JPH0718596B2 - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPH0718596B2 JPH0718596B2 JP18819189A JP18819189A JPH0718596B2 JP H0718596 B2 JPH0718596 B2 JP H0718596B2 JP 18819189 A JP18819189 A JP 18819189A JP 18819189 A JP18819189 A JP 18819189A JP H0718596 B2 JPH0718596 B2 JP H0718596B2
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- refrigerant
- passage
- heat
- high temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000007789 gas Substances 0.000 claims description 41
- 239000000567 combustion gas Substances 0.000 claims description 35
- 238000002485 combustion reaction Methods 0.000 claims description 27
- 238000005192 partition Methods 0.000 claims description 20
- 239000000446 fuel Substances 0.000 claims description 6
- 239000011810 insulating material Substances 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 description 77
- 238000010438 heat treatment Methods 0.000 description 24
- 239000007788 liquid Substances 0.000 description 9
- 238000005219 brazing Methods 0.000 description 7
- 238000013021 overheating Methods 0.000 description 7
- 230000002159 abnormal effect Effects 0.000 description 6
- 238000005979 thermal decomposition reaction Methods 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
Landscapes
- Details Of Fluid Heaters (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は燃焼ガスなどの高温ガスにより冷媒を加熱し冷
暖房装置に利用する熱交換器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger that heats a refrigerant with a high temperature gas such as combustion gas and uses the refrigerant in a heating and cooling device.
従来の技術 被加熱側流体に冷媒を用いて、燃焼ガスにより加熱して
液状冷媒を蒸発気化させて潜熱により熱を運び暖房を行
なうものとして第5図に示すような冷媒加熱暖房装置が
知られている。この冷媒加熱暖房装置は燃焼ガスと冷媒
との熱交換器1と放熱器2を密閉管路3で連結するとと
もに、密閉管路3中に設けた冷媒搬送機4により冷媒を
強制循環するものである。第6図に前記熱交換器1を拡
大して示し、水平方向に延びる円筒体5の内周面に複数
のフィン6を設け、また円筒体5の外周面軸方向にはパ
イプ保持部7を設けるとともにこのパイプ保持部7に冷
媒が内部を流れるパイプ8を埋設したもので、バーナ9
からの燃焼ガスを円筒体5の内部に水平横方向に流し
て、冷媒搬送機4により送られてきて前記パイプ8内を
流れる冷媒を加熱するようになっている。2. Description of the Related Art A refrigerant heating and heating device as shown in FIG. 5 is known as a device for heating by using a refrigerant as a fluid to be heated and heating by combustion gas to evaporate a liquid refrigerant to carry heat by latent heat for heating. ing. This refrigerant heating and heating apparatus connects a heat exchanger 1 for combustion gas and a refrigerant and a radiator 2 with a sealed pipe line 3 and forcibly circulates the refrigerant by a refrigerant carrier 4 provided in the sealed pipe line 3. is there. The heat exchanger 1 is shown in an enlarged manner in FIG. 6, in which a plurality of fins 6 are provided on the inner peripheral surface of a cylindrical body 5 extending in the horizontal direction, and a pipe holding portion 7 is provided on the outer peripheral surface of the cylindrical body 5 in the axial direction. The burner 9 is provided with a pipe 8 in which a refrigerant flows inside is embedded in the pipe holding portion 7.
The combustion gas from the inside is horizontally flown into the cylindrical body 5 to heat the refrigerant sent by the refrigerant carrier 4 and flowing in the pipe 8.
しかし、この暖房システムでは冷媒搬送に外部動力が必
要であり、暖房運転時のランニングコストを低減するこ
とが望まれている。However, this heating system requires external power to carry the refrigerant, and it is desired to reduce the running cost during heating operation.
発明が解決しようとする課題 そこで暖房運転時のランニングコスト低減には冷媒搬送
用の外部動力を無くして無動力で熱搬送することが有効
である。無動力熱搬送により、冷媒加熱暖房を行なう場
合、液状冷媒が加熱されて発生する気体冷媒の浮力によ
る自然循環力が重要となる。ところが、前記従来の冷媒
加熱暖房装置は第6図に示すような熱交換器1が用いら
れており、冷媒は水平方向に延びるパイプ8内を流れる
ため、加熱されて気液二相混合状態の冷媒の気体成分が
スムーズに出口に向かって流れないため冷媒の淀みを生
じ、局部的な異常過熱を発生し、また燃焼室と熱交換部
が一体であるため熱交換量が燃焼状態により不均一とな
り、局部過熱を生じ、冷媒の熱分解や機器の異常温度上
昇が生じるなどの問題があった。Therefore, in order to reduce the running cost during the heating operation, it is effective to remove the external power for carrying the refrigerant and carry the heat without power. When performing refrigerant heating and heating by non-powered heat transfer, the natural circulation force due to the buoyancy of the gas refrigerant generated by heating the liquid refrigerant is important. However, the conventional refrigerant heating and heating apparatus uses the heat exchanger 1 as shown in FIG. 6, and since the refrigerant flows in the pipe 8 extending in the horizontal direction, it is heated and is in a gas-liquid two-phase mixed state. The gas component of the refrigerant does not flow smoothly toward the outlet, causing stagnation of the refrigerant, causing local abnormal overheating, and because the combustion chamber and heat exchange part are integrated, the amount of heat exchange is uneven depending on the combustion state. Therefore, there are problems such as local overheating, thermal decomposition of the refrigerant, and abnormal temperature rise of the equipment.
本発明はこのような課題を解決するもので、無動力搬送
を可能としてランニングコストの低減を図ることがで
き、また冷媒の熱分解や機器の異常温度上昇を防止して
信頼性の向上を図ることを目的とするものである。The present invention solves such a problem, and it is possible to reduce the running cost by enabling non-powered conveyance, and to improve the reliability by preventing thermal decomposition of the refrigerant and abnormal temperature rise of the equipment. That is the purpose.
課題を解決するための手段 この課題を解決するために本発明は、燃料供給装置に接
続したバーナに一端側が連通して設けた燃焼室と、前記
燃焼室の他端側に連通して設けた燃焼ガス出口と、この
燃焼ガス出口に連通して設けた高温ガス通路と、前記高
温ガス通路内において高温ガス通路を覆う伝熱隔壁に密
着して設けられ上下方向に多数の通路を持つ上下複数段
の伝熱フィンと、前記伝熱隔壁の外面と密着した冷媒通
路部材と、前記燃焼室の内面を覆う断熱材とからなり、
前記複数の伝熱フィンの内、何れかの伝熱フィンの通路
長さを他の伝熱フィンの通路長さよりも長くしたもので
ある。Means for Solving the Problems In order to solve this problem, the present invention provides a combustion chamber having one end side in communication with a burner connected to a fuel supply device, and a combustion chamber provided in communication with the other end side of the combustion chamber. A combustion gas outlet, a high temperature gas passage communicating with the combustion gas outlet, and a plurality of upper and lower passages provided in close contact with a heat transfer partition wall covering the high temperature gas passage in the high temperature gas passage and having a large number of passages in the vertical direction. A step heat transfer fin, a refrigerant passage member in close contact with the outer surface of the heat transfer partition wall, and a heat insulating material covering the inner surface of the combustion chamber,
The passage length of any one of the plurality of heat transfer fins is made longer than the passage length of the other heat transfer fins.
作用 この構成により、バーナなどで加熱される冷媒加熱装置
の自然循環サイクルを、断熱構造の燃焼室と連通して設
けた燃焼ガス出口から噴出する燃焼ガスが通過する前記
高温ガス通路の伝達隔壁に密着した複数の伝熱フィンで
分割し、何れかの伝熱フィンの通路長さを他の伝熱フィ
ンの通路長さよりも長くすることにより、燃焼ガスを伝
熱面に均一に流すことができ、冷媒通路部材の各部を均
一加熱でき、冷媒をスムーズに循環させ、かつ冷媒を局
部過熱させることがなく無動力熱搬送を確実に行なわせ
冷媒の熱分解を防止できる。With this configuration, the natural circulation cycle of the refrigerant heating device heated by a burner or the like is transferred to the transfer partition wall of the high temperature gas passage through which the combustion gas ejected from the combustion gas outlet provided in communication with the combustion chamber of the heat insulating structure passes. By dividing with multiple heat transfer fins that are in close contact and making the passage length of one of the heat transfer fins longer than the passage length of the other heat transfer fin, the combustion gas can be made to flow uniformly on the heat transfer surface. The parts of the refrigerant passage member can be uniformly heated, the refrigerant can be circulated smoothly, and the non-powered heat transfer can be reliably carried out without locally overheating the refrigerant to prevent thermal decomposition of the refrigerant.
実施例 以下、本発明の一実施例について、図面に基づいて説明
する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.
第1図〜第4図において、11は燃料供給装置に接続した
バーナ12に一端側が連通して設けた燃焼室で、この燃焼
室11は伝熱隔壁13に密着して設けられた高温ガス通路部
材14の燃焼ガス出口15と他端側が連通している。なお、
高温ガス通路部材14には排気管16を有している。詳しく
は高温ガス通路部材14に伝達隔壁13が組み合わさって高
温ガス通路が形成されている。前記伝熱隔壁13の外面に
は熱的に連結させた冷媒通路部材17が設けられ、この冷
媒通路部材17には上下方向に向く通路18が多数設けられ
ている。前記冷媒通路部材17の下端には入口ヘッダー管
19が設けられ、冷媒通路部材17の上端には出口ヘッダー
管20が設けられている。そして入口ヘッダー管19の一端
には入口管21が接続され、出口ヘッダー管20の一端には
出口管22が接続され、おのおのが冷媒回路と接続され
る。前記入口ヘッダー管19の他端には下方に曲折された
オイル抜き管23が設けられている。また、入口ヘッダー
管19と出口ヘッダー管20は前記上下方向の通路18により
互いに連通している。前記高温ガス通路の内部には伝熱
隔壁13の内面に熱的に接するように前記燃焼ガス出口15
を上下より挟む位置で伝熱フィン24,25が設けられ、こ
れらは波形状に屈曲されている。ところで、前記燃焼室
11は筒状であって、その内面には断熱材26が設けられて
いる。また、前記伝熱フィン24,25は伝熱隔壁13に取り
付けられた状態において上下方向に向く多数の通路24a,
25aを形成し、この伝熱フィン24,25が前記高温ガス通路
部材14で覆われた状態において伝熱フィン24,25の外周
を通り下側の伝熱フィン25の下方中央で集合する排気通
路27が形成されるようになっている。そして、この排気
通路27は前記排気管16と連通するものである。なお、前
記伝熱フィン25の通路25aの長さは伝熱フィン24の通路2
4aの長さよりも長くなっている。In FIG. 1 to FIG. 4, reference numeral 11 denotes a combustion chamber provided at one end thereof in communication with a burner 12 connected to a fuel supply device. The combustion chamber 11 is provided with a high temperature gas passage closely attached to a heat transfer partition wall 13. The other end of the member 14 communicates with the combustion gas outlet 15. In addition,
The hot gas passage member 14 has an exhaust pipe 16. Specifically, the hot gas passage member 14 is combined with the transmission partition wall 13 to form a hot gas passage. A refrigerant passage member 17 that is thermally connected is provided on the outer surface of the heat transfer partition wall 13, and the refrigerant passage member 17 is provided with a large number of passages 18 oriented in the vertical direction. An inlet header pipe is provided at the lower end of the refrigerant passage member 17.
19 is provided, and an outlet header tube 20 is provided at the upper end of the refrigerant passage member 17. An inlet pipe 21 is connected to one end of the inlet header pipe 19, an outlet pipe 22 is connected to one end of the outlet header pipe 20, and each is connected to the refrigerant circuit. An oil drain pipe 23 bent downward is provided at the other end of the inlet header pipe 19. Further, the inlet header pipe 19 and the outlet header pipe 20 communicate with each other through the vertical passage 18. Inside the hot gas passage, the combustion gas outlet 15 is provided so as to be in thermal contact with the inner surface of the heat transfer partition wall 13.
The heat transfer fins 24 and 25 are provided at positions sandwiching from above and below, and these are bent in a wavy shape. By the way, the combustion chamber
Reference numeral 11 is a cylinder, and a heat insulating material 26 is provided on the inner surface thereof. Further, the heat transfer fins 24, 25 are provided with a large number of passages 24a, which are vertically oriented in a state of being attached to the heat transfer partition wall 13.
An exhaust passage which forms the heat transfer fins 24, 25 and passes through the outer periphery of the heat transfer fins 24, 25 in a state where the heat transfer fins 24, 25 are covered with the high temperature gas passage member 14 and gathers at the lower center of the lower heat transfer fins 25. 27 are to be formed. The exhaust passage 27 communicates with the exhaust pipe 16. The length of the passage 25a of the heat transfer fin 25 is equal to that of the passage 2 of the heat transfer fin 24.
It is longer than the length of 4a.
上記構成において、燃料の供給装置により供給された燃
料をバーナー12で燃焼し、燃焼室11で発生した高温ガス
は燃焼ガス出口15を通り高温ガス通路内部の伝熱フィン
24,25の通路24a,25aを通り、排気通路27から排気管16に
流れる。前記入口管21を通って入口ヘッダー管19に入っ
た液冷媒は冷媒通路部材17の下部より多数の上下方向の
通路18に分流し、一方伝熱フィン24,25が前記通路24a,2
5a内を流れる高温ガスの熱を冷媒通路部材17に伝熱し、
その結果冷媒通路部材17の上下方向の通路18内の冷媒を
入口ヘッダー管19に近い下部より十分に加熱する。そこ
で加熱された液状冷媒は気化蒸発を開始し、液の中に気
泡を生じる気液二相状態となる。発生した気泡は浮力効
果で上下方向の通路18内を上昇し、特に燃焼ガスは燃焼
室11から燃焼ガス出口15を出た後高温ガス通路内で冷媒
に伝熱するため、燃焼ガスの温度と流れを均一にでき、
冷媒通路部材17の各部を均一加熱でき、スムーズかつ均
一に冷媒を蒸発させ、さらに冷媒を局部過熱させること
がなく、無動力搬送を確実に行なわせ、冷媒の熱分解も
生じない。均一加熱はまた通路18内の流れの抵抗を低減
させることにより気泡発生が増大し、気泡上昇力は強め
られ自然循環力が強くなるとともにまだ気化していない
液冷媒をともなって通路18の上部へ冷媒を送る気泡ポン
プ作用が発生する。In the above structure, the fuel supplied by the fuel supply device is burned by the burner 12, and the high temperature gas generated in the combustion chamber 11 passes through the combustion gas outlet 15 and the heat transfer fins inside the high temperature gas passage.
The gas flows from the exhaust passage 27 to the exhaust pipe 16 through the passages 24a and 25a of 24 and 25. The liquid refrigerant that has entered the inlet header pipe 19 through the inlet pipe 21 is divided into a plurality of vertical passages 18 from the lower portion of the refrigerant passage member 17, while the heat transfer fins 24 and 25 are formed into the passages 24a and 2a.
The heat of the high temperature gas flowing in 5a is transferred to the refrigerant passage member 17,
As a result, the refrigerant in the vertical passage 18 of the refrigerant passage member 17 is sufficiently heated from the lower portion near the inlet header pipe 19. Then, the heated liquid refrigerant starts vaporization and evaporation, and becomes a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated bubbles rise in the vertical passage 18 due to the buoyancy effect, and in particular, since the combustion gas leaves the combustion gas outlet 15 from the combustion chamber 11 and then transfers heat to the refrigerant in the high temperature gas passage, the temperature of the combustion gas increases. To make the flow uniform,
Each part of the refrigerant passage member 17 can be uniformly heated, the refrigerant is evaporated smoothly and uniformly, the refrigerant is not locally overheated, and the non-powered transfer is surely performed, and the thermal decomposition of the refrigerant does not occur. Uniform heating also increases the bubble generation by reducing the flow resistance in the passage 18, the bubble rising force is strengthened and the natural circulation force is strengthened, and the liquid refrigerant that has not yet vaporized is passed to the upper part of the passage 18. A bubble pump action that sends the refrigerant occurs.
そして、伝熱フィン25の通路25aの長さは伝熱フィン24
の通路24aの長さより長く設定してあることにより、伝
熱フィン25側のガス通過抵抗を増加しているため、燃焼
ガスは伝熱フィン24,25を均一に流れる。すなわち、燃
焼ガスが燃焼室11から燃焼ガス出口15を出た後高温ガス
通路を通り排気管16に至る通路の燃焼ガス通過抵抗をフ
ィンの長さにより最適に設定できる。また、本実施例で
は排気管16側の伝熱フィン25の通路25aを全域にわたり
伝熱フィン24の通路24aより長くしている。そのため、
排気管16に近い伝熱フィン25と、排気管16に対する通路
24a,27を持つ通路抵抗の大きい伝熱フィン24とを同じ抵
抗に設定でき、燃焼ガスを均一に流せ、伝熱フィンの各
部の伝熱量を均一化できるものである。また、冷媒の流
れに応じて、フィンの長さにより流量抵抗に分布を設
け、燃焼ガスの流れ分布をコントロールできる。さらに
伝熱フィン24,25が設けられている部分以外の伝熱隔壁1
3の面も伝熱面となり、高温ガス通路内を流れる高温ガ
スより効率よく吸熱し、通路18内の気液二相状態の冷媒
をさらに加熱して自然循環力をさらに増大させる。通路
18の上端に達した冷媒は出口ヘッダー管20に流入し出口
管22より放熱器(図示せず)に向かって流出する。この
ように上下方向の通路18の下部から上部に至るまで均一
に加熱することにより自然循環を高めるだけでなく、下
部において伝熱フィン25により強く加熱することで自然
循環力をさらに増加させる。また、高温ガス通路部材14
に前記燃焼室11を取り付けるとともに伝熱隔壁13を取り
付け、この伝熱隔壁13に冷媒通路部材17が取り付けられ
ていることにより、燃焼室11からの高温ガスの熱を前記
伝熱フィン24,25から通路18に効率良く伝達することが
でき、また冷媒通路部材17は多管二重壁構成であるた
め、冷媒の燃焼ガス部への洩れを防止することができ
る。また、高温の燃焼室11と通路18を高温ガス通路部材
14で形成される高温ガス通路で完全に分離したため、局
部過熱による冷媒の熱分解、劣化を生じることなく、か
つ機器の異常温度上昇を防止し、信頼性を向上させるこ
とができる。The length of the passage 25a of the heat transfer fin 25 is equal to the length of the heat transfer fin 24.
By setting the passage 24a longer than the length of the passage 24a, the gas passage resistance on the heat transfer fin 25 side is increased, so that the combustion gas flows uniformly through the heat transfer fins 24, 25. That is, the combustion gas passage resistance of the passage through which the combustion gas passes from the combustion chamber 11 through the combustion gas outlet 15 and through the high temperature gas passage to the exhaust pipe 16 can be optimally set by the length of the fin. Further, in this embodiment, the passage 25a of the heat transfer fin 25 on the exhaust pipe 16 side is made longer than the passage 24a of the heat transfer fin 24 over the entire region. for that reason,
Heat transfer fins 25 near the exhaust pipe 16 and passages for the exhaust pipe 16
The heat transfer fin 24 having a large passage resistance having 24a and 27 can be set to the same resistance, the combustion gas can be made to flow uniformly, and the heat transfer amount of each part of the heat transfer fin can be made uniform. In addition, the flow resistance of the combustion gas can be controlled by providing a distribution of the flow rate resistance according to the length of the fins according to the flow of the refrigerant. Further, the heat transfer partition wall 1 other than the portions where the heat transfer fins 24 and 25 are provided
The surface 3 also serves as a heat transfer surface, which absorbs heat more efficiently than the high temperature gas flowing in the high temperature gas passage and further heats the gas-liquid two-phase refrigerant in the passage 18 to further increase the natural circulation force. aisle
The refrigerant reaching the upper end of 18 flows into the outlet header pipe 20 and flows out from the outlet pipe 22 toward a radiator (not shown). As described above, not only the natural circulation is enhanced by uniformly heating the lower part of the vertical passage 18 from the upper part, but also the natural circulation force is further increased by strongly heating the heat transfer fins 25 in the lower part. In addition, the hot gas passage member 14
The heat transfer partition wall 13 is attached together with the combustion chamber 11 and the refrigerant passage member 17 is attached to the heat transfer partition wall 13 so that the heat of the hot gas from the combustion chamber 11 is transferred to the heat transfer fins 24, 25. Can be efficiently transmitted to the passage 18, and since the refrigerant passage member 17 has a multi-tube double wall structure, it is possible to prevent the refrigerant from leaking to the combustion gas portion. Further, the high temperature combustion chamber 11 and the passage 18 are connected to the high temperature gas passage member.
Since the gas is completely separated in the high temperature gas passage formed by 14, the refrigerant is not thermally decomposed or deteriorated due to local overheating, and abnormal temperature rise of the device can be prevented to improve reliability.
さらに、冷媒通路部材17を内部に多数の通路を持つアル
ミニウム製の多管偏平押し出し管とし、また伝熱フィン
24,25として帯状のアルミニウム製の板を波状に屈曲さ
せて構成し、さらに伝熱隔壁13はアルミニウム製心材の
表裏にろう材を事前にクラッドしたブレージングシート
として組立て、同時に一体ブレージングすることにより
熱的に連結でき、接触熱抵抗がない伝熱性能に優れ、か
つ軽量で低コストの熱交換器が得られる。Further, the refrigerant passage member 17 is an aluminum multi-tube flat extrusion pipe having a large number of passages inside, and the heat transfer fins
24 and 25 are formed by bending a band-shaped aluminum plate in a wave shape, and the heat transfer partition wall 13 is assembled as a brazing sheet in which a brazing material is clad in advance on the front and back of the aluminum core material, and at the same time, heat is generated by integrally brazing. A heat exchanger that can be electrically connected, has excellent heat transfer performance without contact heat resistance, is lightweight, and is low in cost.
