JPH07179941A - Production of high collapse strength steel pipe - Google Patents
Production of high collapse strength steel pipeInfo
- Publication number
- JPH07179941A JPH07179941A JP32371493A JP32371493A JPH07179941A JP H07179941 A JPH07179941 A JP H07179941A JP 32371493 A JP32371493 A JP 32371493A JP 32371493 A JP32371493 A JP 32371493A JP H07179941 A JPH07179941 A JP H07179941A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- steel pipe
- steel
- straightening
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010959 steel Substances 0.000 title claims abstract description 68
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 238000005096 rolling process Methods 0.000 claims abstract description 41
- 238000005496 tempering Methods 0.000 claims abstract description 17
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 238000010791 quenching Methods 0.000 claims description 19
- 230000000171 quenching effect Effects 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 2
- 229910052758 niobium Inorganic materials 0.000 abstract description 2
- 229910052720 vanadium Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 20
- 238000010438 heat treatment Methods 0.000 description 11
- 239000013078 crystal Substances 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000007796 conventional method Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 238000003303 reheating Methods 0.000 description 3
- 238000002910 structure generation Methods 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000003129 oil well Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、油井用ケーシングと
して使用される継目無鋼管等のように、もっぱら外部か
らの圧力で圧壊する恐れのある環境で使用される高コラ
プス強度鋼管の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-collapse strength steel pipe used in an environment where there is a risk of being crushed by pressure from the outside, such as a seamless steel pipe used as a casing for oil wells. It is a thing.
【0002】[0002]
【従来の技術】油井用ケーシングとして使用される継目
無鋼管等のように、もっぱら外部からの圧力が作用する
鋼管には、圧壊に耐えうる高コラプス強度鋼管が使用さ
れる。高コラプス強度鋼管であるための条件としては、
材料の結晶組織が細粒組織であり降伏強度が高いこと、
鋼管の強度が均一であること、また偏肉等が無く、鋼管
の断面形状が均一で、かつ長手方向の曲がりも無いこと
があげられる。2. Description of the Related Art A high-collapse-strength steel pipe capable of withstanding crushing is used for a steel pipe to which an external pressure acts, such as a seamless steel pipe used as a casing for oil wells. The conditions for a high-collapse strength steel pipe are:
The crystal structure of the material is a fine grain structure and the yield strength is high,
The strength of the steel pipe is uniform, there is no uneven thickness, the cross-sectional shape of the steel pipe is uniform, and there is no bending in the longitudinal direction.
【0003】従来の高コラプス強度鋼管は、図4に示す
ような工程を経て製造される。すなわち、圧延素材であ
るビレットは加熱工程21において加熱炉で加熱された
後、圧延工程22において継目無鋼管に圧延される。圧
延された鋼管は空冷工程23を経た後、焼入れのための
加熱工程24を経て焼入工程25において焼入れが行わ
れる。焼入れが終わった鋼管は、焼戻工程26において
焼戻しが行われ、最終の矯正工程27において矯正が行
われる。A conventional high-collapse strength steel pipe is manufactured through the steps shown in FIG. That is, the billet, which is a rolling material, is heated in a heating furnace in the heating step 21, and then rolled into a seamless steel pipe in the rolling step 22. The rolled steel pipe undergoes an air-cooling process 23, a heating process 24 for quenching, and a quenching process 25. The quenched steel pipe is tempered in a tempering step 26 and then straightened in a final straightening step 27.
【0004】上述した従来の高コラプス強度鋼管の製造
工程においては、圧延工程22は変形抵抗等の圧延上の
諸要求を優先させるために、変形抵抗の小さい950〜
1050℃の温度域で行われ、したがって圧延終了温度
も高く設定されていた。このような高温度域において圧
延を終了した鋼管は圧延時または圧延終了後に回復、再
結晶が活発におこり、その結晶粒が粗大となるため細粒
化し強度を確保する目的で一旦冷却した後850〜95
0℃に再加熱して再結晶させ、結晶粒を細粒化させた
後、焼入工程25、焼戻工程26を経た後、矯正を行な
う。矯正温度は、450℃を超える可能な限りの高温
(一例として600℃)とし、矯正工程27で矯正が容
易に行えるようにしていた。In the manufacturing process of the above-mentioned conventional high-collapse strength steel pipe, the rolling process 22 prioritizes various rolling requirements such as deformation resistance.
It was carried out in the temperature range of 1050 ° C., and therefore the rolling end temperature was also set high. A steel pipe that has been rolled in such a high temperature range recovers during rolling or after rolling, and recrystallization actively occurs, and the crystal grains become coarse. ~ 95
It is reheated to 0 ° C. to be recrystallized so that the crystal grains are made finer, and after the quenching step 25 and the tempering step 26, straightening is performed. The straightening temperature was set as high as possible over 450 ° C. (600 ° C. as an example) so that straightening can be easily performed in the straightening step 27.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上述し
た従来の高コラプス強度鋼管の製造方法においては、次
のような問題点があった。すなわち、焼入れを行うため
の鋼管の再加熱時に変形が発生し、またそれに続く焼入
れ時にその変形が拡大されたり新たな変形が生じてい
た。その結果として必要とされる矯正の量が大きくな
り、作業性より矯正温度を高くせざるを得ず、矯正によ
り鋼管の内外表面近傍の降伏強度が低下し、コラプス強
度の低下を招いていた。また、加熱温度が高いことは、
加熱炉を設置する費用や加熱に要するエネルギコストが
多くかかるため製造原価が高くなるという問題点もあっ
た。However, the above-mentioned conventional method for producing a high-collapse strength steel pipe has the following problems. That is, deformation occurs during reheating of a steel pipe for quenching, and during subsequent quenching, the deformation is enlarged or new deformation occurs. As a result, the amount of straightening required becomes large, and the straightening temperature is inevitably higher than the workability, and the straightening lowers the yield strength in the vicinity of the inner and outer surfaces of the steel pipe, leading to a drop in the collapse strength. Also, the high heating temperature means that
There is also a problem that the manufacturing cost becomes high because the cost of installing the heating furnace and the energy cost required for heating are high.
【0006】[0006]
【課題を解決するための手段】この発明に係る高コラプ
ス強度鋼管の製造方法は、重量%で、C:0.08〜
0.35、Si:0.05〜0.50、Mn:0.3〜
2.0 、Al:0.005〜0.05、N:0.00
5〜0.03を含有する成分組成からなるビレットを9
50〜850℃の間で圧下率20%以上の圧延をし、8
50〜900℃の温度範囲で圧延を終了後、ただちに焼
入れして550〜700℃で焼戻し、焼戻し後450〜
550℃で矯正することを特徴とする高コラプス強度を
有する継目無鋼管の製造方法であり、また、重量%で、
C:0.08〜0.35、Si:0.05〜0.50、
Mn:0.3〜2.0 、Al:0.005〜0.0
5、N:0.005〜0.03を含有しさらに、Cr:
0.05〜1.5、Mo:0.05〜1.0、Ti:
0.0 1〜0.03、B:0.0005〜0.00
3、Cu:0.05〜1、Ni:0.05〜1、の1種
または2種以上含有する成分組成からなるビレットを9
50〜850℃の間に圧下率20%以上の圧延をし、8
50〜900℃の温度範囲で圧延を終了後、ただちに焼
入れして550〜700℃で焼戻し、焼戻し後450〜
550℃で矯正することを特徴とする高コラプス強度を
有する継目無鋼管の製造方法である。The method for producing a high-collapse strength steel pipe according to the present invention is C: 0.08% by weight, in% by weight.
0.35, Si: 0.05 to 0.50, Mn: 0.3 to
2.0, Al: 0.005-0.05, N: 0.00
Billet composed of 5 to 0.03 is 9
Roll at a rolling reduction of 20% or more between 50 and 850 ° C.,
Immediately after completion of rolling in the temperature range of 50 to 900 ° C, quenching is performed, tempering is performed at 550 to 700 ° C, and after tempering 450 to
A method for producing a seamless steel pipe having high collapse strength, characterized by straightening at 550 ° C.
C: 0.08 to 0.35, Si: 0.05 to 0.50,
Mn: 0.3-2.0, Al: 0.005-0.0
5, N: 0.005-0.03, and further Cr:
0.05-1.5, Mo: 0.05-1.0, Ti:
0.01 to 0.03, B: 0.0005 to 0.00
3, billet consisting of a component composition containing one or more of Cu: 0.05 to 1 and Ni: 0.05 to 9
Rolling with a reduction rate of 20% or more between 50 and 850 ° C.
Immediately after completion of rolling in the temperature range of 50 to 900 ° C, quenching is performed, tempering is performed at 550 to 700 ° C, and after tempering 450 to
A method for producing a seamless steel pipe having high collapse strength, which is characterized by straightening at 550 ° C.
【0007】[0007]
【作用】本発明は、高コラプス強度を有する継目無鋼管
の製造方法方法に関するものであるが、高コラプス強度
を有するための条件としては、材料の降伏強度が高いこ
と、矯正による強度低下を小さくするため圧延及び熱処
理後において長手方向に曲がりのない鋼管を製造するこ
とが要求される。これらの要求をみたすために、本年発
明においては上述したような製造工程をとるが、以下に
その理由をのべる。The present invention relates to a method for producing a seamless steel pipe having high collapse strength. The conditions for having high collapse strength are that the yield strength of the material is high and that the reduction in strength due to straightening is small. Therefore, it is required to manufacture a steel pipe that does not bend in the longitudinal direction after rolling and heat treatment. In order to meet these requirements, the manufacturing process as described above is adopted in the present invention, and the reason is given below.
【0008】(a)鋼の成分限定理由 C:0.08〜0.35% Cは鋼の強度を確保する作用のほか、焼入れ性や焼戻し
抵抗を向上させるための必須な元素として、その含有量
を0.08%以上とした。また、0.35%以下とした
理由は0.35%を超えると焼入れ時に割れを生じた
り、靱性の劣化を引き起こすことによる。(A) Reasons for limiting the composition of steel C: 0.08 to 0.35% C acts as an essential element for improving the hardenability and the tempering resistance as well as the function of ensuring the strength of the steel. The amount was 0.08% or more. Further, the reason for setting it to 0.35% or less is that if it exceeds 0.35%, cracking occurs during quenching or deterioration of toughness is caused.
【0009】Si:0.05〜0.50% Siは鋼の脱酸剤としての作用をもつ。また鋼の強度を
向上させる作用がある。これらの作用は0.05%未満
の添加では明瞭でない。また0.5%を超えて含有させ
ると靱性の劣化をきたし、粒界強度も低下するため0.
5%以下とした。Si: 0.05 to 0.50% Si acts as a deoxidizing agent for steel. It also has the effect of improving the strength of the steel. These effects are not clear at additions below 0.05%. Further, if the content exceeds 0.5%, the toughness deteriorates and the grain boundary strength also decreases, so that
It was set to 5% or less.
【0010】Mn:0.3〜2.0% Mnは有力な強化元素である。またSiと同様に脱酸剤
であり、硫化物による熱間脆性を防止する効果もある。
それらの効果を有効に得るため添加量を0.3%以上と
した。また、2%をこえて添加しても効果が飽和するこ
と、および、靭性の劣化を招くため2%をその上限とし
た。Mn: 0.3-2.0% Mn is a strong strengthening element. It is also a deoxidizing agent similar to Si, and has an effect of preventing hot brittleness due to sulfide.
In order to effectively obtain those effects, the addition amount is set to 0.3% or more. Further, even if added in excess of 2%, the effect is saturated and deterioration of toughness is caused, so 2% was made the upper limit.
【0011】Al:0.005〜0.05% Alは鋼の脱酸剤として有用な元素である。またTiと
ならんで鋼中のNと結合して窒化物を形成し、Bの作用
を顕在化させる元素であるので、その含有量を0.00
5%以上とした。また、0.05%を超えて添加すると
鋼中にAl2 O 3 が増加し清浄度が下がるため上限を
0.05%とした。Al: 0.005-0.05% Al is an element useful as a deoxidizer for steel. Also with Ti
In addition, it forms a nitride by combining with N in steel and the action of B
Since it is an element that manifests
It was set to 5% or more. Also, if added over 0.05%
Al in steel2O 3Increases and the cleanliness decreases, so the upper limit is
It was set to 0.05%.
【0012】N:0.005〜0.03% NはCと共に強化元素である。またTiおよびAlと窒
化物を形成し、特にTiNは鋼の粒成長を抑制し、結晶
粒を微細化する作用がある。それら効果は0.005%
以下では充分でなく、0.03%を越えると靭性が劣化
すため、0.005〜0.03%とした。N: 0.005 to 0.03% N is a strengthening element together with C. Further, it forms a nitride with Ti and Al, and particularly TiN has an action of suppressing grain growth of steel and refining crystal grains. Those effects are 0.005%
The following is not sufficient, and if it exceeds 0.03%, the toughness deteriorates, so the content was made 0.005 to 0.03%.
【0013】Cr:0.05〜1.5% Crは焼入れ性の向上に著しい効果をもたらす元素で、
鋼の強度を高くする作用もあるが、その含有量が0.0
5%未満では前記のような効果が期待できず、多量に添
加すると焼入れ性が過大になるためその上限を1.5%
とした。Cr: 0.05 to 1.5% Cr is an element that has a remarkable effect on the improvement of hardenability.
It has the effect of increasing the strength of steel, but its content is 0.0
If it is less than 5%, the above effect cannot be expected, and if it is added in a large amount, the hardenability becomes excessive, so the upper limit is 1.5%.
And
【0014】Mo:0.05〜1% Moは鋼の焼戻し抵抗を高める作用があるが、0.05
%以下ではその効果が小さく、他方1%を超えて含有さ
せると、鋼の脆化や靱性の劣化をきたすようになること
から、上限を1%とした。Mo: 0.05-1% Mo has the function of increasing the tempering resistance of steel, but 0.05
%, The effect is small. On the other hand, if the content exceeds 1%, the steel becomes brittle and the toughness deteriorates, so the upper limit was made 1%.
【0015】Ti:0.01〜0.03% TiはAlと同様にNをTiNとして固定し、Bの焼入
れ性向上を図り、かつ微細に分散析出するため、ビレッ
ト加熱時の結晶粒の粗大化を抑制する効果がある。しか
し、その含有量が0.01%未満では前記のような所望
の効果を得ることができず、他方含有量が0.03%を
超えると、TiNの凝集粗大化によって結晶粒成長の抑
制に効果がないばかりか、靱性の劣化を招くことになる
ので、その含有量の範囲は0.01〜0.03%とし
た。Ti: 0.01 to 0.03% Ti fixes N as TiN like Al, improves the hardenability of B, and finely disperses and precipitates, so that the crystal grains become coarse during billet heating. It has the effect of suppressing deterioration. However, if the content is less than 0.01%, the desired effects as described above cannot be obtained, while if the content exceeds 0.03%, TiN agglomerates and coarsens to suppress grain growth. In addition to having no effect, it causes deterioration of toughness, so the content range was made 0.01 to 0.03%.
【0016】B:0.0001〜0.005% Bは鋼の焼入れ性を向上させる効果があり、0.000
1%以上含有させることでその効果が現れる。しかし、
0.005%を越えて添加してもその効果が飽和するの
みならず、熱間加工時の割れの原因となるためその上限
を0.005%とした。B: 0.0001 to 0.005% B has the effect of improving the hardenability of steel, and is 0.000
The effect appears when the content is 1% or more. But,
Even if added in excess of 0.005%, the effect is not only saturated, but also causes cracking during hot working, so the upper limit was made 0.005%.
【0017】Cu:0.05〜1% Ni:0.05〜1% Cu、Niは共に強度向上に有効であるが、0.05%
以下ではその効果は明瞭でないため、0.05%を下限
とする。又1%を越えると焼入れ性が過大となること、
又製造コストが上昇するために上限を1%以下とする。Cu: 0.05 to 1% Ni: 0.05 to 1% Cu and Ni are both effective in improving strength, but 0.05%
Since the effect is not clear below, 0.05% is made the lower limit. If it exceeds 1%, the hardenability becomes excessive,
Further, the upper limit is set to 1% or less because the manufacturing cost increases.
【0018】Nb:0.01〜0.1% Nbはオーステナイト粒を微細化する作用をもつ。0.
01%以下ではその効果は明瞭でなく、0.1%を越え
て添加すると靭性の低下を招くため0.01〜0.1%
とした。Nb: 0.01 to 0.1% Nb has a function of refining austenite grains. 0.
If it is less than 01%, its effect is not clear, and if it is added over 0.1%, the toughness is lowered.
And
【0019】V:0.01〜0.1% VもNbと同様の効果をもつ。また、同様に0.1%を
越える過剰の添加は靭性劣化の原因となるため0.01
〜0.1%とした。 Ca:0.0003〜0.01% 上記の合金元素に加えて通常、鉄鋼材料にふくまれる不
純物は以下の様に制限する。V: 0.01 to 0.1% V has the same effect as Nb. Similarly, excessive addition of more than 0.1% causes deterioration of toughness, so 0.01
˜0.1%. Ca: 0.0003 to 0.01% In addition to the above alloying elements, the impurities usually contained in steel materials are limited as follows.
【0020】P:0.020%以下 Pは粒界偏析をおこし加工性を下げるため含有量を0.
020%以下とした。 S:0.020%以下 Sは鋼中の不可避的な不純物であり、多量に含むとMn
Sを形成し靭性を下げるため0.020%以下とする。P: 0.020% or less Since P causes grain boundary segregation and lowers workability, the content of P is 0.
It was set to 020% or less. S: 0.020% or less S is an unavoidable impurity in steel, and if contained in a large amount, Mn.
In order to form S and reduce toughness, it is made 0.020% or less.
【0021】(b)850〜950℃の範囲で少なくと
も圧下率20%の圧延を行う理由 圧延を出来るだけ低温で、かつ加工度を大きくし結晶粒
が圧延方向に延びた展伸組織にすることが高強度化につ
ながる。圧延により鋼に加えられた歪みは高温において
は回復、再結晶により開放されるため、圧延温度および
圧延終了温度が高く、加工度が低い場合は展伸組織が得
られない。この回復、再結晶は950℃を越えると著し
くなるため、規定する温度域は950℃以下とした。一
方、加工温度が低くなり、850℃以下になると鋼の加
工抵抗が増大し、加工が困難になるため下限を850℃
とした。なを、850℃以上で圧延を終了することによ
り、焼入れ後の鋼の組織を90%以上のマルテンサイト
組織とすることができる。(B) Reason for rolling at a rolling reduction of at least 20% in the range of 850 to 950 ° C. Rolling should be performed at a temperature as low as possible and the workability should be increased to form an expanded structure in which crystal grains extend in the rolling direction. Will lead to higher strength. Since the strain applied to the steel by rolling is recovered at high temperature and released by recrystallization, an expanded structure cannot be obtained when the rolling temperature and the rolling end temperature are high and the workability is low. Since the recovery and recrystallization become remarkable when the temperature exceeds 950 ° C, the specified temperature range is set to 950 ° C or less. On the other hand, if the working temperature becomes lower than 850 ° C, the working resistance of steel increases and it becomes difficult to work, so the lower limit is 850 ° C.
And However, by finishing the rolling at 850 ° C. or higher, the structure of the steel after quenching can be made a martensite structure of 90% or higher.
【0022】加工度は高いほど展伸組織が著しくなり、
マルテンサイト組織が微細化する。(展伸組織とは、オ
ーステナイト結晶粒の圧延方向の粒径が圧延直角方向の
粒径の2倍以上の場合を指し、50%とはこの様な結晶
粒の割合が50%である事を示す。) 850〜950℃の間の加工度が20%未満の場合は目
的とする微細組織は得られない。また、加工温度域が8
50〜950℃の場合でも900℃以下の温度域で一定
量の圧延をすることが必要である。850〜900℃の
間での加工度を7%以上とすることにより、展伸組織が
顕著となり焼入れ後のマルテンサイト組織をより微細に
し、降伏強度をさらに高めることができる。The higher the degree of processing, the more pronounced the expanded structure,
The martensite structure becomes finer. (Expanded structure refers to the case where the grain size in the rolling direction of austenite crystal grains is more than twice the grain size in the direction perpendicular to rolling, and 50% means that the proportion of such crystal grains is 50%. If the workability between 850 and 950 ° C is less than 20%, the desired microstructure cannot be obtained. Also, the processing temperature range is 8
Even in the case of 50 to 950 ° C, it is necessary to roll a certain amount in the temperature range of 900 ° C or lower. By setting the workability between 850 and 900 ° C. to 7% or more, the expanded structure becomes remarkable, the martensite structure after quenching becomes finer, and the yield strength can be further increased.
【0023】図2は圧延終了温度(℃)と展伸組織発生
比率(%)との関係を表すグラフである。表1に示した
鋼1を用い、終了温度の約50℃高い温度より圧延を開
始し、圧下率20%の圧延を行なった。圧延終了温度を
900℃以下にすることにより、展伸組織発生比率は1
00%近くになる。これにより焼入れ後の結晶組織を微
細にすることができる。FIG. 2 is a graph showing the relationship between the rolling end temperature (° C.) and the spread structure generation ratio (%). Using Steel 1 shown in Table 1, rolling was started at a temperature about 50 ° C. higher than the finishing temperature and rolling was performed at a rolling reduction of 20%. By setting the rolling end temperature to 900 ° C. or less, the expansion structure generation ratio is 1
It will be close to 00%. As a result, the crystal structure after quenching can be made fine.
【0024】(c)オンライン直接焼入れ オンライン直接焼入れの採用により、展伸され高強度に
なった鋼管を焼入れることになり、曲がりの少ない鋼管
が得られる。圧延された直後の鋼管は再加熱された場合
に比較して温度が均一であり、この事も鋼管の曲がりを
少なくする上で有効である。再加熱工程がないため加熱
時の変形がないが、従来方法ではこの再加熱と焼入れ時
の変形が大きく矯正温度を高くする必要があった。(C) Online Direct Quenching By adopting online direct quenching, a steel pipe that has been expanded and has high strength is quenched, and a steel pipe with little bending can be obtained. The temperature of the steel pipe immediately after rolling is more uniform than when it is reheated, which is also effective in reducing the bending of the steel pipe. Since there is no reheating step, there is no deformation during heating, but in the conventional method, the deformation during reheating and quenching was large and it was necessary to raise the straightening temperature.
【0025】(d)矯正温度の低下 矯正温度を550℃以下にすることで、矯正中の材料の
回復現象を防止し、鋼管の内外面近傍の降伏強度の低下
を防止するとともに、矯正温度の下限を450℃に以上
にすることで、バウシンガー効果によるコラプス強度の
低下を防止する。(D) Reduction of straightening temperature By setting the straightening temperature to 550 ° C. or less, the recovery phenomenon of the material during straightening is prevented, the lowering of the yield strength near the inner and outer surfaces of the steel pipe is prevented, and the straightening temperature By setting the lower limit to 450 ° C. or higher, it is possible to prevent a decrease in collapse strength due to the Bausinger effect.
【0026】図3は、コラプス強度を、従来法と本発明
を部分的に実施した低温圧延−直接焼入れー高温矯正お
よび本発明を完全に実施した低温圧延−直接焼入れ−低
温矯正とで比較して示したグラフである。鋼1(24
4.5φ×11.99t)を用い、従来方法に依り製造
した場合のコラプス強度の平均値を1とした場合の比較
を示した。図3より本発明の製造方法で継目無鋼管を製
造すると、コラプス強度は従来よりも5%以上向上する
ことが分かる。FIG. 3 compares the collapse strengths of the conventional method and the low temperature rolling-direct quenching-high temperature straightening partially implementing the present invention and the low temperature rolling-direct quenching-low temperature straightening fully implementing the present invention. Is a graph shown by. Steel 1 (24
4.5φ × 11.99t) was used, and a comparison was made in the case where the average value of the collapse strength was 1 when manufactured by the conventional method. It can be seen from FIG. 3 that when the seamless steel pipe is manufactured by the manufacturing method of the present invention, the collapse strength is improved by 5% or more as compared with the conventional case.
【0027】[0027]
【実施例】本発明の実施例の高コラプス強度鋼管の製造
方法を図1の工程図により説明する。本発明の高コラプ
ス強度鋼管の製造方法においては、前述したような成分
組成のビレットを加熱工程1において加熱した後、圧延
工程3により圧延する。圧延工程3では後期の950〜
850℃の間で圧下率を20%以上とし、かつ850〜
900℃の範囲での圧下率を5〜10%の圧延を行な
い、圧延の終了後鋼管を、直ちにオンラインで直接焼入
れ工程4において、850〜900℃の温度範囲から直
接焼入れが行った。その後、引続き焼戻工程5において
焼戻しを行い、温度制御工程6において、鋼管の温度を
450〜550℃間に制御した後、最終の矯正工程7に
おいて矯正が行った。用いた鋼の成分を表1に示す。鋼
1、鋼3は炭素鋼、鋼2は合金鋼である。鋼管のサイズ
はいずれも177.8φ×12065tである。EXAMPLE A method for manufacturing a high-collapse strength steel pipe according to an example of the present invention will be described with reference to the process chart of FIG. In the method for producing a high-collapse strength steel pipe of the present invention, the billet having the above-described composition is heated in the heating step 1 and then rolled in the rolling step 3. In the rolling process 3, the latter half of 950
The rolling reduction is 20% or more between 850 ° C. and 850 to
Rolling was performed at a rolling reduction of 5 to 10% in the range of 900 ° C., and after the rolling, the steel pipe was directly quenched in the direct quenching step 4 in the temperature range of 850 to 900 ° C. immediately online. After that, tempering was performed in the subsequent tempering step 5, the temperature of the steel pipe was controlled to 450 to 550 ° C. in the temperature control step 6, and then the final straightening step 7 performed the straightening. Table 1 shows the components of the steel used. Steel 1 and steel 3 are carbon steel, and steel 2 is alloy steel. The size of each steel pipe is 177.8φ × 12065t.
【0028】[0028]
【表1】 [Table 1]
【0029】表2〜表4に本発明により製造した鋼管お
よび比較例のコラプス強度を示す。Tables 2 to 4 show the collapse strengths of the steel pipes manufactured according to the present invention and the comparative examples.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【表3】 [Table 3]
【0032】[0032]
【表4】 [Table 4]
【0033】表2の690℃焼戻材、表3の620℃焼
戻材、表4の560℃焼戻材共、従来法に比較して4%
以上のコラプス強度の上昇が認められる。Both the 690 ° C. tempered material in Table 2, the 620 ° C. tempered material in Table 3 and the 560 ° C. tempered material in Table 4 are 4% compared to the conventional method.
The above-mentioned increase in collapse strength is recognized.
【0034】[0034]
【発明の効果】この発明により、高コラプス強度鋼管を
大量の熱エネルギを消費することなく製造することがで
きる。According to the present invention, a high-collapse strength steel pipe can be manufactured without consuming a large amount of heat energy.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例の高コラプス強度鋼管の製造工
程図である。FIG. 1 is a manufacturing process diagram of a high-collapse strength steel pipe according to an embodiment of the present invention.
【図2】圧延終了温度と展伸組織発生比率との関係を表
すグラフである。FIG. 2 is a graph showing a relationship between a rolling end temperature and an expanded structure generation ratio.
【図3】コラプス強度比を比較したグラフである。FIG. 3 is a graph comparing the collapse intensity ratios.
【図4】従来の高コラプス強度鋼管の製造工程図であ
る。FIG. 4 is a manufacturing process diagram of a conventional high-collapse strength steel pipe.
【符号の説明】 1 加熱工程 2 温度制御工程 3 圧延工程 4 直接焼入れ工程 5 焼戻工程 6 温度制御工程 7 矯正工程[Explanation of symbols] 1 heating process 2 temperature control process 3 rolling process 4 direct quenching process 5 tempering process 6 temperature control process 7 straightening process
───────────────────────────────────────────────────── フロントページの続き (72)発明者 安岡 秀憲 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 和田野 克己 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hidenori Yasuoka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Katsumi Wadano 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Date Main Steel Pipe Co., Ltd.
Claims (2)
Mn:0.3〜2.0、Al:0.005〜0.05、
N:0.005〜0.03を含有する成分組成からなる
ビレットを950〜850℃の間で圧下率20%以上の
圧延をし、850〜900℃の温度範囲で圧延を終了
後、ただちに焼入れして550〜700℃で焼戻し、焼
戻し後450〜550℃で矯正することを特徴とする高
コラプス強度を有する継目無鋼管の製造方法 。1. By weight%, C: 0.08 to 0.35, Si: 0.05 to 0.50,
Mn: 0.3-2.0, Al: 0.005-0.05,
A billet composed of a composition containing N: 0.005 to 0.03 is rolled at a rolling reduction of 20% or more between 950 and 850 ° C, and immediately after quenching in a temperature range of 850 to 900 ° C, quenching is performed. A method for producing a seamless steel pipe having high collapse strength, characterized by tempering at 550 to 700 ° C, and straightening at 450 to 550 ° C after tempering.
Mn:0.3〜2.0、Al:0.005〜0.05、
N:0.005〜0.03を含有し、更に、Cr:0.
05〜1.5、Mo:0.05〜1.0、Ti:0.0
1〜0.03、B:0.0005〜0.003、C
u:0.05〜1、Ni:0.05〜1、Nb:0.0
1〜0.1、V:0.01〜0.1、Ca:0.000
3〜0.01の1種または2種以上含有する成分組成か
らなるビレットを950〜850℃の間で圧下率20%
以上の圧延をし、850〜900℃の温度範囲で圧延を
終了後、ただちに焼入れして550〜700℃で焼戻
し、焼戻し後450〜550℃で矯正することを特徴と
する高コラプス強度を有する継目無鋼管の製造方法。2. In (a)% by weight, C: 0.08 to 0.35, Si: 0.05 to 0.50,
Mn: 0.3-2.0, Al: 0.005-0.05,
N: 0.005 to 0.03, and further, Cr: 0.
05-1.5, Mo: 0.05-1.0, Ti: 0.0
1 to 0.03, B: 0.0005 to 0.003, C
u: 0.05 to 1, Ni: 0.05 to 1, Nb: 0.0
1 to 0.1, V: 0.01 to 0.1, Ca: 0.000
A billet composed of a component composition containing 1 to 3 kinds of 3 to 0.01 or more, and a reduction rate of 20% between 950 to 850 ° C.
A seam having a high collapse strength characterized by being subjected to the above rolling, rolling immediately in the temperature range of 850 to 900 ° C., immediately quenching, tempering at 550 to 700 ° C., and straightening at 450 to 550 ° C. after tempering. Steelless pipe manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32371493A JP3293289B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of high collapse strength steel pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32371493A JP3293289B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of high collapse strength steel pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07179941A true JPH07179941A (en) | 1995-07-18 |
JP3293289B2 JP3293289B2 (en) | 2002-06-17 |
Family
ID=18157787
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32371493A Expired - Fee Related JP3293289B2 (en) | 1993-12-22 | 1993-12-22 | Manufacturing method of high collapse strength steel pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3293289B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094179A1 (en) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same |
RU2495148C1 (en) * | 2012-03-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Low-carbon low-alloy steel for production of large hot-rolled standard and profiled stock |
CN109890526A (en) * | 2016-10-18 | 2019-06-14 | 日本制铁株式会社 | Crush Strength Prediction Method |
-
1993
- 1993-12-22 JP JP32371493A patent/JP3293289B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013094179A1 (en) * | 2011-12-22 | 2013-06-27 | Jfeスチール株式会社 | High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same |
JP2013129879A (en) * | 2011-12-22 | 2013-07-04 | Jfe Steel Corp | High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same |
US9708681B2 (en) | 2011-12-22 | 2017-07-18 | Jfe Steel Corporation | High-strength seamless steel pipe for oil well use having excellent resistance to sulfide stress cracking |
RU2495148C1 (en) * | 2012-03-27 | 2013-10-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Low-carbon low-alloy steel for production of large hot-rolled standard and profiled stock |
CN109890526A (en) * | 2016-10-18 | 2019-06-14 | 日本制铁株式会社 | Crush Strength Prediction Method |
CN109890526B (en) * | 2016-10-18 | 2020-07-07 | 日本制铁株式会社 | Crushing strength prediction method |
US11017054B2 (en) | 2016-10-18 | 2021-05-25 | Nippon Steel Corporation | Collapse strength prediction method |
Also Published As
Publication number | Publication date |
---|---|
JP3293289B2 (en) | 2002-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06220536A (en) | Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance | |
JP2567150B2 (en) | Manufacturing method of high strength low yield ratio line pipe material for low temperature | |
JPH0741856A (en) | Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance | |
CN113166883A (en) | Structural steel having excellent low yield ratio and low temperature toughness and method for preparing the same | |
JP2579094B2 (en) | Manufacturing method of oil well steel pipe with excellent sulfide stress cracking resistance | |
JPH06184636A (en) | Production of high strength and high toughness seamless steel pipe excellent in weldability | |
KR100470671B1 (en) | A method for manufacturing non-hteat-treated steel with excellent cold formability | |
JP3228986B2 (en) | Manufacturing method of high strength steel sheet | |
JP3293289B2 (en) | Manufacturing method of high collapse strength steel pipe | |
JP4196501B2 (en) | Steel for seamless steel pipe with high strength and excellent toughness | |
JPH05255749A (en) | Production of seamless steel tube having high strength and high toughness and excellent in ssc resistance | |
KR102252106B1 (en) | Manufacturing method of seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more and seismic-resistant steel deforemed bar having yield strength of 620mpa grade or more using the same | |
JP2556643B2 (en) | Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method | |
JP3750737B2 (en) | Manufacturing method of non-tempered high strength and high toughness forgings | |
JP3249210B2 (en) | Method for producing low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JP2527512B2 (en) | Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance | |
JPH06172855A (en) | Low Yield Ratio High Toughness Seamless Steel Pipe Manufacturing Method | |
JPH06184635A (en) | Production of high strength seamless steel pipe excellent in fracture propagating resistance | |
JP4145764B2 (en) | Method for producing boron-added case-hardened steel pipe excellent in cold workability and grain size characteristics | |
JP2567151B2 (en) | Manufacturing method of oil well steel pipe with excellent SSC resistance | |
JP3325148B2 (en) | Method for producing thick steel sheet with excellent brittle crack arrestability and low temperature toughness | |
JP3127721B2 (en) | Method for manufacturing low yield ratio steel for fire resistance | |
JPH0530883B2 (en) | ||
JPH04358026A (en) | Production of seamless low alloy steel tube having fine-grained structure | |
JPH0734126A (en) | Manufacturing method of low alloy seamless steel pipe with fine grain structure. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20020305 |
|
LAPS | Cancellation because of no payment of annual fees |