インゴッ
トを形成する石英ガラスの製造方法において、「最外部
を除く複数の燃焼用リング状管から噴出させる酸素ガス
および水素ガスの割合」を、理論当量比および「最外部
の燃焼用リング状管とその内部の燃焼用円状管から噴出
させる酸素ガスおよび水素ガスの割合」と比較して水素
過剰とすることを特徴とする石英ガラスの製造方法。1. A circular tube for a raw material, which is arranged in the central part and which ejects a Si compound gas, and a plurality of ring-shaped tubes for combustion, which are arranged concentrically around this and ejects an oxygen gas and a hydrogen gas. With a burner having a plurality of combustion circular tubes arranged inside an external combustion ring tube to eject oxygen,
In the method for producing quartz glass in which a Si compound gas, oxygen gas, and hydrogen gas are jetted, and quartz glass powder is deposited on a target and vitrified to form an ingot, "a plurality of combustion ring-shaped tubes excluding the outermost portion""Proportion of oxygen gas and hydrogen gas ejected from" compared with the theoretical equivalence ratio and "proportion of oxygen gas and hydrogen gas ejected from the outermost combustion ring-shaped tube and the internal combustion circular tube" A method for producing quartz glass, which comprises making hydrogen excess.
原料用円状管と、これの周囲に同心円状に配置され酸素
ガスおよび水素ガスを噴出する複数の燃焼用リング状管
と、最外部の燃焼用リング状管の内部に配置され酸素を
噴出する複数の燃焼用円状管とを有するバーナにより、
Si化合物ガスと酸素ガスと水素ガスとを噴出し、ターゲ
ット上に石英ガラス粉を堆積しガラス化させ、インゴッ
トを形成する石英ガラスの製造方法において、「最外部
を除く複数の燃焼用リング状管から噴出させる酸素ガス
および水素ガスの割合」を理論当量比と比較して水素過
剰とし、「最外部の燃焼用リング状管とその内部の燃焼
用円状管から噴出させる酸素ガスおよび水素ガスの割
合」を理論当量比と比較して同等または酸素過剰とする
ことを特徴とする石英ガラスの製造方法。2. A circular tube for a raw material, which is arranged in the central part and which ejects a Si compound gas, and a plurality of ring-shaped tubes for combustion, which are arranged concentrically around this and ejects an oxygen gas and a hydrogen gas. With a burner having a plurality of combustion circular tubes arranged inside an external combustion ring tube to eject oxygen,
In the method for producing quartz glass in which a Si compound gas, oxygen gas, and hydrogen gas are jetted, and quartz glass powder is deposited on a target and vitrified to form an ingot, "a plurality of combustion ring-shaped tubes excluding the outermost portion""Proportion of oxygen gas and hydrogen gas ejected from" is compared with the theoretical equivalence ratio to make hydrogen excess, and "of the oxygen gas and hydrogen gas ejected from the outermost combustion ring-shaped tube and the internal combustion circular tube" A method for producing quartz glass, characterized in that "proportion" is equal to or excess of oxygen as compared with the theoretical equivalent ratio.
スの製造方法において、原料用円状管からSi化合物ガス
を噴出させるときにキャリアガスとして水素ガスを用い
ることを特徴とする石英ガラスの製造方法。3. The quartz glass according to claim 1 or 2, wherein hydrogen gas is used as a carrier gas when the Si compound gas is ejected from the raw material circular tube. Manufacturing method.
スの製造方法により製造した石英ガラスにおいて、波面
収差のRMS値がパワー成分補正後に0.02λ以下である
ことを特徴とする石英ガラス。4. The quartz glass manufactured by the method for manufacturing quartz glass according to claim 1 or 2, wherein the RMS value of the wavefront aberration is 0.02λ or less after correction of the power component.
スの製造方法により製造した石英ガラスにおいて、一方
向の屈折率の均質性がパワー成分補正なしでΔn≦2×1
0-6であることを特徴とする石英ガラス。5. The quartz glass produced by the method for producing quartz glass according to claim 1 or 2, wherein the homogeneity of the refractive index in one direction is Δn ≦ 2 × 1 without power component correction.
Quartz glass characterized in that it is 0 -6 .
ガラス部材において、前記一方向を光軸方向とすること
を特徴とする石英ガラス光学部材。6. A quartz glass member using the quartz glass according to claim 5, wherein the one direction is an optical axis direction.
スの製造方法により製造した石英ガラスにおいて、一方
向の断面の屈折率分布の極値がひとつで中央対称である
ことを特徴とする石英ガラス。7. The quartz glass produced by the method for producing quartz glass according to claim 1 or 2, characterized in that the extremum of the refractive index distribution in a cross section in one direction is one and is centrally symmetric. Quartz glass.