また、高温ガス通路部材14をアルミニウム製心材の片面
にろう材を事前にクラッドしたブレージングシートと
し、ブレージングにより前記伝熱フィン24,25と一体的
に構成することにより燃焼室11からの熱が伝熱フィン2
4,25を通じて通路18に高い熱交換効率で伝熱し、効率ア
ップと機器のコンパクト化が可能となる。そして、前記
高温ガス通路部材14をアルミニウムとし伝熱隔壁13と一
体ブレージングすることは簡単な構成でかつ気密性を維
持でき、排ガスが洩れることがなく、安全性が高いもの
である。Further, the high temperature gas passage member 14 is a brazing sheet in which a brazing material is clad on one side of an aluminum core material in advance, and the heat from the combustion chamber 11 is transferred by being integrally formed with the heat transfer fins 24, 25 by brazing. Heat fin 2
Heat can be transferred to the passage 18 through 4,25 with high heat exchange efficiency, and the efficiency can be improved and the device can be made compact. The use of aluminum for the high-temperature gas passage member 14 and brazing with the heat transfer partition wall 13 has a simple structure and can maintain airtightness, exhaust gas does not leak, and safety is high.
また、燃焼室11の断熱材26に冷媒通路部材17の通路18と
連通する通路(たとえば密閉管路の放熱器への往き管)
を密接するように設けて構成すると、断熱材26から放熱
する熱を冷媒回路に伝熱しさらに高効率なシステムとな
る。ところで、冷媒中にはコンプレッサーのオイルが常
に溶存しており、加熱器で冷媒を気化させると次第にオ
イルが溜ってくる。オイルが多く溜るとその粘性と低熱
伝導のため冷媒の気化、循環を阻害する。そこで、冷媒
通路部材17の通路18の底部の入口ヘッダー管19に接続し
てオイル抜き管23を設けてあるため、加熱器にオイルが
溜ると冷媒と一緒にオイルをオイル抜き管23から排出
し、オイルを加熱器から確実に除去し、冷媒の均一循環
の維持により局部過熱による冷媒の熱分解をなくし、信
頼性の向上を図れる。In addition, a passage that communicates with the heat insulating material 26 of the combustion chamber 11 and the passage 18 of the refrigerant passage member 17 (for example, a forward pipe to a radiator of a sealed pipe).
When these are provided so as to be in close contact with each other, the heat radiated from the heat insulating material 26 is transferred to the refrigerant circuit, resulting in a more efficient system. By the way, the oil of the compressor is always dissolved in the refrigerant, and the oil gradually accumulates when the refrigerant is vaporized by the heater. When a large amount of oil accumulates, it impedes the vaporization and circulation of the refrigerant due to its viscosity and low heat conduction. Therefore, since the oil drain pipe 23 is provided so as to be connected to the inlet header pipe 19 at the bottom of the passage 18 of the refrigerant passage member 17, when the oil is collected in the heater, the oil is discharged from the oil drain pipe 23 together with the refrigerant. By reliably removing oil from the heater and maintaining uniform circulation of the refrigerant, thermal decomposition of the refrigerant due to local overheating can be eliminated and reliability can be improved.
発明の効果 以上のように本発明によれば、燃料供給装置に接続した
バーナに一端側が連通して設けた燃焼室と、前記燃焼室
の他端側に連通して設けた燃焼ガス出口と、この燃焼ガ
ス出口に連通して設けた高温ガス通路と、前記高温ガス
通路内において高温ガス通路を覆う伝熱隔壁に密着して
設けられ上下方向に多数の通路を持つ上下複数段の伝熱
フィンと、前記伝熱隔壁の外面と密着した冷媒通路部材
と、前記燃焼室の内面を覆う断熱材とからなり、前記複
数の伝熱フィンの内、何れかの伝熱フィンの通路長さを
他の伝熱フィンの通路長さよりも長くしたもので、次の
効果が得られる。EFFECTS OF THE INVENTION As described above, according to the present invention, a combustion chamber having one end side in communication with the burner connected to the fuel supply device, and a combustion gas outlet provided in communication with the other end side of the combustion chamber, A high temperature gas passage provided in communication with the combustion gas outlet and a plurality of upper and lower heat transfer fins provided in close contact with a heat transfer partition wall covering the high temperature gas passage in the high temperature gas passage and having a large number of vertical passages. A refrigerant passage member that is in close contact with the outer surface of the heat transfer partition wall, and a heat insulating material that covers the inner surface of the combustion chamber, and the passage length of any one of the plurality of heat transfer fins may be different. The heat transfer fin has a length longer than the passage length, and the following effects can be obtained.
すなわち、複数の伝熱のフィンの通路長さを互いに変え
てあることにより、長い通路を持つ伝熱フィン側の通路
長さを長くしてガス通過抵抗を増加しているため、燃焼
ガスは複数の伝熱フィンを均一に流れる。すなわち、燃
焼ガスが燃焼室から燃焼ガス出口を出た後高温ガス通路
を通過する抵抗をフィンの長さにより最適に設定でき
る。そのため、各伝熱フィンの通路抵抗を同じ抵抗に設
定でき、燃焼ガス均一に流せ、伝熱フィンの各部の伝熱
量を均一化できるものである。このことにより、局部過
熱による冷媒の分解劣化を防止し、高効率な熱交換が可
能となる。また、冷媒の流れに応じて、フィンの長さに
より流量抵抗に分布を設け燃焼ガスの流れ分布をコント
ロールできる。また、断熱構造の燃焼室と連通して設け
た燃焼ガス出口から噴出する燃焼ガスが通過する前記高
温ガス通路内に伝熱隔壁に密着した複数の伝熱フィンを
設け、伝熱隔壁と冷媒通路部材を備えて構成した熱交換
器で燃焼ガスの温度と流れを均一にでき、冷媒通路部材
の各部を均一加熱できて冷媒をスムーズに循環させ、か
つ冷媒を局部過熱させることがなく無動力熱搬送を確実
に行なわせ、冷媒の熱分解も防止できる。均一加熱は冷
媒通路部材の通路内の流れの抵抗を低減させることによ
り気泡発生が増大し、気泡上昇力は強められて自然循環
力が強くなり、熱交換効率が増大し、機器のコンパクト
化が可能となり、また均一加熱により冷媒の局部異常過
熱を防止することにより機器の異常温度上昇防止による
信頼性の向上を図ることができる。また、無動力熱搬送
が可能となることにより、ランニングコストの低減を図
ることができる。That is, since the passage lengths of the plurality of heat transfer fins are different from each other, the passage length on the heat transfer fin side having a long passage is lengthened to increase the gas passage resistance. Flows evenly through the heat transfer fins. That is, the resistance of the combustion gas passing through the hot gas passage after exiting the combustion gas outlet from the combustion chamber can be optimally set by the length of the fin. Therefore, the passage resistance of each heat transfer fin can be set to the same resistance, the combustion gas can be made to flow uniformly, and the heat transfer amount of each part of the heat transfer fin can be made uniform. This prevents the refrigerant from decomposing and deteriorating due to local overheating, and enables highly efficient heat exchange. In addition, the flow resistance of the combustion gas can be controlled by providing a distribution of flow rate resistance depending on the length of the fins according to the flow of the refrigerant. Further, a plurality of heat transfer fins in close contact with the heat transfer partition are provided in the high temperature gas passage through which the combustion gas ejected from the combustion gas outlet provided in communication with the combustion chamber of the heat insulating structure passes, and the heat transfer partition and the refrigerant passage are provided. With a heat exchanger configured with members, the temperature and flow of the combustion gas can be made uniform, each part of the refrigerant passage member can be heated uniformly, the refrigerant can circulate smoothly, and the refrigerant is not overheated without powering. The transport can be performed reliably and the thermal decomposition of the refrigerant can be prevented. Uniform heating reduces the resistance of the flow in the passage of the refrigerant passage member to increase bubble generation, the bubble rising force is strengthened and the natural circulation force is strengthened, the heat exchange efficiency is increased, and the device is made compact. In addition, uniform heating prevents local abnormal overheating of the refrigerant, thereby improving reliability by preventing abnormal temperature rise of the device. Further, since the non-powered heat transfer is possible, the running cost can be reduced.
第1図〜第4図は本発明の一実施例を示すもので、第1
図は熱交換器の縦断面図、第2図は冷媒通路部材の横断
面図、第3図は熱交換器の分解斜視図、第4図は高温ガ
ス通路内部の構成図、第5図は従来の冷媒加熱暖房装置
の回路構成図、第6図は従来の熱交換器の斜視図であ
る。 11……燃焼室、12……バーナ、13……伝熱隔壁、14……
高温ガス通路部材、15……燃焼ガス出口、16……排気
管、17……冷媒通路部材、18……通路、19……入口ヘッ
ダー管、20……出口ヘッダー管、24,25……伝熱フィ
ン、24a,25a……通路、26……断熱材。1 to 4 show an embodiment of the present invention.
FIG. 2 is a vertical cross-sectional view of the heat exchanger, FIG. 2 is a horizontal cross-sectional view of the refrigerant passage member, FIG. 3 is an exploded perspective view of the heat exchanger, FIG. 4 is a configuration diagram inside the hot gas passage, and FIG. FIG. 6 is a circuit diagram of a conventional refrigerant heating / heating device, and FIG. 6 is a perspective view of a conventional heat exchanger. 11 …… Combustion chamber, 12 …… Burner, 13 …… Heat transfer partition, 14 ……
Hot gas passage member, 15 ... Combustion gas outlet, 16 ... Exhaust pipe, 17 ... Refrigerant passage member, 18 ... Passage, 19 ... Inlet header pipe, 20 ... Outlet header pipe, 24, 25 ... Transmission Heat fins, 24a, 25a ... passages, 26 ... Insulation.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜武 達規 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 山口 紘一郎 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tatsunori Sakuratake 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.
Claims (1)
連通して設けた燃焼室と、前記燃焼室の他端側に連通し
て設けた燃焼ガス出口と、この燃焼ガス出口に連通して
設けた高温ガス通路と、前記高温ガス通路内において高
温ガス通路を覆う伝熱隔壁に密着して設けられ上下方向
に多数の通路を持つ上下複数段の伝熱フィンと、前記伝
熱隔壁の外面と密着した冷媒通路部材と、前記燃焼室の
内面を覆う断熱材とからなり、前記複数の伝熱フィンの
内、何れかの伝熱フィンの通路長さを他の伝熱フィンの
通路長さよりも長くした熱交換器。1. A combustion chamber whose one end side communicates with a burner connected to a fuel supply device, a combustion gas outlet which communicates with the other end side of the combustion chamber, and a combustion gas outlet which communicates with this combustion gas outlet. A high temperature gas passage provided, a plurality of upper and lower heat transfer fins provided in close contact with the heat transfer partition wall covering the high temperature gas passage in the high temperature gas passage and having a large number of vertical passages, and an outer surface of the heat transfer partition wall. And a heat insulating material that covers the inner surface of the combustion chamber, and the passage length of any one of the plurality of heat transfer fins is greater than the passage length of the other heat transfer fins. A heat exchanger with a longer length.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18819189A JPH0718596B2 (en) | 1989-07-20 | 1989-07-20 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18819189A JPH0718596B2 (en) | 1989-07-20 | 1989-07-20 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0351665A JPH0351665A (en) | 1991-03-06 |
JPH0718596B2 true JPH0718596B2 (en) | 1995-03-06 |
Family
ID=16219363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18819189A Expired - Fee Related JPH0718596B2 (en) | 1989-07-20 | 1989-07-20 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0718596B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100507045B1 (en) * | 2002-11-14 | 2005-08-08 | 기아자동차주식회사 | Curtain fixing apparatus having function of escaping vehicle |
PL2036869T3 (en) | 2006-06-29 | 2021-07-19 | Yoshino Gypsum Co., Ltd. | Methods for manufacturing a calcined gypsum and a gypsum board |
US10974993B2 (en) | 2016-02-02 | 2021-04-13 | Yoshino Gypsum Co., Ltd. | Calcined gypsum treatment device and calcined gypsum treatment method |
-
1989
- 1989-07-20 JP JP18819189A patent/JPH0718596B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0351665A (en) | 1991-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0718596B2 (en) | Heat exchanger | |
JPH0351666A (en) | Heat exchanger | |
JP2845566B2 (en) | Heat exchanger | |
JP2619956B2 (en) | Heat exchanger | |
JP2845563B2 (en) | Heat exchanger | |
JPH0718595B2 (en) | Heat exchanger | |
JPH0317443A (en) | Heat exchanger | |
JPH0776637B2 (en) | Heat exchanger | |
JP2584047B2 (en) | Heat exchanger | |
JP2845564B2 (en) | Heat exchanger | |
JPH0697143B2 (en) | Heat exchanger | |
JPH05118778A (en) | Heat exchanger | |
JP2845565B2 (en) | Heat exchanger | |
JP2532630B2 (en) | Refrigerant heater | |
JP2861544B2 (en) | Heat exchanger | |
JPH07113497B2 (en) | Heat exchanger | |
JP3019548B2 (en) | Heat exchanger | |
JP2841975B2 (en) | Heat exchanger | |
JP2001263823A (en) | Hot air type heater | |
JP2834302B2 (en) | Heat exchanger | |
JP2850587B2 (en) | Heat exchanger | |
SU1712646A1 (en) | Electric heater for liquid coolant | |
JP2674217B2 (en) | Heat exchange equipment | |
JP2605869B2 (en) | Heat exchange equipment | |
JP3021860B2 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |