[go: up one dir, main page]

JPH0718081A - Thin polysilane film - Google Patents

Thin polysilane film

Info

Publication number
JPH0718081A
JPH0718081A JP16079393A JP16079393A JPH0718081A JP H0718081 A JPH0718081 A JP H0718081A JP 16079393 A JP16079393 A JP 16079393A JP 16079393 A JP16079393 A JP 16079393A JP H0718081 A JPH0718081 A JP H0718081A
Authority
JP
Japan
Prior art keywords
polysilane
regions
molecules
thin film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16079393A
Other languages
Japanese (ja)
Inventor
Yasushi Mori
寧 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16079393A priority Critical patent/JPH0718081A/en
Publication of JPH0718081A publication Critical patent/JPH0718081A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)

Abstract

PURPOSE:To provide the film having excellent third-order nonlinear optical properties. CONSTITUTION:The film comprises first linear regions 2 containing polysilane molecules and having a width of 1mum or smaller and second linear regions 3 containing molecules which serve to separate the regions 2 so as to inhibit the electronic interaction of the polysilane molecules between adjacent regions 2, the two kinds of regions being arranged alternately on the film surface, with the polysilane molecules of the regions 3 being oriented in the direction of the length of the regions 2. Alternatively, the film has on its surface a sea- island pattern which comprises island regions 4 containing polysilane molecules and having a maximum inner diameter of 1mum or smaller and a sea region 5 surrounding the regions 4 and containing molecules which serve to separate the regions 4 so as to inhibit the electronic interaction of the polysilane molecules between adjacent regions 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3次非線形光学特性など
に優れたポリシラン薄膜に関する。
FIELD OF THE INVENTION The present invention relates to a polysilane thin film having excellent third-order nonlinear optical characteristics.

【0002】[0002]

【従来の技術】従来、高分子材料としては、炭素原子が
直鎖状に結合した炭素系高分子が多用されている。これ
に対して近年、炭素系高分子に代わる次世代の材料とし
て、ケイ素原子が直鎖状に結合した高分子であるポリシ
ランが注目を集めている。ポリシランは炭素系高分子と
異なり、可視光域に吸収を持たないという光学的性質を
有することから、特に光半導体、非線形光学素子、透明
導電性材料への応用が有望視されている。
2. Description of the Related Art Conventionally, carbon-based polymers in which carbon atoms are linearly bonded are often used as polymer materials. On the other hand, in recent years, polysilane, which is a polymer in which silicon atoms are linearly bonded, has been attracting attention as a next-generation material replacing carbon-based polymers. Unlike carbon-based polymers, polysilane has an optical property that it does not have absorption in the visible light region. Therefore, it is expected to be applied to optical semiconductors, nonlinear optical elements, and transparent conductive materials.

【0003】このような期待にもかかわらず、例えば非
線形光学特性の代表的物性値であるχ(3) に着目する
と、ポリシランの値は、炭素系高分子のそれに比較して
必ずしも大きくない(例えば、F.Kajar,J.M
essier,and C.Rosilio,J.Ap
pl.Phys.60(1986)3040参照)。こ
れは以下のような理由によると思われる。
Despite such expectations, when attention is paid to χ (3) , which is a typical physical property value of nonlinear optical characteristics, the value of polysilane is not necessarily larger than that of carbon-based polymer (for example, , F. Kajar, J.M.
essier, and C.I. Rosilio, J .; Ap
pl. Phys. 60 (1986) 3040). This seems to be due to the following reasons.

【0004】ポリシランの非線形光学特性の起源は、ケ
イ素原子で構成されるポリシラン主鎖の共役σ電子が形
成する1次元励起子状態であると考えられている(例え
ば、十倉好紀、橘浩昭、応用物理、60巻(1991)
990参照)。しかし、従来報告されている配向ポリシ
ラン薄膜においては、ポリシラン主鎖の1次元性が微視
的に実現しているだけである。すなわち、各ポリシラン
分子の配向方向は必ずしも完全に一定ではなく、互いに
隣接する分子の配向方向が多少異なっている場合の方が
多い。この状態で、ある分子が励起したとしても、その
励起子状態が隣接する分子に遷移する際に励起子の異方
性が低減し、巨視的には励起子の1次元性が低減する。
このため、上述したように期待されるほど大きな3次非
線形光学定数は得られていないのが現状であった。
The origin of the nonlinear optical properties of polysilane is considered to be the one-dimensional exciton state formed by the conjugated σ electron of the polysilane main chain composed of silicon atoms (eg, Yoshinori Tokura, Hiroaki Tachibana, Applied Physics, Volume 60 (1991)
990). However, in the conventionally reported oriented polysilane thin film, the one-dimensional property of the polysilane main chain is only realized microscopically. That is, the orientation direction of each polysilane molecule is not always completely constant, and in many cases, the orientation directions of adjacent molecules are slightly different from each other. Even if a certain molecule is excited in this state, the anisotropy of the exciton is reduced when the exciton state transits to the adjacent molecule, and macroscopically the one-dimensional property of the exciton is reduced.
Therefore, as described above, it is the current situation that the expected third-order nonlinear optical constant has not been obtained.

【0005】[0005]

【発明が解決しようとする課題】以上のように従来のポ
リシラン薄膜では、各ポリシラン分子で形成される1次
元励起子状態が膜全体としては打ち消される傾向にある
ため、大きな3次非線形光学定数が得られないという問
題があった。本発明の目的は、このような問題を解消し
て優れた3次非線形光学特性を示すポリシラン薄膜を提
供することにある。
As described above, in the conventional polysilane thin film, the one-dimensional exciton state formed by each polysilane molecule tends to be canceled out in the entire film, so that a large third-order nonlinear optical constant is generated. There was a problem that I could not get it. An object of the present invention is to solve the above problems and provide a polysilane thin film exhibiting excellent third-order nonlinear optical characteristics.

【0006】[0006]

【課題を解決するための手段と作用】本願第1の発明の
ポリシラン薄膜は、ポリシラン分子を含む幅1μm以下
の第1の線状領域と、隣接する第1の線状領域間でのポ
リシラン分子の電子的相互作用を隔離する分子を含む第
2の線状領域とからなるパターンが膜面内に交互に形成
され、前記第2の線状領域中のポリシラン分子が第1の
線状領域の長手方向に配向していることを特徴とするも
のである。
Means and Actions for Solving the Problems A polysilane thin film of the first invention of the present application is a polysilane molecule containing a polysilane molecule and having a width of 1 μm or less and a polysilane molecule between adjacent first linear regions. Of second linear regions containing molecules that segregate the electronic interactions of the first linear region with polysilane molecules in the second linear region are formed alternately. It is characterized in that it is oriented in the longitudinal direction.

【0007】また、本願第2の発明のポリシラン薄膜
は、ポリシラン分子を含む内径の最大値が1μm以下の
島状領域と、この島状領域を囲み、隣接する島状領域間
でのポリシラン分子の電子的相互作用を隔離する分子を
含む分離領域とからなるパターンが膜面内に形成されて
いることを特徴とするものである。
The polysilane thin film of the second invention of the present application has an island-shaped region having a maximum inner diameter of 1 μm or less containing the polysilane molecule, and the polysilane molecule between the adjacent island-shaped regions surrounding the island-shaped region. It is characterized in that a pattern composed of a separation region containing a molecule for separating electronic interaction is formed in the film surface.

【0008】本発明において用いられるポリシランは、
主鎖がケイ素−ケイ素(−Si−Si−)結合からな
り、側鎖に親水性基及び疎水性基の両者を有するもの、
又は親水性基のみもしくは疎水性基のみを有するもので
ある。前記親水性基としては、ヒドロキシル基、アミノ
基、カルボキシル基や、エステル結合、アミド結合、エ
ーテル結合、カルバメート結合およびカーボネート結合
からなる群より選ばれた少なくとも1種を有する官能基
などが挙げられる。前記疎水性基としては、直鎖アルキ
ル基、分枝アルキル基、アリール基、環状アルキル基、
あるいはこれらが結合してなる炭化水素基などが挙げら
れる。
The polysilane used in the present invention is
The main chain is composed of silicon-silicon (-Si-Si-) bonds and has both hydrophilic groups and hydrophobic groups in the side chains,
Alternatively, it has only a hydrophilic group or only a hydrophobic group. Examples of the hydrophilic group include a hydroxyl group, an amino group, a carboxyl group, and a functional group having at least one selected from the group consisting of an ester bond, an amide bond, an ether bond, a carbamate bond and a carbonate bond. As the hydrophobic group, a linear alkyl group, a branched alkyl group, an aryl group, a cyclic alkyl group,
Alternatively, there may be mentioned a hydrocarbon group formed by combining these.

【0009】本発明では、このうち下記一般式(I)で
表される反復単位を有するポリシラン、換言すれば側鎖
に親水性基及び疎水性基の両者を有する両親媒性のポリ
シランが、ラングミュア・ブロジェット法により単分子
累積膜を得ることができるので特に好ましい。
In the present invention, among these, polysilanes having a repeating unit represented by the following general formula (I), in other words, amphipathic polysilanes having both a hydrophilic group and a hydrophobic group in the side chain, are Langmuir. -It is particularly preferable because a monomolecular cumulative film can be obtained by the blow jet method.

【0010】[0010]

【化1】 (式中、R1 は炭素数1〜24の置換もしくは非置換ア
ルキル基、炭素数6〜24の置換もしくは非置換アリー
ル基、または炭素数7〜24の置換もしくは非置換アラ
ルキル基、R2 は炭素数1〜24の2価の有機基、Xは
ヒドロキシル基、アミノ基、カルボキシル基またはエス
テル結合、アミド結合、エーテル結合、カルバメート結
合およびカーボネート結合からなる群より選ばれた少な
くとも1種を有する官能基を示す)。
[Chemical 1] (In the formula, R 1 is a substituted or unsubstituted alkyl group having 1 to 24 carbon atoms, a substituted or unsubstituted aryl group having 6 to 24 carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 24 carbon atoms, and R 2 is Divalent organic group having 1 to 24 carbon atoms, X is a functional group having at least one selected from the group consisting of hydroxyl group, amino group, carboxyl group or ester bond, amide bond, ether bond, carbamate bond and carbonate bond. Group is shown).

【0011】本発明において、ポリシラン分子の電子的
相互作用を隔離する分子としては、絶縁性を有するもの
であれば特に限定されないが、好ましくはポリシロキサ
ンが挙げられる。何となれば、ポリシロキサンは、主鎖
がケイ素−酸素結合からなるものであり、後述するよう
に酸素含有雰囲気中でポリシランを処理してポリシラン
主鎖に酸素を挿入することにより、容易に生成せしめる
ことができるからである。
In the present invention, the molecule for isolating the electronic interaction of the polysilane molecule is not particularly limited as long as it has an insulating property, but polysiloxane is preferable. What is important is that polysiloxane has a main chain composed of a silicon-oxygen bond, and can be easily produced by treating polysilane in an oxygen-containing atmosphere and inserting oxygen into the polysilane main chain as described later. Because you can.

【0012】ここで、本願第1の発明に係るポリシラン
薄膜を製造する方法の一例について説明する。まず、所
定の基板上に、ポリシラン主鎖が一方向に配向した1軸
配向性のポリシラン薄膜を形成する。このためには、ラ
ングミュア・ブロジェット法(以下、LB法と略す)を
用いるか、または基板上にポリシランをコーティングし
た後、1軸延伸するなどの方法を用いることができる。
Here, an example of a method for producing the polysilane thin film according to the first invention of the present application will be described. First, a uniaxially oriented polysilane thin film having a polysilane main chain oriented in one direction is formed on a predetermined substrate. For this purpose, the Langmuir-Blodgett method (hereinafter abbreviated as LB method) can be used, or a method such as uniaxially stretching after coating a substrate with polysilane.

【0013】LB法では、上述した一般式(I)で表さ
れる反復単位を有する両親媒性のポリシランを用いる。
具体的には、ポリシラン分子を揮発性溶媒に溶かした溶
液を用意し、これを純水などの展開媒質の表面に滴下し
て水面上単分子膜を形成し、この単分子膜を適当な表面
圧になるまで圧縮した後、基板に移し取る。ここで、基
板を水面に垂直に浸漬して引き上げると、引き上げ方向
にポリシランの主鎖が配向した単分子膜が得られる。こ
の引き上げ操作を繰り返すことにより、ポリシラン主鎖
が一方向に配向した累積膜が得られる。
In the LB method, an amphipathic polysilane having a repeating unit represented by the above general formula (I) is used.
Specifically, prepare a solution of polysilane molecules in a volatile solvent and drop it on the surface of a developing medium such as pure water to form a monomolecular film on the water surface. After compressing to a pressure, it is transferred to a substrate. Here, when the substrate is dipped perpendicularly to the water surface and pulled up, a monomolecular film in which the main chain of polysilane is oriented in the pulling direction is obtained. By repeating this pulling operation, a cumulative film in which the polysilane main chain is oriented in one direction can be obtained.

【0014】LB法を適用できない、すなわち側鎖に親
水性基及び疎水性基の両方を持たないポリシランについ
ては、いったんスピンコートなどにより基板上に無配向
の薄膜を成膜した後、1軸延伸などの操作を施す。この
ような方法でも、ポリシラン主鎖が一方向に配向した薄
膜が得られる。この1軸延伸操作の際に、ポリシランの
ガラス転移点以上に温度を上げ、延伸力を加えたまま徐
冷する操作を加えると、さらに安定した1軸配向性薄膜
が得られる。
For polysilanes to which the LB method cannot be applied, that is, polysilanes having neither hydrophilic groups nor hydrophobic groups in their side chains, a non-oriented thin film is once formed on the substrate by spin coating or the like, and then uniaxially stretched. And other operations. Also by such a method, a thin film in which the main chain of polysilane is oriented in one direction can be obtained. In this uniaxial stretching operation, if the temperature is raised above the glass transition point of polysilane and the operation of slow cooling while applying stretching force is added, a more stable uniaxially oriented thin film can be obtained.

【0015】なお、本願第1の発明のポリシラン薄膜に
おいては、ポリシラン主鎖の共役σ電子の吸収波長の紫
外光(エネルギー換算で3〜4eV)を照射したときの
吸光係数を測定するとき、この紫外光の偏光方向をポリ
シラン主鎖が強く配向した方向、すなわちLB法に従い
基板を引き上げた方向あるいは1軸延伸操作を施した方
向とした場合の吸光係数と、紫外光の偏光方向をこれと
垂直な方向とした場合の吸光係数の比の値(二色性比)
が2以上、さらには5以上となる程度にポリシラン分子
を配向させることが好ましい。
In the polysilane thin film of the first invention of the present application, when measuring the extinction coefficient when irradiated with ultraviolet light (3 to 4 eV in terms of energy) of the absorption wavelength of the conjugated σ electron of the polysilane main chain, The extinction coefficient when the polarization direction of the ultraviolet light is the direction in which the polysilane main chain is strongly oriented, that is, the direction in which the substrate is pulled up or the direction in which the uniaxial stretching operation is performed according to the LB method, and the polarization direction of the ultraviolet light are perpendicular to this Value of the extinction coefficient when the direction is different (dichroic ratio)
It is preferable to orient the polysilane molecules so that the ratio is 2 or more, and more preferably 5 or more.

【0016】次いで、得られた1軸配向性薄膜の所定の
領域にエネルギー線を照射し、エネルギー線照射部にお
けるポリシランをシロキサン化することにより、本願第
1の発明のポリシラン薄膜が形成される。このために
は、例えば上述した1軸配向性薄膜にポリシラン分子の
配向方向と平行な縞状の遮光部を有するフォトマスクを
対向させ、酸素含有雰囲気中で紫外線を照射する方法が
用いられる。フォトマスクとしては、例えば石英ガラス
にクロム膜を蒸着したものを用いればよい。また、酸素
含有雰囲気中で上述した1軸配向性薄膜に、ビーム径を
絞り込んだ電子線、X線などの粒子線や電磁波を、ポリ
シラン分子の配向方向と平行な方向に走査させながら照
射する方法を用いることもできる。また、1軸配向性薄
膜の表面に、コヒーレントな電磁波の干渉により生じる
干渉縞の方向がポリシラン分子の配向方向に平行に配置
されるような状態で電磁波を照射する方法を用いること
もできる。
Then, a predetermined region of the obtained uniaxially oriented thin film is irradiated with an energy beam to polysiloxane the polysilane in the energy beam irradiation portion, whereby the polysilane thin film of the first invention of the present application is formed. For this purpose, for example, a method is used in which a photomask having a striped light-shielding portion parallel to the orientation direction of polysilane molecules is opposed to the above-mentioned uniaxially oriented thin film, and ultraviolet rays are irradiated in an oxygen-containing atmosphere. As the photomask, for example, a quartz glass having a chromium film deposited thereon may be used. Further, a method of irradiating the above-mentioned uniaxially oriented thin film in an oxygen-containing atmosphere with a particle beam such as an electron beam or X-ray having a narrowed beam diameter or an electromagnetic wave while scanning in a direction parallel to the orientation direction of polysilane molecules. Can also be used. It is also possible to use a method of irradiating the surface of the uniaxially oriented thin film with electromagnetic waves in a state in which the direction of interference fringes generated by interference of coherent electromagnetic waves is arranged parallel to the orientation direction of polysilane molecules.

【0017】本願第1の発明において、ポリシラン分子
を含む第1の線状領域の幅は、ポリシラン分子の配向方
向と直交する方向への励起子状態の拡散を抑制するに十
分に小さければよいが、現実には、パターニング技術の
制約を考慮して1μm以下が適切である。
In the first invention of the present application, the width of the first linear region containing the polysilane molecule should be small enough to suppress the diffusion of the exciton state in the direction orthogonal to the orientation direction of the polysilane molecule. Actually, 1 μm or less is appropriate in consideration of the restriction of patterning technology.

【0018】一方、この第1の線状領域と交互に配列す
る第2の線状領域の幅は、第1の線状領域の幅の1〜1
0倍に設定されることが好ましい。この理由は、第1の
線状領域の幅が小さすぎると、隣接する第1の線状領域
間でのポリシラン分子の電子的相互作用を充分に隔離す
ることができず、逆に第2の線状領域の幅が大きすぎる
と、膜全体として大きな3次非線形光学定数が得られな
くなるおそれがあるからである。
On the other hand, the width of the second linear regions alternately arranged with the first linear regions is 1 to 1 of the width of the first linear regions.
It is preferably set to 0 times. The reason for this is that if the width of the first linear regions is too small, the electronic interaction of the polysilane molecules between the adjacent first linear regions cannot be sufficiently isolated, and conversely the second linear regions cannot be isolated. This is because if the width of the linear region is too large, a large third-order nonlinear optical constant may not be obtained for the entire film.

【0019】さらに本願第1の発明においては、ポリシ
ラン薄膜の膜厚を1μm以下とすることが好ましい。こ
れは、ポリシラン薄膜の膜厚が厚すぎると、あるポリシ
ラン分子で生成した励起子が膜厚方向に拡散して、励起
子の1次元性が希薄になるおそれがあるからである。
Further, in the first invention of the present application, it is preferable that the film thickness of the polysilane thin film is 1 μm or less. This is because if the film thickness of the polysilane thin film is too thick, excitons generated by certain polysilane molecules may diffuse in the film thickness direction, and the one-dimensional property of the excitons may be diluted.

【0020】以上のような本願第1の発明のポリシラン
薄膜は、第1の線状領域においてポリシラン主鎖が一方
向に配向し、さらにこの第1の線状領域が1μm以下の
幅で形成されているため、励起子状態がポリシラン分子
の配向方向に閉じ込められる。この結果、励起子状態の
閉じ込めがなく、ある分子で生成した励起子状態がポリ
シラン主鎖と直交する方向に大きく拡散する場合と比較
して、励起子の1次元性の低減が抑えられて3次非線形
光学定数が格段に増大する。この他、電気伝導性がポリ
シラン分子の配向方向では大きく、それと直交する方向
では極めて小さくなるという導電異方性も期待できる。
In the polysilane thin film of the first invention of the present application as described above, the polysilane main chain is oriented in one direction in the first linear region, and the first linear region is formed with a width of 1 μm or less. Therefore, the exciton state is confined in the orientation direction of the polysilane molecule. As a result, there is no confinement of the exciton state, and the reduction in the one-dimensionality of the exciton is suppressed as compared with the case where the exciton state generated by a certain molecule diffuses largely in the direction orthogonal to the polysilane main chain. The non-linear optical constant increases dramatically. In addition, the electrical anisotropy that the electrical conductivity is high in the orientation direction of the polysilane molecules and is extremely low in the direction orthogonal thereto can be expected.

【0021】さらに本願第2の発明のポリシラン薄膜
は、例えば上述した本願第1の発明のポリシラン薄膜に
対して、ポリシラン分子の配向方向と直交する方向に沿
って上述と同様のエネルギー線照射を施すことにより作
製できる。
Further, the polysilane thin film of the second invention of the present application, for example, irradiates the above-described polysilane thin film of the first invention of the present invention with the same energy rays as described above along the direction orthogonal to the orientation direction of the polysilane molecules. It can be produced by

【0022】なお、このとき本願第2の発明では、特に
1軸配向性薄膜を形成した後にエネルギー線照射を施す
必要はなく、無配向の薄膜の所定の領域にエネルギー線
を照射すればよい。
At this time, in the second invention of the present application, it is not necessary to irradiate the energy beam after forming the uniaxially oriented thin film, and it is sufficient to irradiate the predetermined region of the non-oriented thin film with the energy beam.

【0023】この場合、ポリシラン分子を含む島状領域
の寸法は、内径の最大値が1μm以下となるように設定
される。また、本願第2の発明では、ポリシラン分子を
含む島状領域とこの島状領域を囲む分離領域との面積比
が1:1〜1:10であることが好ましい。この理由
は、分離領域の面積が小さすぎると、隣接する島状領域
間でのポリシラン分子の電子的相互作用を充分に隔離す
ることができず、逆に分子領域の面積が大きすぎると、
膜全体として大きな3次非線形光学定数が得られなくな
るおそれがあるからである。さらに本願第2の発明にお
いては、隣接する島状領域の最近接距離が島状領域の内
径の最大値以上に設定されることがより好ましく、ポリ
シラン薄膜の膜厚は本願第1の発明と同様に1μm以下
とすることが好ましい。
In this case, the size of the island region containing the polysilane molecule is set so that the maximum value of the inner diameter is 1 μm or less. Further, in the second invention of the present application, it is preferable that the area ratio of the island-shaped region containing the polysilane molecule and the separation region surrounding the island-shaped region is 1: 1 to 1:10. The reason is that if the area of the separation region is too small, the electronic interaction of the polysilane molecules between the adjacent island regions cannot be sufficiently isolated, and conversely if the area of the molecule region is too large,
This is because a large third-order nonlinear optical constant may not be obtained for the entire film. Further, in the second invention of the present application, it is more preferable that the closest distance between adjacent island regions is set to be equal to or larger than the maximum value of the inner diameter of the island regions, and the thickness of the polysilane thin film is the same as that of the first invention of the present application. It is preferably 1 μm or less.

【0024】このような構造の本願第2の発明のポリシ
ラン薄膜においては、ポリシラン分子はほぼ微粒子状態
で存在し、励起子状態が0次元的に閉じ込められている
とみなすことができるので、励起子状態が1次元的に閉
じ込められた場合よりも励起子に起因する電子遷移の振
動子強度が増大する。したがって、励起子状態の空間的
閉じ込め効果により、バルク物質、2次元薄膜、1次元
細線とは異なった物性、より具体的には、3次非線形光
学定数の増大の他に、強磁性の発生、光学吸収波長のシ
フトなどの効果が期待できる。
In the polysilane thin film of the second invention of the present invention having such a structure, the polysilane molecules exist in a substantially fine particle state, and it can be considered that the exciton state is confined in a zero-dimensional manner. The oscillator strength of electronic transitions caused by excitons increases more than when the state is confined one-dimensionally. Therefore, due to the spatial confinement effect of the exciton state, physical properties different from those of the bulk material, the two-dimensional thin film, and the one-dimensional thin line, more specifically, the increase of the third-order nonlinear optical constant, the generation of ferromagnetism, Effects such as shift of optical absorption wavelength can be expected.

【0025】[0025]

【実施例】以下、本発明の実施例を説明する。 実施例1 側鎖に親水性基としてm−ヒドロキシフェニル基及び疎
水性基としてn−ブチル基を有する分子量10万(GP
C測定によるポリスチレン換算値)のポリシラン分子を
用い、LB法により以下のようにして石英基板上にポリ
シラン単分子膜を累積した。
EXAMPLES Examples of the present invention will be described below. Example 1 A molecular weight of 100,000 having an m-hydroxyphenyl group as a hydrophilic group and an n-butyl group as a hydrophobic group in a side chain (GP
A polysilane monomolecular film was accumulated on a quartz substrate by the LB method in the following manner using polysilane molecules of polystyrene conversion value by C measurement).

【0026】まず、石英基板の前処理として、硫酸と過
酸化水素水混合液(SH)への浸漬、フッ酸浸漬、OA
P処理(ヘキサメチレンジシラザンとドデシルトリクロ
ロシランとの混合液による処理)をこの順で行った。こ
の前処理により石英基板表面は疎水性になる。
First, as a pretreatment of a quartz substrate, dipping in a mixed solution of sulfuric acid and hydrogen peroxide (SH), dipping in hydrofluoric acid, and OA.
P treatment (treatment with a mixed solution of hexamethylenedisilazane and dodecyltrichlorosilane) was performed in this order. This pretreatment makes the quartz substrate surface hydrophobic.

【0027】LB膜成膜装置は、市販のもの(共和界面
科学社製)を用いた。展開相として純水を用い、上記ポ
リシラン分子のシクロヘキサン溶液を純水の表面にマイ
クロシリンジで滴下して展開し水面上に単分子膜を形成
した。成膜条件は、展開相のpHを5.0〜6.0、基
板引き上げ速度を5mm/min、表面圧を20dyn
/cm、水温を13.0〜15.0℃とし、垂直浸漬法
により基板上に単分子膜を累積した。
A commercially available LB film forming apparatus (manufactured by Kyowa Interface Science Co., Ltd.) was used. Pure water was used as the developing phase, and the cyclohexane solution of the polysilane molecule was dropped on the surface of the pure water by a microsyringe to develop the monomolecular film on the water surface. The film forming conditions are as follows: pH of developing phase is 5.0 to 6.0, substrate pulling rate is 5 mm / min, surface pressure is 20 dyn.
/ Cm, the water temperature was 13.0 to 15.0 ° C., and the monomolecular film was accumulated on the substrate by the vertical dipping method.

【0028】このような条件で単分子膜を100層累積
したLB膜を作製した。得られたLB膜は、上述したよ
うなポリシラン主鎖の共役σ電子の吸収波長の紫外光を
照射したときの二色性比が6であり、紫外吸収の異方性
(二色性)を有することから、1軸配向していることが
確認された。
Under these conditions, an LB film was prepared by accumulating 100 monolayers. The obtained LB film had a dichroic ratio of 6 when irradiated with ultraviolet light having the absorption wavelength of the conjugated σ electron of the polysilane main chain as described above, and exhibited anisotropy (dichroism) of ultraviolet absorption. From this, it was confirmed that they were uniaxially oriented.

【0029】このLB膜に、石英基板上にクロムの蒸着
膜で形成したライン・アンド・スペース1μmのフォト
マスクを密着させた。このとき、フォトマスクの遮光部
の長手方向がポリシラン分子の配向方向と一致するよう
にフォトマスクとLB膜の方位を調整した。この後、乾
燥空気中において、水銀ランプのi線(365nm)を
10分間照射して露光した。この操作により、露光部分
はポリシロキサンに変化する。したがって、図1に示す
ように、石英基板1上に、ポリシラン分子を含む第1の
線状領域2とポリシロキサン分子を含む第2の線状領域
3とがそれぞれ幅1μmの縞状に互いに平行に配置さ
れ、かつポリシラン主鎖が第1の線状領域2の長手方向
に配向した構造の本願第1の発明のポリシラン薄膜が得
られた。
A photomask having a line-and-space of 1 μm formed of a chromium vapor deposition film on a quartz substrate was adhered to the LB film. At this time, the orientations of the photomask and the LB film were adjusted so that the longitudinal direction of the light shielding portion of the photomask coincided with the orientation direction of the polysilane molecules. After that, the sample was exposed to i-line (365 nm) of a mercury lamp for 10 minutes in dry air for exposure. By this operation, the exposed portion is changed to polysiloxane. Therefore, as shown in FIG. 1, on the quartz substrate 1, the first linear regions 2 containing polysilane molecules and the second linear regions 3 containing polysiloxane molecules are parallel to each other in stripes each having a width of 1 μm. The polysilane thin film of the first invention of the present application having a structure in which the main chain of polysilane is oriented in the longitudinal direction of the first linear region 2 is obtained.

【0030】得られたポリシラン薄膜の3次非線形光学
特性を、以下に示す3次高調波発生(THG)法により
評価した。すなわち、ポリシラン薄膜に、Nd−YAG
レーザの基本波(波長1.064μm)を照射し、ポリ
シラン薄膜から発生する355nmの3次高調波光の強
度を測定した。このとき、入射光の偏光方向をポリシラ
ン分子を含む第1の線状領域の長手方向と平行にし、3
次高調波のうち入射光と平行な偏光成分の強度を測定し
た。一方、参照試料として3次非線形感受率が既知であ
る石英基板を用い、その3次高調波光の強度を測定し、
両者の3次高調波光の強度を比較することにより、ポリ
シラン薄膜の3次非線形感受率を定めた。その結果、ポ
リシラン薄膜の3次非線形感受率は、1.5×10-8
suであることがわかった。この値は、露光処理をしな
かった以外は全く同様のポリシラン薄膜の3次非線形感
受率1.5×10-10 esuに比較して格段に増大して
いる。なお、入射光と直交する偏光成分をもつ3次高調
波光の強度は、入射光と平行な偏光成分をもつ3次高調
波光の強度の1/1000と非常に弱かった。一方、入
射光の偏光方向をポリシラン分子を含む第1の線状領域
の長手方向と直交する方向にすると、3次高調波光は検
出されなかった。
The third-order nonlinear optical characteristics of the obtained polysilane thin film were evaluated by the third-order harmonic generation (THG) method shown below. That is, Nd-YAG is added to the polysilane thin film.
The fundamental wave of the laser (wavelength 1.064 μm) was irradiated, and the intensity of the 355 nm third harmonic light generated from the polysilane thin film was measured. At this time, the polarization direction of the incident light is made parallel to the longitudinal direction of the first linear region containing polysilane molecules, and 3
The intensity of the polarization component parallel to the incident light in the next harmonic was measured. On the other hand, a quartz substrate with a known third-order nonlinear susceptibility is used as a reference sample, and the intensity of the third-order harmonic light is measured,
The third-order nonlinear susceptibility of the polysilane thin film was determined by comparing the intensities of the third-order harmonic light of both. As a result, the third-order nonlinear susceptibility of the polysilane thin film is 1.5 × 10 −8 e
It turned out to be su. This value is remarkably increased as compared to the third-order nonlinear susceptibility of 1.5 × 10 −10 esu of the same polysilane thin film except that the exposure process was not performed. The intensity of the third-order harmonic light having a polarization component orthogonal to the incident light was very weak, which was 1/1000 of the intensity of the third-order harmonic light having a polarization component parallel to the incident light. On the other hand, when the polarization direction of the incident light was set to the direction orthogonal to the longitudinal direction of the first linear region containing polysilane molecules, the third harmonic light was not detected.

【0031】実施例2 実施例1で作製したポリシラン薄膜上に、実施例1で使
用したのと同一のフォトマスクを、その遮光部の長手方
向がポリシラン分子の配向方向と直交するように密着さ
せ、実施例1と同様に露光した。このような操作によ
り、図2に示すように、石英基板1上に、ポリシラン分
子を含む1μm角の島状領域4が多数、ポリシロキサン
分子を含む分離領域5に囲まれた構造の本願第2の発明
のポリシラン薄膜が得られた。
Example 2 The same photomask as that used in Example 1 was adhered onto the polysilane thin film produced in Example 1 so that the longitudinal direction of the light-shielding portion was perpendicular to the orientation direction of polysilane molecules. Exposure was carried out in the same manner as in Example 1. As a result of such an operation, as shown in FIG. 2, a large number of 1 μm square island-shaped regions 4 containing polysilane molecules are surrounded by a separation region 5 containing polysiloxane molecules on the quartz substrate 1. The polysilane thin film according to the invention was obtained.

【0032】次いで、入射光及び強度を測定する3次高
調波光の偏光方向をポリシラン分子の配向方向と平行に
設定し、実施例1と同様にして、得られたポリシラン薄
膜の3次非線形感受率を測定したところ、1.8×10
-7esuの値が得られ、実施例1よりもさらに3次非線
形光学特性が向上したことがわかった。
Then, the polarization direction of the incident light and the intensity of the third-order harmonic light for measuring the intensity are set parallel to the orientation direction of the polysilane molecules, and in the same manner as in Example 1, the third-order nonlinear susceptibility of the obtained polysilane thin film is set. Was measured to be 1.8 × 10
The value of −7 esu was obtained, and it was found that the third-order nonlinear optical characteristic was further improved as compared with Example 1.

【0033】[0033]

【発明の効果】以上詳述したように本発明のポリシラン
薄膜は、極めて優れた3次非線形光学特性を示す。
As described in detail above, the polysilane thin film of the present invention exhibits extremely excellent third-order nonlinear optical characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において作製された本願第1の発明の
ポリシラン薄膜の斜視図。
FIG. 1 is a perspective view of a polysilane thin film of the first invention of the present application produced in Example 1. FIG.

【図2】実施例2において作製された本願第2の発明の
ポリシラン薄膜の斜視図。
FIG. 2 is a perspective view of a polysilane thin film of the second invention of the present application produced in Example 2.