ガラス部材において、前記一方向の断面が入射光軸を含
む断面であることを特徴とする石英ガラス光学部材。8. A quartz glass member using the quartz glass according to claim 7, wherein the cross section in the one direction is a cross section including an incident optical axis.
スの製造方法により製造した石英ガラスにおいて、365n
m, 248nm, 193nmにおいて10mm内部透過率が 99.9%を
超えることを特徴とする石英ガラス。9. A quartz glass produced by the method for producing quartz glass according to claim 1 or 2, wherein the amount of 365n
Quartz glass with an internal transmittance of more than 99.9% at 10 mm at m, 248 nm, and 193 nm.
ラスの製造方法により製造した石英ガラスにおいて、Kr
Fエキシマレーザを 400mJ/cm2・pulseで106pulse照射し
た後、 248nmにおける10mm内部透過率が 99.9%を超える
ことを特徴とする石英ガラス。10. A quartz glass produced by the method for producing quartz glass according to claim 1 or 2, wherein Kr is
A quartz glass characterized by having an internal transmittance of 10 mm at 248 nm of more than 99.9% after being irradiated with 10 6 pulses of F excimer laser at 400 mJ / cm 2 · pulse.
ラスの製造方法により製造した石英ガラスにおいて、Ar
Fエキシマレーザを 100mJ/cm2・pulseで106pulse照射し
た後、 193nmにおける10mm内部透過率が 99.9%を超える
ことを特徴とする石英ガラス。11. A quartz glass produced by the method for producing quartz glass according to claim 1 or 2, wherein Ar is Ar.
A quartz glass characterized by having an internal transmittance of 10 mm at 193 nm of more than 99.9% after irradiation with F 6 excimer laser at 100 mJ / cm 2 · pulse for 10 6 pulses.
ラスの製造方法により製造した石英ガラスにおいて、水
素濃度5×1017個/cm3以上であり、中央部の方が周辺部
より高い水素濃度を持つことを特徴とする石英ガラス。12. The quartz glass produced by the method for producing quartz glass according to claim 1 or 2, wherein the hydrogen concentration is 5 × 10 17 pieces / cm 3 or more, and the central portion is higher than the peripheral portion. Quartz glass characterized by having a hydrogen concentration.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05330740A JP3120647B2 (en) | 1993-12-27 | 1993-12-27 | Method for producing quartz glass and quartz glass produced thereby |
US08/479,130 US5702495A (en) | 1993-02-10 | 1995-06-07 | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production |
US08/484,863 US5699183A (en) | 1993-02-10 | 1995-06-07 | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production |
US08/509,223 US5703712A (en) | 1993-02-10 | 1995-07-31 | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production |
US08/648,867 US5696624A (en) | 1993-02-10 | 1996-05-16 | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production |
US08/711,471 US5719698A (en) | 1993-02-10 | 1996-09-06 | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05330740A JP3120647B2 (en) | 1993-12-27 | 1993-12-27 | Method for producing quartz glass and quartz glass produced thereby |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07187684A true JPH07187684A (en) | 1995-07-25 |
JP3120647B2 JP3120647B2 (en) | 2000-12-25 |
Family
ID=18236035
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05330740A Expired - Lifetime JP3120647B2 (en) | 1993-02-10 | 1993-12-27 | Method for producing quartz glass and quartz glass produced thereby |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3120647B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09175826A (en) * | 1995-12-26 | 1997-07-08 | Sumitomo Electric Ind Ltd | Burner for synthesizing porous glass base material |
JPH1067521A (en) * | 1996-08-22 | 1998-03-10 | Nikon Corp | Fluorine containing quartz glass, production of the same, and projection recording system |
EP0878451A1 (en) * | 1997-05-14 | 1998-11-18 | Nikon Corporation | Synthetic silica glass optical member and method of manufacturing the same |
WO1998052879A1 (en) * | 1997-05-20 | 1998-11-26 | Heraeus Quarzglas Gmbh | Synthetic silica glass used with uv-rays and method producing the same |
WO1999020574A1 (en) * | 1997-10-17 | 1999-04-29 | Tsl Group Plc | Production of quartz glass articles having high surface purity |
US6189339B1 (en) | 1995-03-28 | 2001-02-20 | Nikon Corporation | Method for producing silica glass used for photolithography |
EP0978487A3 (en) * | 1998-08-07 | 2001-02-21 | Corning Incorporated | Sealed, nozzle-mix burners for silica deposition |
JP2001302274A (en) * | 2000-04-24 | 2001-10-31 | Sumitomo Metal Ind Ltd | Quartz glass for ultraviolet rays and method for producing the same |
US6656860B2 (en) | 2000-03-28 | 2003-12-02 | Nikon Corporation | Synthetic silica glass member, photolithography apparatus and process for producing photolithography apparatus |
JP2005503316A (en) * | 2001-09-27 | 2005-02-03 | コーニング インコーポレイテッド | Improved method and furnace for quartz glass production |
JP2007261942A (en) * | 2007-05-23 | 2007-10-11 | Shinetsu Quartz Prod Co Ltd | Synthetic quartz glass for optics |
JP2008063151A (en) * | 2005-08-11 | 2008-03-21 | Shin Etsu Chem Co Ltd | Synthetic quartz glass substrate for excimer laser and manufacturing method thereof |
-
1993
- 1993-12-27 JP JP05330740A patent/JP3120647B2/en not_active Expired - Lifetime
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6189339B1 (en) | 1995-03-28 | 2001-02-20 | Nikon Corporation | Method for producing silica glass used for photolithography |
JPH09175826A (en) * | 1995-12-26 | 1997-07-08 | Sumitomo Electric Ind Ltd | Burner for synthesizing porous glass base material |
JPH1067521A (en) * | 1996-08-22 | 1998-03-10 | Nikon Corp | Fluorine containing quartz glass, production of the same, and projection recording system |
EP0878451A1 (en) * | 1997-05-14 | 1998-11-18 | Nikon Corporation | Synthetic silica glass optical member and method of manufacturing the same |
WO1998052879A1 (en) * | 1997-05-20 | 1998-11-26 | Heraeus Quarzglas Gmbh | Synthetic silica glass used with uv-rays and method producing the same |
US6143676A (en) * | 1997-05-20 | 2000-11-07 | Heraeus Quarzglas Gmbh | Synthetic silica glass used with uv-rays and method producing the same |
WO1999020574A1 (en) * | 1997-10-17 | 1999-04-29 | Tsl Group Plc | Production of quartz glass articles having high surface purity |
EP0978487A3 (en) * | 1998-08-07 | 2001-02-21 | Corning Incorporated | Sealed, nozzle-mix burners for silica deposition |
US6656860B2 (en) | 2000-03-28 | 2003-12-02 | Nikon Corporation | Synthetic silica glass member, photolithography apparatus and process for producing photolithography apparatus |
JP2001302274A (en) * | 2000-04-24 | 2001-10-31 | Sumitomo Metal Ind Ltd | Quartz glass for ultraviolet rays and method for producing the same |
JP2005503316A (en) * | 2001-09-27 | 2005-02-03 | コーニング インコーポレイテッド | Improved method and furnace for quartz glass production |
JP2008063151A (en) * | 2005-08-11 | 2008-03-21 | Shin Etsu Chem Co Ltd | Synthetic quartz glass substrate for excimer laser and manufacturing method thereof |
JP2007261942A (en) * | 2007-05-23 | 2007-10-11 | Shinetsu Quartz Prod Co Ltd | Synthetic quartz glass for optics |
Also Published As
Publication number | Publication date |
---|---|
JP3120647B2 (en) | 2000-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5719698A (en) | Silica glass member for UV-lithography, method for silica glass production, and method for silica glass member production | |
JP4304409B2 (en) | Method for producing quartz glass member | |
US5325230A (en) | Optical members and blanks of synthetic silica glass and method for their production | |
US5086352A (en) | Optical members and blanks or synthetic silica glass and method for their production | |
KR100392127B1 (en) | Quartz glass for optical lithography, optical member containing the same, exposure apparatus using the same, and manufacturing method thereof | |
JP3064857B2 (en) | Optical member for optical lithography and method for producing synthetic quartz glass | |
US6374639B2 (en) | Silica glass and its manufacturing method | |
TW440548B (en) | Synthetic silica glass optical member and method of manufacturing the same | |
US20030037568A1 (en) | Fluorine-containing silica glass and its method of manufacture | |
EP0901989B1 (en) | Silica glass and its manufacturing method | |
JP3120647B2 (en) | Method for producing quartz glass and quartz glass produced thereby | |
JP3369730B2 (en) | Evaluation method of optical member for optical lithography | |
JP2971686B2 (en) | Manufacturing method of optical member for UV resistant laser | |
JP2821074B2 (en) | Manufacturing method of optical member for UV resistant laser | |
JP2770224B2 (en) | Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same | |
JP2000239040A (en) | Quartz glass material for F2 excimer laser optical member and optical member | |
JP3071362B2 (en) | Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same | |
US6835683B2 (en) | Quartz glass member and projection aligner | |
WO2000048953A1 (en) | Synthetic quartz glass optical member for ultraviolet light and reduction projection exposure system using the same | |
JPH1067526A (en) | Optical quartz glass element | |
JPH1067521A (en) | Fluorine containing quartz glass, production of the same, and projection recording system | |
JP3715163B2 (en) | Synthetic quartz glass member for high-power ArF excimer laser and manufacturing method thereof | |
JPH01167258A (en) | Element assembly of laser optical system | |
JPH0825773B2 (en) | Manufacturing body of laser optical system | |
JPH10316435A (en) | Production of synthetic quartz glass optical member, and optical member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141020 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |