[go: up one dir, main page]

JPH07180559A - Spark ignition internal combustion engine - Google Patents

Spark ignition internal combustion engine

Info

Publication number
JPH07180559A
JPH07180559A JP5323789A JP32378993A JPH07180559A JP H07180559 A JPH07180559 A JP H07180559A JP 5323789 A JP5323789 A JP 5323789A JP 32378993 A JP32378993 A JP 32378993A JP H07180559 A JPH07180559 A JP H07180559A
Authority
JP
Japan
Prior art keywords
intake
internal combustion
air
combustion engine
spark ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5323789A
Other languages
Japanese (ja)
Other versions
JP3332177B2 (en
Inventor
Akihiro Iiyama
明裕 飯山
Hiroyuki Itoyama
浩之 糸山
Kazuyoshi Aramaki
和喜 荒巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP32378993A priority Critical patent/JP3332177B2/en
Priority to KR1019940036508A priority patent/KR0167381B1/en
Priority to DE4445777A priority patent/DE4445777B4/en
Publication of JPH07180559A publication Critical patent/JPH07180559A/en
Application granted granted Critical
Publication of JP3332177B2 publication Critical patent/JP3332177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/02Modifying induction systems for imparting a rotation to the charge in the cylinder in engines having inlet valves arranged eccentrically to cylinder axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/48Tumble motion in gas movement in cylinder
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

(57)【要約】 【目的】 火花点火式内燃金の希薄空燃比運転時の安定
性向上を図る。 【構成】 運転条件に応じて空燃比を希薄化する火花点
火式内燃機関において、希薄空燃比運転時に、シリンダ
内吸気流動のタンブル比が1.6〜3.1、同じくスワ
ール比が1.8〜3.5となるような吸気系を設定す
る。また、このようなタンブルスワール比を実現する手
段として、各気筒間で吸気管7を等長・対称化するこ
と、所定の位置に開口部13を有する空気制御弁11を
設けること、この空気制御弁11の上部を下流側に所定
角度だけ傾斜して取り付けること、吸気ポート6をシリ
ンダ内で縦渦を生起するタンブル強化ポート形状に形成
すること、空気制御弁開口部13側の吸気弁15が早期
に開くように位相差を有して開弁駆動される2つの吸気
弁14,15を備えること等を提案する。
(57) [Summary] [Purpose] To improve the stability of spark-ignition internal combustion gold during lean air-fuel ratio operation. [Structure] In a spark ignition type internal combustion engine in which an air-fuel ratio is diluted according to operating conditions, a tumble ratio of intake air flow in a cylinder is 1.6 to 3.1 and a swirl ratio is 1.8 when the lean air-fuel ratio is operating. Set the intake system so that it becomes ~ 3.5. Further, as means for realizing such a tumble swirl ratio, the intake pipe 7 is made equal in length and symmetrical between the cylinders, an air control valve 11 having an opening 13 at a predetermined position is provided, and this air control is performed. The upper part of the valve 11 is attached to the downstream side while being inclined by a predetermined angle, the intake port 6 is formed in a tumble strengthening port shape that causes a vertical vortex in the cylinder, and the intake valve 15 on the air control valve opening 13 side is It is proposed to provide two intake valves 14 and 15 that are opened and driven with a phase difference so as to open early.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、運転条件に応じて空燃
比を希薄化する火花点火式内燃機関の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a spark ignition type internal combustion engine which leans the air-fuel ratio according to operating conditions.

【0002】[0002]

【従来の技術】火花点火式内燃機関において、主として
低負荷運転時または希薄空燃比運転時の燃焼性状を改善
することを目的として、切欠等からなる部分的な開口部
を設けたスワールコントロールバルブ(SCV)と呼ば
れる空気制御弁を機関吸気ポート付近に介装し、その開
口部に吸気流を集中させることにより通路内で吸気を偏
流させると共に流速を高めてシリンダ内の空気流動を促
すようにしたものが知られている(例えば実開平1−9
1038号公報参照)。
2. Description of the Related Art In a spark ignition type internal combustion engine, a swirl control valve provided with a partial opening such as a notch for the purpose of improving combustion characteristics mainly at low load operation or lean air-fuel ratio operation ( An air control valve called SCV) is provided in the vicinity of the engine intake port, and the intake flow is concentrated at the opening of the engine to bias the intake air in the passage and increase the flow velocity to promote the air flow in the cylinder. Things are known (for example, actual Kaihei 1-9
1038 gazette).

【0003】[0003]

【発明が解決しようとする課題】ところで、このような
従来の内燃機関では、一般に吸気マニホールドの枝管の
長さおよび空気制御弁上流の吸気通路形状が気筒毎に異
なっていることや、シリンダ内の縦方向の渦流(タンブ
ル)が不足していること、各気筒の空気制御弁の取付や
切欠形状の誤差によりサイクル毎の吸気の平均流速の変
動が発生しがちであることなどに原因して、必ずしも安
定した希薄燃焼運転を行うことができず、あるいは安定
した運転状態が得られる空燃比を十分に大きくできず希
薄燃焼限界が低いという問題があった。
By the way, in such a conventional internal combustion engine, generally, the length of the branch pipe of the intake manifold and the shape of the intake passage upstream of the air control valve are different for each cylinder, and Is due to the lack of vertical vortex (tumble) in the cylinder, and due to the error in the air control valve mounting and notch shape of each cylinder, the average flow velocity of intake air for each cycle tends to fluctuate. However, there has been a problem that a stable lean burn operation cannot always be performed, or the air-fuel ratio for obtaining a stable operating state cannot be sufficiently increased, and the lean burn limit is low.

【0004】本発明は、このような従来の問題点を解消
することを目的としている。
An object of the present invention is to eliminate such a conventional problem.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明では、運転条件に応じて空燃比を希薄化する火
花点火式内燃機関において、希薄空燃比運転時に、シリ
ンダ内吸気流動のタンブル比が1.6〜3.1、同じく
スワール比が1.8〜3.5となるような吸気系を設定
した内燃機関を提案するものである。
In order to achieve the above object, according to the present invention, in a spark ignition type internal combustion engine in which an air-fuel ratio is diluted according to operating conditions, a tumble of intake air flow in a cylinder during lean air-fuel ratio operation. The present invention proposes an internal combustion engine in which an intake system is set so that the ratio is 1.6 to 3.1 and the swirl ratio is 1.8 to 3.5.

【0006】ただし、タンブル比=シリンダ内の縦渦の
回転速度/エンジン回転速度 スワール比=シリンダ内の水平渦の回転速度/エンジン
回転速度 である。
However, tumble ratio = rotational speed of vertical vortex in cylinder / engine rotational speed Swirl ratio = rotational speed of horizontal vortex in cylinder / engine rotational speed

【0007】また、本発明はこのようなタンブル比およ
びスワール比を得るための構成として次のA〜Eの手段
を個々に備え、または組み合わせてなる火花点火式内燃
機関を提案するものである。
Further, the present invention proposes a spark ignition type internal combustion engine which is individually provided with or combined with the following means A to E as a structure for obtaining such a tumble ratio and a swirl ratio.

【0008】A.吸気コレクタ集合部から分岐して機関
の各吸気ポートに至る複数の吸気管を互いに等長かつ気
筒列方向に対称形状に配設すること。
A. Arranging a plurality of intake pipes branching from the intake collector collecting portion and reaching the intake ports of the engine in equal length and symmetrically in the cylinder row direction.

【0009】B.部分的に開口部を有する空気制御弁を
吸気ポート付近の吸気通路に介装すること。ただしこの
空気制御弁に関しては、さらに次の構成aまたはbを備
えることが望ましい。
B. An air control valve having a partial opening is provided in the intake passage near the intake port. However, it is desirable that the air control valve further includes the following configuration a or b.

【0010】a.希薄空燃比運転時には閉状態で開口部
側が下流側に所定量、好ましくは吸気通路中心軸に垂直
な横断面に対して20〜30度の範囲内で傾斜するよう
に設定すること。
A. In the lean air-fuel ratio operation, the opening side should be set to a predetermined amount downstream in a closed state, preferably within a range of 20 to 30 degrees with respect to a cross section perpendicular to the central axis of the intake passage.

【0011】b.開口部は略水平な取付軸よりも上側で
かつ片側に偏った部分に形成し、好ましくは開口部の重
心(図心)点と通路中心とを結ぶ線分の取付軸中心線と
なす角度が上方に45〜75度の範囲内にあるように形
成すること。
B. The opening is formed in a portion that is above the substantially horizontal mounting shaft and is deviated to one side, and it is preferable that the angle formed by the mounting axis center line of the line segment connecting the center of gravity (centroid) of the opening and the passage center. Form it to be in the range of 45 to 75 degrees upward.

【0012】C.空気制御弁の直上流部の吸気通路形状
を各気筒間で略同一とし、好ましくはその長さを吸気ポ
ート内直径の1.5〜3.5倍の範囲内に設定するこ
と。
C. The shape of the intake passage immediately upstream of the air control valve is made substantially the same among the cylinders, and the length thereof is preferably set within a range of 1.5 to 3.5 times the inner diameter of the intake port.

【0013】D.各吸気ポートをシリンダ内で縦渦を生
起する形状に形成し、特に吸気ポート中心線が水平面と
なす角度が小の直線形状に形成すること。
D. Form each intake port into a shape that causes vertical vortices in the cylinder, and in particular, form a straight line with a small angle between the intake port centerline and the horizontal plane.

【0014】E.空気制御弁開口部側の吸気弁が早期に
開くように位相差を有して開弁駆動される2つの吸気弁
を備えること。
E. Two intake valves that are driven to open with a phase difference so that the intake valve on the air control valve opening side opens early.

【0015】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関を前提として、これら各手段の具体的な
組み合わせとして推奨されるのは、第1には、吸気コレ
クタ集合部から分岐して機関の各吸気ポートに至る複数
の吸気管を互いに等長かつ気筒列方向に対称形状に配設
すると共に、部分的に開口部を有し希薄空燃比運転時に
は閉状態で該開口部が下流側に所定量傾斜するように制
御される空気制御弁を各吸気ポート付近に介装し、該空
気制御弁の直上流部の吸気通路形状を各気筒間で略同一
とし、かつ各吸気ポートをシリンダ内で縦渦を生起する
形状に形成することである。
On the premise of a spark ignition type internal combustion engine in which the air-fuel ratio is diluted according to operating conditions, the first recommended specific combination of each of these means is to branch from the intake collector collecting portion. A plurality of intake pipes that reach each intake port of the engine are arranged in a symmetrical shape in the cylinder row direction with equal length to each other, and partially have an opening, and the opening is downstream in a closed state during lean air-fuel ratio operation. An air control valve that is controlled to incline by a predetermined amount is installed near each intake port, and the shape of the intake passage immediately upstream of the air control valve is made substantially the same for each cylinder, and each intake port is To form a vertical vortex in the cylinder.

【0016】第2には、吸気コレクタ集合部から分岐し
て機関の各吸気ポートに至る複数の吸気管を互いに等長
かつ気筒列方向に対称形状に配設すると共に、部分的に
開口部を有し希薄空燃比運転時には閉状態で該開口部が
下流側に所定量傾斜するように制御される空気制御弁を
各吸気ポート付近に介装し、該空気制御弁の直上流部の
吸気通路形状を各気筒間で略同一とし、かつ各吸気ポー
トをシリンダ内で縦渦を生起する形状に形成し、希薄空
燃比運転時にタンブル比1.6〜3.1、スワール比
1.8〜3.5となるように設定することである。
Secondly, a plurality of intake pipes branching from the intake collector collecting portion and reaching each intake port of the engine are arranged in equal length and symmetrically in the cylinder row direction, and the opening portions are partially formed. An air control valve, which is controlled so that the opening inclines toward the downstream side by a predetermined amount in the closed state during lean air-fuel ratio operation, is provided near each intake port, and the intake passage immediately upstream of the air control valve is provided. The cylinders have substantially the same shape, and the intake ports are formed in a shape that causes vertical vortices in the cylinders. The tumble ratio is 1.6 to 3.1 and the swirl ratio is 1.8 to 3 during lean air-fuel ratio operation. It is necessary to set it to be 0.5.

【0017】第3には、シリンダ内で縦渦を生起する形
状の吸気ポートと、吸気通路内に介装され、部分的に開
口部が形成された空気制御弁とを備えることである。
Thirdly, it is provided with an intake port having a shape which causes a vertical vortex in the cylinder, and an air control valve which is interposed in the intake passage and has an opening formed partially.

【0018】第4には、シリンダ内で縦渦を生起する形
状の吸気ポートと、吸気通路内に介装され、略水平な取
付軸よりも上側でかつ片側に偏った部分に開口部が形成
された空気制御弁とを備え、該空気制御弁は希薄空燃比
運転時には閉状態で前記開口部側が下流側に所定量傾斜
するように設定されていることである。
Fourthly, an intake port having a shape that causes a vertical vortex in the cylinder and an opening formed in a portion which is interposed in the intake passage and is above the substantially horizontal mounting shaft and is biased to one side. The air control valve is set so that the opening side inclines toward the downstream side by a predetermined amount in the closed state during lean air-fuel ratio operation.

【0019】第5には、部分的に開口部が形成され、希
薄空燃比運転時には閉状態で前記開口部が下流側に所定
量傾斜するように設定された空気制御弁を備え、かつ前
記開口部はその重心点と通路中心とを結ぶ線分が取付軸
中心線となす角度が上方に60〜70度の範囲内にある
ように形成され、かつ前記空気制御弁開口部側のものが
早期に開くように位相差を有して開弁駆動される2つの
吸気弁を備えることである。
Fifthly, an opening is partially formed, and at the time of lean air-fuel ratio operation, the opening is provided with an air control valve which is set to incline toward the downstream side by a predetermined amount in the closed state, and the opening is provided. The section is formed such that the line segment connecting the center of gravity of the section and the center of the passage is at an angle of 60 to 70 degrees upward with the center line of the mounting axis, and the section on the air control valve opening side is early. It is provided with two intake valves that are driven to open with a phase difference so as to open.

【0020】本発明によれば、このような構成を備える
ことにより、シリンダ内に最適な空気流動場を形成し
て、燃焼の安定性を損なわずにより大きな空燃比域での
希薄空燃比運転が可能となる。
According to the present invention, by providing such a configuration, an optimum air flow field is formed in the cylinder, and lean air-fuel ratio operation in a larger air-fuel ratio range can be performed without impairing combustion stability. It will be possible.

【0021】以下、本発明の作用ないし効果につき実施
例による実験結果と併せて説明する。なお、以下の説明
および図面中で、空気制御弁をスワールコントロールバ
ルブの略記である「SCV」で表し、またタンブル比と
スワール比とを総称する場合に「タンブルスワール比」
と称することにする。
The operation and effects of the present invention will be described below together with the experimental results of the examples. In the following description and drawings, the air control valve is represented by "SCV" which is an abbreviation for a swirl control valve, and the tumble ratio and the swirl ratio are collectively referred to as "tumble swirl ratio".
I will call it.