【符号の説明】[Explanation of symbols]

1…石英基板、2…第1の線状領域、3…第2の線状領
域、4…島状領域、5…分離領域。
1 ... Quartz substrate, 2 ... 1st linear region, 3 ... 2nd linear region, 4 ... Island region, 5 ... Separation region.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリシラン分子を含む幅1μm以下の第
1の線状領域と、隣接する第1の線状領域間でのポリシ
ラン分子の電子的相互作用を隔離する分子を含む第2の
線状領域とからなるパターンが膜面内に交互に形成さ
れ、前記第2の線状領域中のポリシラン分子が第1の線
状領域の長手方向に配向していることを特徴とするポリ
シラン薄膜。
1. A first linear region containing a polysilane molecule and having a width of 1 μm or less, and a second linear region containing a molecule that isolates an electronic interaction of the polysilane molecule between adjacent first linear regions. A polysilane thin film, wherein patterns each comprising regions are alternately formed in the film surface, and polysilane molecules in the second linear regions are oriented in the longitudinal direction of the first linear regions.
【請求項2】 ポリシラン分子を含む内径の最大値が1
μm以下の島状領域と、この島状領域を囲み、隣接する
島状領域間でのポリシラン分子の電子的相互作用を隔離
する分子を含む分離領域とからなるパターンが膜面内に
形成されていることを特徴とするポリシラン薄膜。
2. The maximum value of the inner diameter containing the polysilane molecule is 1
A pattern is formed in the film surface, which is composed of an island region having a size of less than or equal to μm and a separation region containing a molecule that surrounds the island region and isolates electronic interaction of polysilane molecules between adjacent island regions. A polysilane thin film characterized in that
JP16079393A 1993-06-30 1993-06-30 Thin polysilane film Pending JPH0718081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16079393A JPH0718081A (en) 1993-06-30 1993-06-30 Thin polysilane film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16079393A JPH0718081A (en) 1993-06-30 1993-06-30 Thin polysilane film

Publications (1)

Publication Number Publication Date
JPH0718081A true JPH0718081A (en) 1995-01-20

Family

ID=15722581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16079393A Pending JPH0718081A (en) 1993-06-30 1993-06-30 Thin polysilane film

Country Status (1)

Country Link
JP (1) JPH0718081A (en)

Similar Documents

Publication Publication Date Title
US8273525B2 (en) Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials
Namatsu et al. Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations
US6946410B2 (en) Method for providing nano-structures of uniform length
US8822139B2 (en) Method for providing an ordered layer of self-assemblable polymer for use in lithography
KR100930966B1 (en) Nanostructures of block copolymers formed on surface patterns of shapes inconsistent with the nanostructures of block copolymers and methods for manufacturing the same
TW200804978A (en) Treated substratum with hydrophilic region and water-repellent region and process for producing the same
KR940004732A (en) Pattern formation method and thin film formation method used for pattern formation
JP4615520B2 (en) Microlens, microlens array and manufacturing method thereof
KR100533316B1 (en) Method for Manufacturing a Carbon Nanotube Multilayer Pattern Using Photolithography and Dry Etching
CN101369029A (en) Method for preparing photonic crystal film with improved mechanical strength and solvent resistance
Bulgarevich et al. Operational Stability Enhancement of Polymeric Organic Field‐Effect Transistors by Amorphous Perfluoropolymers Chemically Anchored to Gate Dielectric Surfaces
Goessl et al. Plasma lithography—thin-film patterning of polymeric biomaterials by RF plasma polymerization I: Surface preparation and analysis
Xiao et al. Integration of a patterned conductive carbon nanotube thin film with an insulating hydrophobic polymer carpet into robust 2D Janus hybrid flexible electronics
JP2008221385A (en) Nanomaterial array base material
KR102012765B1 (en) Methods of providing patterned chemical epitaxy templates for self-assemblable block copolymers for use in device lithography
Fujiki et al. Direct patterning and electrical properties of phthalocyanines thin films prepared by Langmuir-Blodgett and spin cast techniques
JPH0718081A (en) Thin polysilane film
Chabinyc et al. Self-assembled monolayers exposed to metastable argon beams undergo thiol exchange reactions
Nasrallah et al. Modification of hydrophilic, optical and electrical properties of bisphenol-A based polycarbonate polymeric films using DC O2 plasma
JP2002115079A (en) Method of manufacturing functional organic thin film and method of manufacturing organic electronic device using the same as well as method of manufacturing display device using the same
Zelsmann et al. Double-anchoring fluorinated molecules for antiadhesion mold treatment in UV nanoimprint lithography
Yang et al. A simple method to fabricate a conductive polymer micropattern on an organic polymer substrate
Soliman et al. Controlled Growth of Organosilane Micropatterns on Hydrophilic and Hydrophobic Surfaces Templated by Vacuum Ultraviolet Photolithography
JPWO2005091070A1 (en) Lithographic substrate surface treatment agent
Pellegrino et al. Fabrication of well‐ordered arrays of silicon nanocrystals using a block copolymer mask