【0022】[0022]

【実施例】図1〜図3に本発明による火花点火式内燃機
関の実施例を示す。各図において、1は機関本体、2は
シリンダ、3はシリンダヘッド、4は燃焼室、5は点火
プラグ、6は吸気ポート、7は吸気マニホールドを示し
ている。
1 to 3 show an embodiment of a spark ignition type internal combustion engine according to the present invention. In each figure, 1 is an engine body, 2 is a cylinder, 3 is a cylinder head, 4 is a combustion chamber, 5 is a spark plug, 6 is an intake port, and 7 is an intake manifold.

【0023】図3に示されるように、吸気マニホールド
7はその吸気コレクタ集合部8から分岐して機関1の各
吸気ポート6に至る複数の吸気管9を互いに等長かつ気
筒列方向に対称形状に配設してある。
As shown in FIG. 3, the intake manifold 7 has a plurality of intake pipes 9 that branch from the intake collector collecting portion 8 and reach each intake port 6 of the engine 1 and have a symmetrical shape in the cylinder row direction. It is located at.

【0024】各吸気管9のシリンダヘッド3との接合部
付近には各気筒間で同一形状の直線状の吸気通路を形成
する通路アダプタ10が設けられ、その吸気ポート6に
近い部分には空気制御弁11が介装されている。
A passage adapter 10 for forming a linear intake passage of the same shape between the cylinders is provided in the vicinity of the joint between each intake pipe 9 and the cylinder head 3, and an air adapter is provided in the portion near the intake port 6 thereof. The control valve 11 is interposed.

【0025】空気制御弁11は通路アダプタ10を横断
するように略水平に設けられた取付軸12を介して回動
可能に支持されており、図示されないアクチュエータを
介して希薄空燃比運転時には閉位置(図示状態)に制御
される。
The air control valve 11 is rotatably supported by a mounting shaft 12 provided substantially horizontally so as to traverse the passage adapter 10, and is in a closed position during lean air-fuel ratio operation via an actuator (not shown). (State shown).

【0026】この空気制御弁11には、図1に示される
ように部分的に開口部13が形成されている。この開口
部13は、この場合前記取付軸12よりも上側でかつ片
側に偏った部分を切り欠いた態様で形成されている。
The air control valve 11 is partially formed with an opening 13 as shown in FIG. In this case, the opening 13 is formed in such a manner that a portion that is located above the mounting shaft 12 and is biased to one side is cut out.

【0027】閉位置における空気制御弁11は、図2に
示されるように前記開口部13の側が下流側に所定量
(α)だけ傾斜した状態となるように設定されている。
The air control valve 11 in the closed position is set so that the opening 13 side is inclined downstream by a predetermined amount (α) as shown in FIG.

【0028】吸気ポート6は、この場合気筒列方向に2
個設けられた吸気弁14,15に対応するように途中か
ら分岐している。また、強い縦渦を生起するためのポー
ト形状として、図2に示されるようにその中心線が水平
面となす角度(θ)を小さく(θ=10〜30度程度)
設定されている。
In this case, the intake port 6 is 2 in the cylinder row direction.
It branches from the middle so as to correspond to the intake valves 14 and 15 provided individually. Further, as a port shape for generating a strong vertical vortex, as shown in FIG. 2, the angle (θ) formed by the center line and the horizontal plane is small (θ = 10 to 30 degrees).
It is set.

【0029】本発明では、例えばこのように火花点火式
内燃機関を構成することにより、希薄空燃比運転時に、
シリンダ内吸気流動のタンブル比が1.6〜3.1、同
じくスワール比が1.8〜3.5となるように図るもの
である。
In the present invention, for example, by constructing the spark ignition type internal combustion engine as described above, during lean air-fuel ratio operation,
The tumble ratio of the intake air flow in the cylinder is 1.6 to 3.1, and the swirl ratio is 1.8 to 3.5.

【0030】タンブル、すなわちシリンダ内の縦渦を強
化するポート形状の特徴は、直線的な形状を有すること
と、その通路中心線が水平面となす角度(θ)が小さい
ことである。つまり、吸気行程前半のシリンダ中心側の
吸気弁直下の垂直な空気下降流を極力抑制して、シリン
ダ内の縦渦の生成を妨げないように図るのであり、ポー
ト上側の空気質量流量を大きくするほどタンブルの強度
は大きくなる。例えば、ある種の小型車用内燃機関にお
いては、前記θが約10〜30度で、その下流側の曲線
部分の半径Rが50mm以上であることが、タンブルを生
成するためには有効である。
The characteristic of the tumble, that is, the port shape for strengthening the vertical vortex in the cylinder is that it has a linear shape and that the angle (θ) formed by the center line of the passage with the horizontal plane is small. That is, the vertical air downflow immediately below the intake valve on the cylinder center side in the first half of the intake stroke is suppressed as much as possible so as not to interfere with the generation of vertical vortices in the cylinder, and the air mass flow rate above the port is increased. The strength of the tumble increases. For example, in a certain type of internal combustion engine for small vehicles, it is effective to generate the tumble that the θ is about 10 to 30 degrees and the radius R of the curved portion on the downstream side is 50 mm or more.

【0031】図4は、吸気マニホールドの吸気管(ブラ
ンチ)の長さとSCV直上流の長さL(図1参照)を所
定割合で変更して、希薄燃焼時の燃焼安定性を検討した
結果を示すものである。吸気管が長くなるほど各気筒間
での吸気管長さの相対的な差異が少なくなるのであり、
図に見られるように、この気筒毎の吸気管長さの差異が
小さいほど希薄燃焼時の燃焼安定性が向上していること
がわかる。すなわち、吸気マニホールドは、その吸気管
が各気筒毎に等長であることが希薄空燃比下で安定した
燃焼性を得るための望ましい条件である。
FIG. 4 shows the result of studying the combustion stability during lean combustion by changing the length of the intake pipe (branch) of the intake manifold and the length L immediately upstream of the SCV (see FIG. 1) at a predetermined ratio. It is shown. The longer the intake pipe, the smaller the relative difference in intake pipe length between the cylinders.
As can be seen from the figure, the smaller the difference in the intake pipe length between the cylinders, the better the combustion stability during lean combustion. That is, it is a desirable condition for the intake manifold that the intake pipe has the same length for each cylinder to obtain stable combustibility under a lean air-fuel ratio.

【0032】また、図4において、SCV直上流部の直
線状部分の長さは約100mmで燃焼安定性が最良となっ
ている。これはポート内直径の約2.5倍の長さに相当
する。実際上は、ポート内直径の1.5〜3.5倍の長
さであれば希薄燃焼時の安定性を向上させる効果が得ら
れる。これは、SCV直上流の直線部において、各気筒
毎に空気流動の差異が平滑化され、各気筒毎の空気流動
場が均一になるからである。
Further, in FIG. 4, the length of the linear portion immediately upstream of the SCV is about 100 mm, and the combustion stability is the best. This corresponds to a length of about 2.5 times the inner diameter of the port. In practice, if the length is 1.5 to 3.5 times the inner diameter of the port, the effect of improving the stability during lean combustion can be obtained. This is because the difference in the air flow for each cylinder is smoothed in the straight part immediately upstream of the SCV, and the air flow field for each cylinder becomes uniform.

【0033】このように、吸気系に関しては、吸気マニ
ホールドの各気筒への吸気管を等長とし、特に好ましく
はSCVの直上流にポート内直径の1.5〜3.5倍の
長さを有する互いに略同一形状の吸気通路部分を設ける
ことにより、各気筒間で空気流動を均一化して、具体的
には燃焼安定限界空燃比値を約1〜1.5(割合として
5%程度)以上増大させて、機関の希薄燃焼時の燃焼安
定性を高める効果が期待できる。
As described above, regarding the intake system, the intake pipes to the respective cylinders of the intake manifold are made equal in length, and particularly preferably, a length of 1.5 to 3.5 times the inner diameter of the port is provided immediately upstream of the SCV. By providing the intake passage portions having substantially the same shape, the air flow is made uniform among the cylinders, and specifically, the combustion stability limit air-fuel ratio value is about 1 to 1.5 (about 5% as a ratio) or more. The effect of increasing the combustion stability of the engine during lean combustion can be expected.

【0034】図5に、SCVの開口部位置を種々変更し
て、希薄燃焼における安定燃焼限界となる空燃比を調べ
た結果を示す。この図から、縦渦の強さを示すタンブル
比と水平渦の強さを示すスワール比にはそれぞれに最適
値があり、通常はタンブル比が1.6〜2.2、スワー
ル比が1.8〜3.2の範囲が最適であることがわか
る。ただし、点火系の出力を増大させることにより、そ
れだけ着火不良の機会が減少することから、タンブル比
は2.2〜3.1、スワール比は1.8〜3.5と最適
値の範囲が拡大される。
FIG. 5 shows the results of investigating the air-fuel ratio which becomes the stable combustion limit in the lean combustion by changing the opening position of the SCV variously. From this figure, there are optimum values for the tumble ratio indicating the strength of the vertical vortex and the swirl ratio indicating the strength of the horizontal vortex, respectively. Normally, the tumble ratio is 1.6 to 2.2 and the swirl ratio is 1. It can be seen that the range of 8 to 3.2 is optimal. However, increasing the output of the ignition system reduces the chances of ignition failure, so the tumble ratio is 2.2 to 3.1, and the swirl ratio is 1.8 to 3.5. Expanded.

【0035】詳細には、タンブル比が強いと乱れの生成
が大きく、この乱れの生成により希薄燃焼時の安定性が
大きく影響されるので、図5に示されるように同一の燃
焼安定性を示す線が水平に近くなる。一方、タンブル比
が大きくなると、図6に示されるように同一の乱れ強さ
に対するサイクル毎の平均流速の変動が大きくなる。こ
のサイクル毎の平均流速の変動が大きくなると、図7に
示されるように燃焼安定限界となる空燃比が濃方向へ移
動してしまう。なお、図示されるように、各吸気ポート
毎に燃料を噴射供給するMPi方式では、マニホールド
集合部よりも上流側から各気筒分の燃料をまとめて供給
するSPi方式に比較して、平均流速のサイクル毎の変
動の影響を強く受け、したがってこれを抑制することが
より重要である。また、同一の空燃比で運転していると
タンブル比が相対的に増大するほど燃焼安定性が悪くな
る。これらのことから、シリンダ内の水平渦は縦渦のも
つサイクル毎の平均流速の変動が大きくなるという欠点
を補うものであり、空気流動場のサイクル毎の変動を抑
制する効果があることがわかる。
In detail, when the tumble ratio is strong, turbulence is generated greatly, and the generation of this turbulence greatly affects the stability at the time of lean combustion. Therefore, the same combustion stability is exhibited as shown in FIG. The line is almost horizontal. On the other hand, when the tumble ratio becomes large, the fluctuation of the average flow velocity for each cycle becomes large for the same turbulence intensity as shown in FIG. When the fluctuation of the average flow velocity for each cycle becomes large, the air-fuel ratio, which is the combustion stability limit, moves in the rich direction as shown in FIG. 7. As shown in the figure, in the MPi method of injecting fuel into each intake port, compared with the SPi method of collectively supplying fuel for each cylinder from the upstream side of the manifold assembly, It is strongly influenced by cycle-to-cycle variations and it is therefore more important to suppress it. Further, when operating with the same air-fuel ratio, the combustion stability becomes worse as the tumble ratio relatively increases. From these, it can be seen that the horizontal vortex in the cylinder compensates for the drawback that the vertical vortex has a large variation in the average flow velocity in each cycle, and has the effect of suppressing the variation in the air flow field in each cycle. .

【0036】図8に、このような知見に基づく最適なタ
ンブルスワール領域を示す。この図から、おおむねタン
ブル比は1.6〜2.8、スワール比は1.8〜3.2
の範囲に最適値があることがわかる。ただし、図5と図
8の結果は点火系を格別に強化していない条件でのもの
であり、実用的にはさらに強化した点火系を用いること
により、安定燃焼限界となる空燃比は大きくなり、タン
ブル比、スワール比ともに若干大きくても燃焼は安定す
る。
FIG. 8 shows an optimum tumble swirl region based on such knowledge. From this figure, the tumble ratio is 1.6 to 2.8, and the swirl ratio is 1.8 to 3.2.
It can be seen that there is an optimum value in the range. However, the results shown in FIGS. 5 and 8 are obtained under the condition that the ignition system is not specially strengthened. Practically, by using the ignition system which is further strengthened, the air-fuel ratio which becomes the stable combustion limit becomes large. Combustion is stable even if the tumble ratio and swirl ratio are slightly large.

【0037】点火系の強化とは、放電電圧の放電期間を
増大させ、放電エネルギを増大させることである。その
ためには一般に点火コイルの改良と、大きな放電エネル
ギに耐えるだけの点火プラグの耐久性向上が必要であ
る。ただし、点火系の過度の強化は、点火コイルの駆動
エネルギに機関動力が消費されて燃費の悪化を招くと共
に点火プラグの消耗を促すので、点火系の強化にはある
程度の限界がある。
Strengthening the ignition system means increasing the discharge period of the discharge voltage and increasing the discharge energy. For that purpose, it is generally necessary to improve the ignition coil and improve the durability of the ignition plug to withstand a large amount of discharge energy. However, excessive reinforcement of the ignition system consumes engine power for driving energy of the ignition coil, which leads to deterioration of fuel efficiency and consumption of the ignition plug. Therefore, there is a certain limit to the reinforcement of the ignition system.

【0038】図9は、実用上許容されるレベルで強化し
た点火系でのタンブル比およびスワール比に対する安定
燃焼限界を示したもので、タンブル比=2.7、スワー
ル比=2.7で最適となっており、既述した通り、タン
ブル比が2.2〜3.1、スワール比が1.8〜3.5
の範囲で燃焼改善効果が見られる。
FIG. 9 shows the stable combustion limits with respect to the tumble ratio and swirl ratio in the ignition system reinforced at a practically acceptable level. Optimum with tumble ratio = 2.7 and swirl ratio = 2.7. As described above, the tumble ratio is 2.2 to 3.1 and the swirl ratio is 1.8 to 3.5.
A combustion improving effect can be seen within the range.

【0039】次に、SCV開口部の重心位置が燃焼安定
性に及ぼす影響について説明する。図10は、SCV開
口部の重心位置と希薄燃焼時の安定燃焼限界空燃比の関
係を示したものである。SCV開口部の重心位置には最
適値があり、製造誤差やエンジン諸元の相違を考慮して
最適値の95%程度の効果を得ることを前提条件とする
と、通路中心から開口部重心点に引いた線分が取付軸と
なす角度(β)が45〜70度の範囲内にあることが必
要であり、望ましくはβ=50〜55度程度とする。こ
の開口部構成と、上述したタンブルを生起する吸気ポー
ト(タンブル強化ポート)との組み合わせにより、上述
したタンブル比=2.7、スワール比=2.7という最
適値を得ることが可能となる。
Next, the influence of the position of the center of gravity of the SCV opening on the combustion stability will be described. FIG. 10 shows the relationship between the position of the center of gravity of the SCV opening and the stable combustion limit air-fuel ratio during lean combustion. There is an optimum value for the position of the center of gravity of the SCV opening, and assuming that an effect of approximately 95% of the optimum value is obtained in consideration of manufacturing errors and differences in engine specifications, the center of the passage will be moved to the center of gravity of the opening. The angle (β) formed by the drawn line segment with the mounting axis must be within the range of 45 to 70 degrees, and preferably β = 50 to 55 degrees. By combining this opening configuration and the intake port (tumble strengthening port) that causes the above-mentioned tumble, it becomes possible to obtain the optimum values of the above-mentioned tumble ratio = 2.7 and swirl ratio = 2.7.

【0040】なお、タンブル強化ポートを併用せず、開
口部を設けたSCVのみでタンブルを生成することも可
能であるが、一般に、タンブル強化ポートを併用したほ
うがSCVの開口部面積を大きく取れるので、より高負
荷域まで希薄燃焼運転を行なえるという利点が得られ
る。
It is possible to generate a tumble only with an SCV provided with an opening without using the tumble-strengthening port together, but in general, when the tumble-strengthening port is used together, the opening area of the SCV can be made larger. The advantage is that lean burn operation can be performed even in a higher load range.

【0041】次に、閉位置においてSCV上部が流れの
下流側に所定量だけ傾斜するように設定する点について
説明すると、これにより図11に示されるように燃焼安
定効果が向上する。これは、図12にされるように、S
CV傾斜により乱れの生成はそのままに、SCV開口部
への吸気の流れが整えられて、平均流速のサイクル変動
が抑えられるからである。図13は、SCV傾斜角
(α)と安定燃焼効果の関係を示したものである。図示
されるように、SCV傾斜角が20〜30度が最も燃焼
安定性の向上を期待できる範囲である。傾斜角0度付近
では取付バラツキに原因して、設定できる空燃比の幅が
小さくなってしまうが、20〜30度の範囲でSCV傾
斜角を設定することにより、設定できる空燃比の幅が最
大となり、したがって仮に傾斜角度に取付上の誤差があ
ってもこれを十分に吸収することができる。
Next, description will be made on the point that the upper part of the SCV is set to be inclined to the downstream side of the flow by a predetermined amount in the closed position. This improves the combustion stabilizing effect as shown in FIG. This is S as shown in FIG.
This is because the flow of intake air to the SCV opening is adjusted and the cycle fluctuation of the average flow velocity is suppressed while the generation of turbulence is maintained by the CV inclination. FIG. 13 shows the relationship between the SCV inclination angle (α) and the stable combustion effect. As shown in the figure, the SCV inclination angle of 20 to 30 degrees is the range in which the most improvement in combustion stability can be expected. When the tilt angle is near 0 degrees, the settable air-fuel ratio width becomes small due to mounting variations. However, by setting the SCV tilt angle in the range of 20 to 30 degrees, the settable air-fuel ratio width becomes maximum. Therefore, even if there is a mounting error in the inclination angle, this can be sufficiently absorbed.

【0042】一方、図1または図2に示されるように吸
気弁を2個設けた機関の場合には、SCV開口部に臨む
吸気弁(図1では吸気弁15)の方を他方よりも早期に
開弁させることにより、図14に示されるように燃焼安
定性を向上させることができる。これは、SCV開口部
側の吸気弁を先に開弁させることにより、当該吸気弁に
対応する一方の吸気ポートのスワール・タンブル生成の
きっかけ取りが安定して得られ、その結果として、図1
5に示されるように、乱れの生成はそのままに、サイク
ル毎の平均流速の変動が抑制されるからである。
On the other hand, in the case of an engine provided with two intake valves as shown in FIG. 1 or 2, the intake valve (intake valve 15 in FIG. 1) facing the SCV opening is earlier than the other. When the valve is opened at 1, the combustion stability can be improved as shown in FIG. This is because by opening the intake valve on the SCV opening side first, the trigger for swirl tumble generation at one intake port corresponding to the intake valve can be stably obtained, and as a result, as shown in FIG.
This is because, as shown in Fig. 5, the fluctuation of the average flow velocity for each cycle is suppressed while the generation of turbulence is maintained.

【0043】以上のように、本発明はタンブル比および
スワール比をともに2.7前後に設定することにより最
適な希薄燃焼運転性能を得たものであり、このようなタ
ンブルスワール比の設定を実現する具体的な構成とし
て、吸気マニホールド構造の等長・対称化、所定位置に
開口部を有する空気制御弁とその取付傾斜角度の設定、
吸気ポートのタンブル強化ポート化、吸気2弁の位相差
開弁設定等の手段を提案するものであるが、前記各手段
はあくまでも一構成例であり、他の構成を採用した場合
においても前記本発明の最適タンブルスワール比の設定
を行うことにより、希薄燃焼限界の拡大ないし希薄燃焼
機関の安定性向上効果を期待できる。
As described above, the present invention obtains the optimum lean burn operation performance by setting both the tumble ratio and the swirl ratio to around 2.7, and such tumble swirl ratio setting is realized. As a specific configuration, the intake manifold structure is made to have the same length and symmetry, the air control valve having an opening at a predetermined position and the setting of its mounting inclination angle,
It proposes means for making the intake port a tumble-reinforced port, setting a phase difference opening valve for two intake valves, etc., but each of the above-mentioned means is merely an example of configuration, and even when other configurations are adopted, the above-mentioned book is used. By setting the optimum tumble swirl ratio of the invention, it is possible to expect an effect of expanding the lean burn limit or improving the stability of the lean burn engine.

【0044】また、前記の各手段を実施するにあたって
も、これらは機関の要求仕様等に応じて必ずしもすべて
を兼備させる必要はない。例えばボア/ストローク比が
0.8〜0.9程度のロングストローク型の機関では、
ピストン速度が速いので吸気ポートをタンブル強化ポー
トとする必要は必ずしもなく、上述したSCVの傾斜角
αおよびSCV開口部重心角βの最適化と、吸気2弁の
位相差の設定により、最適なタンブルスワール比を実現
することが可能である。ただし、この場合は吸気ポート
によるタンブル生成を行わない分だけ、SCV開口部で
のタンブル生成を強化するのが望ましく、そのためには
例えば図10の符号Sに示されるように重心角βが60
〜70度の範囲となるように設定する。また、吸気2弁
の位相差は例えば図14に示されるようにクランク角度
にして8度程度とする。
Also, when implementing each of the above-mentioned means, it is not always necessary to combine them according to the required specifications of the engine. For example, in a long stroke type engine with a bore / stroke ratio of about 0.8 to 0.9,
Since the piston speed is fast, it is not always necessary to use the intake port as a tumble strengthening port, and the optimum tumble can be achieved by optimizing the inclination angle α of the SCV and the SCV opening center of gravity angle β and setting the phase difference between the two intake valves. It is possible to achieve a swirl ratio. However, in this case, it is desirable to strengthen the tumble generation at the SCV opening by the amount that the tumble generation is not performed by the intake port. For that purpose, for example, the center of gravity angle β is 60 as shown by symbol S in FIG.
It is set to be within a range of up to 70 degrees. Further, the phase difference between the two intake valves is, for example, about 8 degrees in crank angle as shown in FIG.

【0045】図16は、本発明を具現化するための上記
の各手段とそのいくつかの組み合わせによる効果を燃焼
限界空燃比で示したものである。図示されるように、吸
気2弁形式の機関にSCVを設けただけの従来例に比較
すると、タンブル強化ポート(上記本発明の手段D)、
SCV傾斜取付け(同じく手段Bのa)、SCV直前の
直線同一形状化を含む吸気系の等長・対称化(同じく手
段A,C)、吸気2弁の位相差開弁設定(同じく手段
E)等を個々に適用してもある程度の燃焼限界向上効果
が得られるが、特にこれらを組み合わせたうえで、SC
V開口部重心位置を最適設定すること(同じく手段Bの
b)により、図中の符号5,9,10のグラフに見られ
るように顕著な効果が得られる。また、吸気2弁に位相
差を与えるものとした場合には、符号11に見られるよ
うにタンブル強化ポートを備えない構成においても十分
に優れた燃焼改善効果が得られる。
FIG. 16 shows the effect of each of the above means for embodying the present invention and some combinations thereof in terms of the combustion limit air-fuel ratio. As shown in the figure, in comparison with a conventional example in which an SCV is provided in an intake two-valve engine, a tumble strengthening port (means D of the present invention),
SCV inclined installation (similarly means a), equal length and symmetry of intake system including straight-line same shape immediately before SCV (same means A and C), phase difference open valve setting of two intake valves (same means E) The effect of improving the combustion limit to some extent can be obtained by applying each of the above, but especially after combining them, SC
By optimizing the position of the center of gravity of the V opening (also b of the means B), a remarkable effect can be obtained as shown in the graphs of reference numerals 5, 9 and 10. Further, when the phase difference is given to the two intake valves, a sufficiently excellent combustion improving effect can be obtained even in the configuration without the tumble strengthening port as shown by reference numeral 11.

【0046】[0046]

【発明の効果】以上を要するに本発明は、火花点火式内
燃機関において、シリンダ内のタンブル成分による適度
な乱れの確保とスワール成分による平均流速のサイクル
変動の抑制とにより希薄燃焼時の燃焼安定化に有効なシ
リンダ内の空気流動場が得られるという知見に基づいて
最適なタンブル比およびスワール比を付与すると共に、
これを実現するための具体的な手段として、吸気管構成
の等長・対称化、空気制御弁の開口部重心位置の最適
化、空気制御弁の傾斜取付角度の最適化、タンブル強化
ポート形状、位相差を有して開弁する吸気2弁形式等の
構成を提案するものであり、これらの構成を備えること
により、希薄燃焼限界をより向上させ、または希薄燃焼
域での燃焼安定性を改善できるという効果が奏されるも
のである。
In summary, according to the present invention, in the spark ignition type internal combustion engine, the combustion is stabilized during lean combustion by ensuring appropriate turbulence due to the tumble component in the cylinder and suppressing the cycle fluctuation of the average flow velocity due to the swirl component. Optimum tumble ratio and swirl ratio are given based on the finding that an effective air flow field in the cylinder can be obtained.
Specific means for achieving this include equalization and symmetry of the intake pipe configuration, optimization of the position of the center of gravity of the air control valve, optimization of the inclined mounting angle of the air control valve, tumble reinforced port shape, It proposes configurations such as an intake two-valve system that opens with a phase difference, and by providing these configurations, the lean combustion limit is further improved or combustion stability in the lean burn region is improved. The effect of being able to do is exhibited.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による火花点火式内燃機関の一実施例の
概略平面断面図。
FIG. 1 is a schematic plan sectional view of an embodiment of a spark ignition type internal combustion engine according to the present invention.

【図2】同じく実施例の概略縦断面図。FIG. 2 is a schematic vertical sectional view of the same embodiment.

【図3】同じく実施例の吸気マニホールドの構成を示す
ための概略平面図。
FIG. 3 is a schematic plan view showing the structure of the intake manifold of the embodiment.

【図4】吸気管の寸法と安定燃焼限界との関係を示した
線図。
FIG. 4 is a diagram showing a relationship between a size of an intake pipe and a stable combustion limit.

【図5】吸気のタンブル比およびスワール比と安定燃焼
限界の関係を示した線図。
FIG. 5 is a diagram showing a relationship between an intake tumble ratio and a swirl ratio and a stable combustion limit.

【図6】吸気のタンブル比成分と平均流速のサイクル変
動との関係を示した線図。
FIG. 6 is a diagram showing a relationship between a tumble ratio component of intake air and cycle fluctuation of average flow velocity.

【図7】吸気の平均流速のサイクル変動と安定燃焼限界
との関係を示した線図。
FIG. 7 is a diagram showing the relationship between the cycle variation of the average flow velocity of intake air and the stable combustion limit.

【図8】空気制御弁の開口部構成とタンブルスワール領
域の関係を示した説明図。
FIG. 8 is an explanatory view showing the relationship between the opening structure of the air control valve and the tumble swirl region.

【図9】最適なタンブルスワール領域を安定燃焼限界と
の関係において示した説明図。
FIG. 9 is an explanatory diagram showing an optimum tumble swirl region in relation to a stable combustion limit.

【図10】空気制御弁の開口部重心角と安定燃焼限界と
の関係を示した説明図。
FIG. 10 is an explanatory diagram showing the relationship between the center of gravity angle of the opening of the air control valve and the stable combustion limit.

【図11】空気制御弁の傾斜角設定に基づく燃焼改善効
果の説明図。
FIG. 11 is an explanatory diagram of a combustion improving effect based on the inclination angle setting of the air control valve.

【図12】空気制御弁の傾斜角と吸気の平均流速のサイ
クル変動との関係を示した線図。
FIG. 12 is a diagram showing the relationship between the inclination angle of the air control valve and the cycle fluctuation of the average flow rate of intake air.

【図13】空気制御弁の傾斜角と安定燃焼限界との関係
を傾斜角毎に示した線図。
FIG. 13 is a diagram showing the relationship between the inclination angle of the air control valve and the stable combustion limit for each inclination angle.

【図14】吸気2弁を位相差を設けて開弁させたときの
燃焼改善効果の説明図。
FIG. 14 is an explanatory diagram of a combustion improving effect when two intake valves are opened with a phase difference.

【図15】吸気2弁の開弁位相差と吸気の平均流速のサ
イクル変動との関係を示した線図。
FIG. 15 is a diagram showing the relationship between the valve opening phase difference between two intake valves and the cycle fluctuation of the average flow velocity of intake air.

【図16】本発明の実施例による効果を構成要件毎に従
来例との比較において示した説明図。
FIG. 16 is an explanatory diagram showing the effects of the embodiment of the present invention in comparison with the conventional example for each component.

【符号の説明】[Explanation of symbols]

1 内燃機関本体 2 シリンダ 3 シリンダヘッド 4 燃焼室 5 点火プラグ 6 吸気ポート 7 吸気マニホールド 8 吸気コレクタ集合部 9 吸気管(ブランチ) 10 通路アダプタ 11 空気制御弁 12 空気制御弁の取付軸 13 空気制御弁の開口部 14 第1の吸気弁 15 第2の吸気弁 θ 吸気ポートの進入角 α 空気制御弁の傾斜角 β 空気制御弁の開口部の重心角 1 Internal Combustion Engine Main Body 2 Cylinder 3 Cylinder Head 4 Combustion Chamber 5 Spark Plug 6 Intake Port 7 Intake Manifold 8 Intake Collector Collecting Section 9 Intake Pipe (Branch) 10 Passage Adapter 11 Air Control Valve 12 Air Control Valve Mounting Axis 13 Air Control Valve 14 First intake valve 15 Second intake valve θ Intake angle of intake port α Angle of inclination of air control valve β Angle of center of gravity of air control valve

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F02F 1/42 F 7710−3G F02M 69/00 360 C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location F02F 1/42 F 7710-3G F02M 69/00 360 C

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、希薄空燃比運転時に、シリン
ダ内吸気流動のタンブル比が1.6〜3.1、同じくス
ワール比が1.8〜3.5となるような吸気系を有する
ことを特徴とする火花点火式内燃機関。
1. In a spark ignition type internal combustion engine that leans the air-fuel ratio according to operating conditions, the tumble ratio of the intake air flow in the cylinder is 1.6 to 3.1, and the swirl ratio is 1 at the lean air-fuel ratio operation. A spark ignition type internal combustion engine having an intake system of 8 to 3.5.
【請求項2】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、吸気コレクタ集合部から分岐
して機関の各吸気ポートに至る複数の吸気管を互いに等
長かつ気筒列方向に対称形状に配設すると共に、部分的
に開口部を有し希薄空燃比運転時には閉状態で該開口部
が下流側に所定量傾斜するように制御される空気制御弁
を各吸気ポート付近に介装し、該空気制御弁の直上流部
の吸気通路形状を各気筒間で略同一とし、かつ各吸気ポ
ートをシリンダ内で縦渦を生起する形状に形成したこと
を特徴とする火花点火式内燃機関。
2. In a spark ignition type internal combustion engine for leaning an air-fuel ratio according to operating conditions, a plurality of intake pipes branching from an intake collector collecting portion and reaching respective intake ports of the engine are of equal length and in a cylinder column direction. And an air control valve near each intake port that has a partial opening and is controlled to lean toward the downstream side by a predetermined amount in the closed state during lean air-fuel ratio operation. A spark ignition system characterized in that the shape of the intake passage immediately upstream of the air control valve is substantially the same between cylinders, and each intake port is formed in a shape that causes a vertical vortex in the cylinder. Internal combustion engine.
【請求項3】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、吸気コレクタ集合部から分岐
して機関の各吸気ポートに至る複数の吸気管を互いに等
長かつ気筒列方向に対称形状に配設すると共に、部分的
に開口部を有し希薄空燃比運転時には閉状態で該開口部
が下流側に所定量傾斜するように制御される空気制御弁
を各吸気ポート付近に介装し、該空気制御弁の直上流部
の吸気通路形状を各気筒間で略同一とし、かつ各吸気ポ
ートをシリンダ内で縦渦を生起する形状に形成し、希薄
空燃比運転時にタンブル比1.6〜3.1、スワール比
1.8〜3.5となるように設定したことを特徴とする
火花点火式内燃機関。
3. In a spark ignition type internal combustion engine for leaning an air-fuel ratio according to operating conditions, a plurality of intake pipes branching from an intake collector collecting portion and reaching respective intake ports of the engine are of equal length and in a cylinder row direction. And an air control valve near each intake port that has a partial opening and is controlled to lean toward the downstream side by a predetermined amount in the closed state during lean air-fuel ratio operation. The cylinders are installed so that the shape of the intake passage immediately upstream of the air control valve is substantially the same in each cylinder, and each intake port is formed in a shape that causes a vertical vortex in the cylinder. A spark ignition type internal combustion engine, which is set to have a swirl ratio of 1.6 to 3.1 and a swirl ratio of 1.8 to 3.5.
【請求項4】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、シリンダ内で縦渦を生起する
形状の吸気ポートと、吸気通路内に介装され、部分的に
開口部が形成された空気制御弁とを備えることを特徴と
する火花点火式内燃機関。
4. In a spark ignition type internal combustion engine, which leans an air-fuel ratio according to operating conditions, an intake port having a shape causing vertical vortices in a cylinder, and an intake port interposed in an intake passage and partially opening. A spark ignition type internal combustion engine, comprising:
【請求項5】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、シリンダ内で縦渦を生起する
形状の吸気ポートと、吸気通路内に介装され、略水平な
取付軸よりも上側でかつ片側に偏った部分に開口部が形
成された空気制御弁とを備え、該空気制御弁は希薄空燃
比運転時には閉状態で前記開口部側が下流側に所定量傾
斜するように設定されていることを特徴とする火花点火
式内燃機関。
5. In a spark ignition type internal combustion engine which leans an air-fuel ratio according to operating conditions, an intake port having a shape that causes vertical vortices in a cylinder, and a substantially horizontal mounting shaft interposed in the intake passage. An air control valve in which an opening is formed in a portion that is on the upper side and is biased to one side, the air control valve being in a closed state during lean air-fuel ratio operation so that the opening side inclines a predetermined amount to the downstream side. A spark ignition type internal combustion engine characterized by being set.
【請求項6】運転条件に応じて空燃比を希薄化する火花
点火式内燃機関において、部分的に開口部が形成され、
希薄空燃比運転時には閉状態で前記開口部が下流側に所
定量傾斜するように設定された空気制御弁を備え、かつ
前記開口部はその重心点と通路中心とを結ぶ線分の取付
軸中心線となす角度が上方に60〜70度の範囲内にあ
るように形成される一方、前記空気制御弁開口部側のも
のが早期に開くように位相差を有して開弁駆動される2
つの吸気弁を備えることを特徴とする火花点火式内燃機
関。
6. A spark ignition type internal combustion engine in which an air-fuel ratio is diluted according to operating conditions, in which an opening is partially formed,
In a lean air-fuel ratio operation, the opening is equipped with an air control valve that is set to incline toward the downstream side by a predetermined amount in the closed state, and the opening is the mounting axis center of the line segment connecting the center of gravity of the opening and the passage center. The angle formed with the line is formed to be in the range of 60 to 70 degrees upward, while the air control valve opening side is opened and driven with a phase difference so as to open early 2
A spark ignition type internal combustion engine, which is equipped with three intake valves.
【請求項7】希薄空燃比運転時の空気制御弁の所定量の
傾斜角度は、吸気通路中心軸に垂直な横断面に対して2
0〜30度の範囲内に設定されていることを特徴とする
請求項2,3,4,5,6の何れかに記載の火花点火式
内燃機関。
7. A predetermined amount of inclination angle of the air control valve during lean air-fuel ratio operation is 2 with respect to a cross section perpendicular to the central axis of the intake passage.
The spark ignition internal combustion engine according to any one of claims 2, 3, 4, 5 and 6, wherein the spark ignition internal combustion engine is set within a range of 0 to 30 degrees.
【請求項8】空気制御弁直上流の各気筒毎に略同一の吸
気通路の長さは、吸気ポート内直径の約1.5〜3.5
倍の範囲内に設定されていることを特徴とする請求項
2,3,4,5,6,7の何れかに記載の火花点火式内
燃機関。
8. The length of the intake passage substantially the same for each cylinder immediately upstream of the air control valve is about 1.5 to 3.5 of the inner diameter of the intake port.
The spark ignition type internal combustion engine according to any one of claims 2, 3, 4, 5, 6 and 7, wherein the spark ignition type internal combustion engine is set within a double range.
【請求項9】空気制御弁開口部側の吸気弁が早期に開弁
するように位相差を有して駆動される2つの吸気弁を備
えることを特徴とする請求項2,3,4,5,7,8の
何れかに記載の火花点火式内燃機関。
9. An intake valve on the air control valve opening side is provided with two intake valves driven with a phase difference so as to open early. 5. A spark ignition type internal combustion engine according to any one of 5, 7, and 8.
【請求項10】空気制御弁は、その取付軸よりも上側で
かつ径方向に片寄った部分に開口部が形成されているこ
とを特徴とする請求項2,3,4,7,8,9の何れか
に記載の火花点火式内燃機関。
10. The air control valve is characterized in that an opening is formed in a portion which is above the mounting shaft and is offset in the radial direction. A spark ignition internal combustion engine according to any one of 1.
【請求項11】空気制御弁の開口部は、その重心点と通
路中心とを結ぶ線分の取付軸中心線となす角度が上方に
45〜75度の範囲内で設定されていることを特徴とす
る請求項2,3,4,5,7,8,9,10の何れかに
記載の火花点火式内燃機関。
11. An opening of the air control valve is characterized in that an angle formed by a line segment connecting a center of gravity of the air control valve and a center of the passage with a mounting axis center line is set upward within a range of 45 to 75 degrees. The spark ignition internal combustion engine according to any one of claims 2, 3, 4, 5, 7, 8, 9, and 10.
【請求項12】シリンダ内で縦渦を生起する形状の吸気
ポートは、その中心線が水平面となす角度が小の直線形
状に形成されていることを特徴とする請求項2,3,
4,5の何れかに記載の火花点火式内燃機関。
12. An intake port having a shape in which a vertical vortex is generated in a cylinder is formed in a linear shape whose center line forms a small angle with a horizontal plane.
4. A spark ignition type internal combustion engine according to any one of 4 and 5.
JP32378993A 1993-12-22 1993-12-22 Spark ignition internal combustion engine Expired - Fee Related JP3332177B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP32378993A JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine
KR1019940036508A KR0167381B1 (en) 1993-12-22 1994-12-21 Spark-ignition internal combustion engine
DE4445777A DE4445777B4 (en) 1993-12-22 1994-12-21 gasoline engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32378993A JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine

Publications (2)

Publication Number Publication Date
JPH07180559A true JPH07180559A (en) 1995-07-18
JP3332177B2 JP3332177B2 (en) 2002-10-07

Family

ID=18158638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32378993A Expired - Fee Related JP3332177B2 (en) 1993-12-22 1993-12-22 Spark ignition internal combustion engine

Country Status (3)

Country Link
JP (1) JP3332177B2 (en)
KR (1) KR0167381B1 (en)
DE (1) DE4445777B4 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19743419A1 (en) * 1997-10-01 1999-04-15 Ford Global Tech Inc Inlet arrangement of an internal combustion engine
JP2000220460A (en) * 1999-01-28 2000-08-08 Hitachi Ltd In-cylinder internal combustion engine
US6712038B2 (en) 2001-03-16 2004-03-30 Toyota Jidosha Kabushiki Kaisha Intake device for an internal combustion engine and method thereof
JP2006242018A (en) * 2005-03-01 2006-09-14 Honda Motor Co Ltd Variable valve engine
JP2017512277A (en) * 2014-02-26 2017-05-18 ウエストポート パワー インコーポレイテッドWestport Power Inc. Gaseous fuel combustion system for internal combustion engines
CN108457777A (en) * 2017-02-17 2018-08-28 郑州宇通客车股份有限公司 A kind of air inlet box and gas handling system and vehicle
JP2020122413A (en) * 2019-01-29 2020-08-13 ダイハツ工業株式会社 cylinder head

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036796A1 (en) * 1999-11-12 2001-05-25 Siemens Canada Limited Integrated swirl control valve
US6155229A (en) * 1999-12-21 2000-12-05 Ford Global Technologies, Inc. Charge motion control valve in upper intake manifold
US6394066B1 (en) * 2000-07-11 2002-05-28 Ford Global Tech., Inc. Charge motion control valve
DE10207914A1 (en) 2002-02-23 2003-09-04 Porsche Ag Cylinder head for an internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH076395B2 (en) * 1985-11-08 1995-01-30 トヨタ自動車株式会社 Internal combustion engine intake system
JPH0242122A (en) * 1988-08-03 1990-02-13 Toyota Motor Corp Intake device for internal combustion engine with turbocharger
JP2995200B2 (en) * 1990-09-06 1999-12-27 株式会社日本気化器製作所 Engine air supply

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996549A (en) * 1997-01-10 1999-12-07 Ford Global Technologies, Inc. Inlet arrangement for an internal combustion engine
DE19743419A1 (en) * 1997-10-01 1999-04-15 Ford Global Tech Inc Inlet arrangement of an internal combustion engine
JP2000220460A (en) * 1999-01-28 2000-08-08 Hitachi Ltd In-cylinder internal combustion engine
US6712038B2 (en) 2001-03-16 2004-03-30 Toyota Jidosha Kabushiki Kaisha Intake device for an internal combustion engine and method thereof
JP2006242018A (en) * 2005-03-01 2006-09-14 Honda Motor Co Ltd Variable valve engine
JP2017512277A (en) * 2014-02-26 2017-05-18 ウエストポート パワー インコーポレイテッドWestport Power Inc. Gaseous fuel combustion system for internal combustion engines
US10451012B2 (en) 2014-02-26 2019-10-22 Westport Power Inc. Gaseous fuel combustion apparatus for an internal combustion engine
CN108457777A (en) * 2017-02-17 2018-08-28 郑州宇通客车股份有限公司 A kind of air inlet box and gas handling system and vehicle
CN108457777B (en) * 2017-02-17 2023-09-29 宇通客车股份有限公司 Air inlet box, air inlet system and vehicle
JP2020122413A (en) * 2019-01-29 2020-08-13 ダイハツ工業株式会社 cylinder head

Also Published As

Publication number Publication date
KR950019106A (en) 1995-07-22
DE4445777B4 (en) 2008-04-10
DE4445777A1 (en) 1995-06-29
JP3332177B2 (en) 2002-10-07
KR0167381B1 (en) 1998-12-15

Similar Documents

Publication Publication Date Title
US5913554A (en) Intake system construction for internal combustion engine and manufacturing process of intake passage section of internal combustion engine
EP0137394B1 (en) Intake arrangement for internal combustion engine
JPH07119472A (en) Intake device for engine
JP3733721B2 (en) Direct-injection spark ignition internal combustion engine
JP3494284B2 (en) Intake port structure of 4-stroke cycle internal combustion engine
JPH07180559A (en) Spark ignition internal combustion engine
EP1069291B1 (en) In-cylinder direct-injection spark-ignition engine
US7128050B1 (en) Air intake apparatus for internal combustion engine
JP3840823B2 (en) In-cylinder injection engine
JP3513911B2 (en) Diesel engine intake system
JPH0979038A (en) Cylinder injection internal combustion engine and piston for cylinder injection internal combustion engine
US4520776A (en) Intake port structure for internal combustion engines
CN101523018A (en) Internal combustion engine
JP3644329B2 (en) In-cylinder internal combustion engine
JPH11324679A (en) Cylinder injection type spark ignition engine
JP3104499B2 (en) Stratified combustion internal combustion engine
EP0982481A2 (en) In-cylinder injection type of engine
JP3030413B2 (en) In-cylinder injection internal combustion engine
JPH11107760A (en) Intake system for direct-injection engine
JPH11351012A (en) Direct cylinder injection type spark ignition engine
JPS6313392Y2 (en)
JP2000161067A (en) Direct injection type spark ignition engine
JPH0814048A (en) Stratified combustion internal combustion engine
JPH11107763A (en) Intake system for multiple cylinder engine
JP2668106B2 (en) Intake passage structure of internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080726

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090726

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100726

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110726

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees