[go: up one dir, main page]

JPH07179451A - Method for producing coumarins - Google Patents

Method for producing coumarins

Info

Publication number
JPH07179451A
JPH07179451A JP5325331A JP32533193A JPH07179451A JP H07179451 A JPH07179451 A JP H07179451A JP 5325331 A JP5325331 A JP 5325331A JP 32533193 A JP32533193 A JP 32533193A JP H07179451 A JPH07179451 A JP H07179451A
Authority
JP
Japan
Prior art keywords
amount
reaction liquid
reaction
dihydrocoumarin
per unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5325331A
Other languages
Japanese (ja)
Inventor
Kiyomi Sakai
喜代己 坂井
Yoshitaka Nishida
好孝 西田
Yoshio Kumagai
善夫 熊谷
Junya Sonobe
純也 園部
Hiroshi Ueda
博 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP5325331A priority Critical patent/JPH07179451A/en
Publication of JPH07179451A publication Critical patent/JPH07179451A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Pyrane Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain cumarins useful as an intermediate for perfumes, medicines and agrochemicals and dyes at a high reaction rate by subjecting 3,4- dihydrocumarins to dehydrogenation reaction by evaporating a reacted liquid using a specific heating calorie. CONSTITUTION:3,4-Dihydrocumarins of formula I (R1 to R4 each is H, methyl or ethyl and two or more groups thereof are H) are subjected to dehydrogenation reaction using 80-1000kcal/kg.hr heating calorie per unit reacted liquid in the presence of a metal catalyst such as a solid metal catalyst obtained by supporting palladium on an active carbon to provide the objective cumarins of formula II.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は3,4−ジヒドロクマリ
ン類からクマリン類を製造する方法の改良に関する。ク
マリン及びその誘導体は特に香料工業において重要な化
合物であり、更に農薬、医薬或いは染料の中間体として
も重要な化合物である。
FIELD OF THE INVENTION The present invention relates to an improved method for producing coumarins from 3,4-dihydrocoumarins. Coumarin and its derivatives are especially important compounds in the perfume industry, and are also important compounds as intermediates for agricultural chemicals, drugs or dyes.

【0002】[0002]

【従来の技術】従来からクマリン類を得る方法として、
パラジウム等の水素化−脱水素触媒の存在下に3−(2
−オキソシクロヘキシル)プロピオン酸エステル類を加
熱して環化脱水素反応させて製造する方法(米国特許第
3,442,910号)、パラジウム等の貴金属触媒と共に助触
媒として硫酸バリウム、酸化ニッケル等の存在下に環化
脱水素させて製造する方法(特開昭60−181082号)等が
知られている。
2. Description of the Related Art As a conventional method for obtaining coumarins,
In the presence of a hydrogenation-dehydrogenation catalyst such as palladium, 3- (2
-Oxocyclohexyl) propionic acid ester by heating for cyclodehydrogenation reaction (US Patent No.
No. 3,442,910), and a method of producing by carrying out cyclization dehydrogenation in the presence of barium sulfate, nickel oxide and the like as a cocatalyst together with a noble metal catalyst such as palladium (JP-A-60-181082).

【0003】また、3,4−ジヒドロクマリン類を原料
とし、パラジウム等の貴金属触媒の存在下に脱水素反応
させてクマリン類を製造する方法(Ber., 70B,735 〜8
(1936)、特開平05−117262号公報)、塩素、臭素、酸素
または硫黄を用いて脱水素させてクマリン類を製造する
方法(Monatsh.,(34),1671〜72 (1913) 、ドイツ特許第
276667号)等が知られている。
Further, a method for producing coumarins by using 3,4-dihydrocoumarins as a raw material and performing a dehydrogenation reaction in the presence of a noble metal catalyst such as palladium (Ber., 70B, 735-8).
(1936), JP-A-05-117262), a method for producing coumarins by dehydrogenation using chlorine, bromine, oxygen or sulfur (Monatsh., (34), 1671 to 72 (1913), German Patent First
No. 276667) is known.

【0004】[0004]

【発明が解決しようとする課題】パラジウム触媒の存在
下に3−(2−シクロヘキサノイル)プロピオン酸エス
テル類を加熱して環化脱水素反応させて製造する際に
は、必ずしもクマリン類の収率が高くなく、3,4−ジ
ヒドロクマリン類が多く副生する。また、3,4−ジヒ
ドロクマリン類を原料として脱水素反応させてクマリン
類を製造するに際し、塩素または硫黄等を用い脱水素反
応する方法では塩素又は硫黄等を除去することが困難で
あり、精製工程が複雑になる。
When a 3- (2-cyclohexanoyl) propionic acid ester is heated in the presence of a palladium catalyst to undergo a cyclization dehydrogenation reaction, it is not always necessary to collect coumarins. The rate is not high and many 3,4-dihydrocoumarins are by-produced. Further, when producing coumarins by dehydrogenation reaction using 3,4-dihydrocoumarins as raw materials, it is difficult to remove chlorine or sulfur by the method of dehydrogenation using chlorine or sulfur, etc. The process becomes complicated.

【0005】一方、パラジウム触媒存在下、3,4−ジ
ヒドロクマリン類の脱水素反応を行う方法は精製工程が
比較的容易であるが、脱水素反応によるクマリン類の生
成と共に、副生する水素による水素添加反応が同時に起
こり、クマリン類が3,4−ジヒドロクマリン類になる
ために必ずしも十分に脱水素反応が進まず、クマリン類
の収率は高くない。脱水素反応を進ませるために、例え
ば、脱水素反応を減圧下で行う方法(特開平5−117
262号)が提案されている。
On the other hand, the method of carrying out the dehydrogenation reaction of 3,4-dihydrocoumarins in the presence of a palladium catalyst is relatively easy in the purification step, but the production of coumarins by the dehydrogenation reaction and the production of hydrogen by-product The hydrogenation reaction occurs at the same time and the coumarins become 3,4-dihydrocoumarins, so that the dehydrogenation reaction does not always proceed sufficiently, and the yield of coumarins is not high. In order to promote the dehydrogenation reaction, for example, a method of performing the dehydrogenation reaction under reduced pressure (Japanese Patent Laid-Open No. 5-1171).
No. 262) has been proposed.

【0006】本発明者等は、3,4−ジヒドロクマリン
類からクマリン類を製造する際に、収率の良いクマリン
類の製造方法について鋭意研究を重ねた結果、脱水素反
応の反応速度は反応液からの蒸発量が反応速度に影響
し、単位反応液量あたりの蒸発量又は反応液を蒸発させ
るための単位反応液量あたりの加熱量を多くして脱水素
反応を行うことにより著しく反応速度が向上することを
見い出し、発明を完成するに至った。
The inventors of the present invention have conducted extensive research on a method for producing coumarins having a high yield when producing coumarins from 3,4-dihydrocoumarins. As a result, the reaction rate of dehydrogenation reaction is The amount of evaporation from the liquid affects the reaction rate, and the reaction rate is remarkably increased by increasing the evaporation amount per unit reaction liquid amount or the heating amount per unit reaction liquid amount for evaporating the reaction liquid to carry out the dehydrogenation reaction. It was found that the above-mentioned improvements were made, and the invention was completed.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、一般
式 化3、
That is, the present invention is based on the general formula:

【化3】 (式中、R1 〜R4 はそれぞれ水素原子、メチル基また
はエチル基を表し、R1〜R4 のうち少なくとも2つの
基は水素原子である)で示される3,4−ジヒドロクマ
リン類を金属触媒の存在下、脱水素反応によって一般式
化4、
[Chemical 3] (In the formula, R 1 to R 4 each represent a hydrogen atom, a methyl group or an ethyl group, and at least two groups of R 1 to R 4 are hydrogen atoms). In the presence of a metal catalyst, the general formula 4

【化4】 (式中R1 〜R4 は前記した基と同一である)で示され
るクマリン類を製造するに際し、反応液を蒸発させるた
めの単位反応液量あたりの加熱量を80〜1000kc
al/kg・hrで行うことを特徴とするクマリン類の
製造方法である。
[Chemical 4] When producing coumarins represented by the formula (R 1 to R 4 are the same as the groups described above), the heating amount per unit reaction liquid amount for evaporating the reaction liquid is 80 to 1000 kc.
It is a method for producing coumarins, characterized in that the treatment is carried out at al / kg · hr.

【0008】本発明に用いられる3,4−ジヒドロクマ
リン類の具体例としては、例えば、3,4−ジヒドロク
マリン、5−メチル−3,4−ジヒドロクマリン、6−
メチル−3,4−ジヒドロクマリン、7−メチル−3,
4−ジヒドロクマリン、8−メチル−3,4−ジヒドロ
クマリン、5−エチル−3,4−ジヒドロクマリン、6
−エチル−3,4−ジヒドロクマリン、7−エチル−
3,4−ジヒドロクマリン、8−エチル−3,4−ジヒ
ドロクマリン、5,6−ジメチル−3,4−ジヒドロク
マリン、5,7−ジメチル−3,4−ジヒドロクマリ
ン、5,8−ジメチル−3,4−ジヒドロクマリン、
6,7−ジメチル−3,4−ジヒドロクマリン、6,8
−ジメチル−3,4−ジヒドロクマリン、7,8−ジメ
チル−3,4−ジヒドロクマリン、5−メチル−6−エ
チル−3,4−ジヒドロクマリン、5−メチル−7−エ
チル−3,4−ジヒドロクマリン、5−メチル−8−エ
チル−3,4−ジヒドロクマリン、6−メチル−7−エ
チル−3,4−ジヒドロクマリン、6−メチル−8−エ
チル−3,4−ジヒドロクマリン、7−メチル−8−エ
チル−3,4−ジヒドロクマリン、5−エチル−6−メ
チル−3,4−ジヒドロクマリン、5−エチル−7−メ
チル−3,4−ジヒドロクマリン、5−エチル−8−メ
チル−3,4−ジヒドロクマリン、6−エチル−7−メ
チル−3,4−ジヒドロクマリン、6−エチル−8−メ
チル−3,4−ジヒドロクマリン、7−エチル−8−メ
チル−3,4−ジヒドロクマリン等が挙げられるが、こ
れらに限られない。
Specific examples of the 3,4-dihydrocoumarins used in the present invention include, for example, 3,4-dihydrocoumarin, 5-methyl-3,4-dihydrocoumarin and 6-.
Methyl-3,4-dihydrocoumarin, 7-methyl-3,
4-dihydrocoumarin, 8-methyl-3,4-dihydrocoumarin, 5-ethyl-3,4-dihydrocoumarin, 6
-Ethyl-3,4-dihydrocoumarin, 7-ethyl-
3,4-dihydrocoumarin, 8-ethyl-3,4-dihydrocoumarin, 5,6-dimethyl-3,4-dihydrocoumarin, 5,7-dimethyl-3,4-dihydrocoumarin, 5,8-dimethyl- 3,4-dihydrocoumarin,
6,7-Dimethyl-3,4-dihydrocoumarin, 6,8
-Dimethyl-3,4-dihydrocoumarin, 7,8-dimethyl-3,4-dihydrocoumarin, 5-methyl-6-ethyl-3,4-dihydrocoumarin, 5-methyl-7-ethyl-3,4- Dihydrocoumarin, 5-methyl-8-ethyl-3,4-dihydrocoumarin, 6-methyl-7-ethyl-3,4-dihydrocoumarin, 6-methyl-8-ethyl-3,4-dihydrocoumarin, 7- Methyl-8-ethyl-3,4-dihydrocoumarin, 5-ethyl-6-methyl-3,4-dihydrocoumarin, 5-ethyl-7-methyl-3,4-dihydrocoumarin, 5-ethyl-8-methyl -3,4-dihydrocoumarin, 6-ethyl-7-methyl-3,4-dihydrocoumarin, 6-ethyl-8-methyl-3,4-dihydrocoumarin, 7-ethyl-8-methyl-3,4- The Dorokumarin the like, but not limited to.

【0009】本発明に用いられる金属触媒は、パラジウ
ム、白金、ロジウム、ルテニウム等の金属を、周期律表
のIIA族、III A族、IVA族或いはVIA族の単体又は化
合物、例えば炭素、アルミナ、シリカゲル、硫酸バリウ
ム等の担体に担持した固体金属触媒等であり、公知の方
法、例えば含浸担持法(「触媒実験マニュアル」触媒学
会編集、槙書店発行)によって担体に金属を含浸させ、
これを高温で水素還元する方法で得られるが、市販のも
のをそのまま使用しても良い。
The metal catalyst used in the present invention comprises a metal such as palladium, platinum, rhodium or ruthenium, which is a group IIA, IIIA, IVA or VIA element or compound of the periodic table, such as carbon, alumina, A solid metal catalyst or the like supported on a carrier such as silica gel or barium sulfate, which is impregnated with a metal by a known method, for example, an impregnation supporting method ("catalyst experiment manual" edited by the Catalysis Society, published by Maki Shoten),
Although it can be obtained by a method of reducing it with hydrogen at a high temperature, a commercially available product may be used as it is.

【0010】金属触媒としては、パラジウムを担持した
固体金属触媒が好ましく、特にパラジウムを活性炭に担
持した固体金属触媒が好ましい。また、パラジウム等の
金属と共にクロム化合物等を、パラジウム等の金属に対
して約1〜20重量%担持してもよい。
As the metal catalyst, a solid metal catalyst supporting palladium is preferable, and a solid metal catalyst supporting palladium on activated carbon is particularly preferable. Further, a chromium compound or the like may be supported together with a metal such as palladium on the metal such as palladium in an amount of about 1 to 20% by weight.

【0011】パラジウム等の金属の担体への担持率は約
0.5〜10重量%が好ましい。触媒の使用量は担持率
にもよるが、少ないと反応活性が著しく低く、また逆に
多いと反応活性が高すぎて副生物が多く生成する上に、
触媒の費用もかさむので、3,4−ジヒドロクマリン類
に対して金属として約0.001〜1重量%、好ましく
は約0.01〜0.1重量%である。
The supporting rate of metal such as palladium on the carrier is preferably about 0.5 to 10% by weight. Although the amount of the catalyst used depends on the loading rate, if the amount is small, the reaction activity is extremely low.
Since the cost of the catalyst is high, the metal content is about 0.001 to 1% by weight, preferably about 0.01 to 0.1% by weight, based on 3,4-dihydrocoumarins.

【0012】また、本反応において触媒は繰り返し使用
することもできる。更に脱水素反応には、パラジウム等
の固体金属触媒と共に助触媒として金属状のクロム、金
属状のタングステン、硫酸バリウム、三珪酸マグネシウ
ム、ジルコニア等を添加してもよい。助触媒は、3,4
−ジヒドロクマリン類に対して、通常、約0.01〜3
重量%が用いられる。
The catalyst can be used repeatedly in this reaction. Further, in the dehydrogenation reaction, metallic chromium, metallic tungsten, barium sulfate, magnesium trisilicate, zirconia or the like may be added as a co-catalyst together with a solid metal catalyst such as palladium. Co-catalyst is 3,4
-Generally about 0.01 to 3 for dihydrocoumarins
Weight percent is used.

【0013】本発明において、3,4−ジヒドロクマリ
ン類は、3−(2−オキソシクロヘキシル)プロピオン
酸エステル類をパラジウム触媒等の存在下に環化脱水素
反応を行い生成する3,4−ジヒドロクマリン類とクマ
リン類を蒸留、晶析等により分離したものが用いられる
が、他のものを使用しても良く、特に限定されない。
In the present invention, 3,4-dihydrocoumarins are 3,4-dihydrocoumarins produced by subjecting 3- (2-oxocyclohexyl) propionic acid esters to cyclization dehydrogenation in the presence of a palladium catalyst or the like. Coumarins and coumarins separated from each other by distillation, crystallization and the like are used, but other ones may be used without any particular limitation.

【0014】本発明において、溶媒は必要ではないが、
溶媒を用いて行うこともできる。溶媒としては、フェニ
ルエーテル、ベンジルエーテル、メチル−α−ナフチル
エーテル、エチルナフタリン、ジメチルビフェニル、ド
デカン、テトラデカン、テトラリン、アセトフェノン、
フェニルプロピルケトン、安息香酸メチル、グルタミン
酸ジメチル等が挙げられる。
In the present invention, a solvent is not necessary,
It can also be carried out using a solvent. Examples of the solvent include phenyl ether, benzyl ether, methyl-α-naphthyl ether, ethylnaphthalene, dimethylbiphenyl, dodecane, tetradecane, tetralin, acetophenone,
Examples thereof include phenyl propyl ketone, methyl benzoate, dimethyl glutamate and the like.

【0015】本発明において、反応圧力は約200To
rr〜1.5atm、好ましくは約300〜700To
rrで行われる。反応温度は約200〜300℃、好ま
しくは約230〜290℃で行われる。
In the present invention, the reaction pressure is about 200 To.
rr-1.5 atm, preferably about 300-700 To
rr. The reaction temperature is about 200 to 300 ° C, preferably about 230 to 290 ° C.

【0016】本発明において、反応液の組成、圧力等に
より、反応温度は決まる。脱水素反応は、反応液を蒸発
させるための単位反応液量あたりの加熱量が所定の値に
なるように、又は単位反応液量あたりの反応液の蒸発量
が所定の値になるように反応液を加熱して数時間から数
十時間加熱して行われる。
In the present invention, the reaction temperature is determined by the composition of the reaction solution, the pressure and the like. The dehydrogenation reaction is performed so that the heating amount per unit reaction liquid amount for evaporating the reaction liquid becomes a predetermined value or the reaction liquid evaporation amount per unit reaction liquid amount becomes a predetermined value. It is carried out by heating the liquid for several hours to several tens of hours.

【0017】本発明において、反応液を蒸発させるため
の単位反応液量あたりの加熱量は約80〜1000kc
al/kg・hr、好ましくは約80〜400kcal
/kg・hrで行われる。この加熱量が約80kcal
/kg・hrよりも小さいとと反応速度が小さくなる。
またこの加熱量が約1000kcal/kg・hrより
も大きくても反応上は問題ないが、加熱の為の装置及び
エネルギーのコストが大きくなる。
In the present invention, the heating amount per unit reaction liquid amount for evaporating the reaction liquid is about 80 to 1000 kc.
al / kg · hr, preferably about 80 to 400 kcal
/ Kg · hr. This heating amount is about 80 kcal
If it is smaller than / kg · hr, the reaction rate becomes small.
Further, even if the heating amount is larger than about 1000 kcal / kg · hr, there is no problem in the reaction, but the cost of the apparatus and energy for heating increases.

【0018】反応液を蒸発させるための加熱量Q4 [k
cal/hr]は反応器に加えた熱量Q1 [kcal/
hr]に反応器からの放熱量Q2 [kcal/hr]
(反応器と凝縮器間の蒸気及び凝縮液の熱量は含まな
い)を差し引き、反応により発生した熱量Q3 [kca
l/hr]を加えて求められる。 Q4 =Q1 −Q2 +Q3 (I) 反応液を蒸発させるための単位反応液量あたりの加熱量
Q[kcal/kg・hr]は反応液を蒸発させるため
の加熱量Q4 [kcal/hr]を反応液量W[kg]
で割って求められる。 Q=Q4 /W (II)
Heating amount Q 4 [k] for evaporating the reaction liquid
cal / hr] is the amount of heat Q 1 [kcal /
heat] Q 2 [kcal / hr]
(The amount of heat of vapor and condensate between the reactor and the condenser is not included), and the amount of heat generated by the reaction Q 3 [kca
1 / hr] is added. Q 4 = Q 1 −Q 2 + Q 3 (I) The heating amount Q [kcal / kg · hr] per unit amount of reaction liquid for evaporating the reaction liquid is the heating amount Q 4 [kcal for evaporating the reaction liquid. / Hr] is the reaction liquid volume W [kg]
It is calculated by dividing by. Q = Q 4 / W (II)

【0019】反応速度定数k[m3 /mol・hr]と
反応液を蒸発させるための単位反応液量あたりの加熱量
Q[kcal/kg・hr]との間には式(III) の関係
がある。Kは触媒量等によって決まる定数である。 logk=0.5×logQ+K (III) 従って目標とする反応速度にするためには式 (III)から
Qを求め、式(II)及び式(I)から反応器に加える熱
量Q1 [kcal/hr]を求めて行われる。
The relationship of the equation (III) is given between the reaction rate constant k [m 3 / mol · hr] and the heating amount Q [kcal / kg · hr] per unit reaction liquid volume for evaporating the reaction solution. There is. K is a constant determined by the amount of catalyst and the like. logk = 0.5 × logQ + K (III) Therefore, in order to obtain the target reaction rate, Q is obtained from the formula (III), and the heat quantity Q 1 [kcal / kcal / added to the reactor is obtained from the formulas (II) and (I). hr].

【0020】蒸発する反応液は蒸気圧分のクマリン類が
同伴するが、クマリン類と3,4−ジヒドロクマリン類
の蒸発潜熱は近いので、ほぼ3,4−ジヒドロクマリン
類と見なすことができる。したがってこの加熱量を3,
4−ジヒドロクマリン類の蒸発潜熱で割ってほぼ蒸発量
とすることができる。
Although the reaction liquid to be evaporated is accompanied by vapor pressure of coumarins, since the latent heats of vaporization of coumarins and 3,4-dihydrocoumarins are close to each other, they can be regarded as almost 3,4-dihydrocoumarins. Therefore, this heating amount is 3,
It can be divided by the latent heat of vaporization of the 4-dihydrocoumarins to obtain almost the amount of vaporization.

【0021】また反応器における放熱量が反応液を蒸発
させるための加熱量に比べて少ない場合には、蒸発量は
凝縮器で全量凝縮した凝縮量とほぼ見なすことができ
る。したがってこの凝縮量を目安に加熱量を調節するこ
とができる。
When the amount of heat released in the reactor is smaller than the amount of heat required to evaporate the reaction liquid, the amount of evaporation can be almost regarded as the amount of condensation that is completely condensed in the condenser. Therefore, the amount of heating can be adjusted with this amount of condensation as a guide.

【0022】本発明で用いられる反応形式は、バッチ式
でも連続式でもよい。反応器は撹拌槽型、外部循環式槽
型、管型、循環管型等が用いられるが、特に制限はな
い。加熱の方法は、外部ジャケット式、内部熱交換コイ
ル式、原料蒸気吹き込み式、外部熱交換器式、直火式、
外部電熱式、内部電熱式、誘導電磁式等及びそれらを組
み合わせた方法が用いられる。
The reaction system used in the present invention may be a batch system or a continuous system. The reactor may be a stirred tank type, an external circulation type tank type, a tube type, a circulation tube type, or the like, but is not particularly limited. The heating method is external jacket type, internal heat exchange coil type, raw material steam blowing type, external heat exchanger type, open flame type,
An external electric heating type, an internal electric heating type, an induction electromagnetic type, and a method combining them are used.

【0023】蒸発した蒸気は、凝縮器等により全量又は
部分的に凝縮させた後、凝縮液の全量又は部分的に反応
器に戻すのが好ましい。
It is preferable that the vaporized vapor is totally or partially condensed by a condenser or the like and then returned to the reactor in whole or partially.

【0024】[0024]

【発明の効果】本発明の方法は従来の方法に比べて著し
く反応速度が向上し、その工業的価値は大きい。
INDUSTRIAL APPLICABILITY The method of the present invention has a significantly improved reaction rate as compared with the conventional methods, and its industrial value is great.

【0025】[0025]

【実施例】以下、本発明を具体的に説明するために実施
例を挙げるが、本発明はこれら実施例に限定されるもの
ではない。なお、実施例中の反応液を蒸発させるための
単位反応液量あたりの加熱量及び反応速度定数は、次の
方法により算出した値である。
EXAMPLES Examples will be given below to specifically explain the present invention, but the present invention is not limited to these examples. In addition, the heating amount and the reaction rate constant per unit reaction liquid amount for evaporating the reaction liquid in the examples are values calculated by the following method.

【0026】[反応液を蒸発させるための単位反応液量
あたりの加熱量] Q1 =(熱媒流量)×(熱媒の比重)×(熱媒の比熱)
×(入口と出口の温度差) Q3 =(反応速度)×(反応液量)×(反応熱) Q4 =Q1 −Q2 +Q3 Q=Q4 /W ただし、 Q1 :加熱量[kcal/hr] Q2 :放熱量[kcal/hr] Q3 :発生熱量[kcal/hr] Q4 :反応液を蒸発させるための加熱量[kcal/h
r] W :反応液量[kg] Q :反応液を蒸発させるための単位反応液量あたりの
加熱量[kcal/kg・hr]
[Amount of heating per unit amount of reaction liquid for evaporating reaction liquid] Q 1 = (heat medium flow rate) × (specific gravity of heat medium) × (specific heat of heat medium)
× (temperature difference between inlet and outlet) Q 3 = (reaction rate) × (reaction liquid amount) × (reaction heat) Q 4 = Q 1 − Q 2 + Q 3 Q = Q 4 / W where Q 1 : heating amount [Kcal / hr] Q 2 : Heat dissipation amount [kcal / hr] Q 3 : Heat generation amount [kcal / hr] Q 4 : Heating amount for evaporating reaction liquid [kcal / h]
r] W: Reaction liquid amount [kg] Q: Heating amount per unit reaction liquid amount for evaporating the reaction liquid [kcal / kg · hr]

【0027】[反応速度定数] r=kC2 により近似したときの反応速度定数k ただし、 r:反応速度[mol/m3 ・hr] (3,4−ジヒドロクマリン消失速度) k:反応速度定数[m3 /mol・hr] C:3,4−ジヒドロクマリン濃度[mol/m3 [Reaction rate constant] r = kC 2 When approximated by reaction rate constant k, where: r: reaction rate [mol / m 3 · hr] (rate of disappearance of 3,4-dihydrocoumarin) k: reaction rate constant [M 3 / mol · hr] C: 3,4-dihydrocoumarin concentration [mol / m 3 ]

【0028】実施例1 アンカー型撹拌翼、外部ジャケット、凝縮器を備えたス
テンレス製の100リットル撹拌槽に、3,4−ジヒド
ロクマリン45kgと活性炭にパラジウムを5重量%担
持した50%含水触媒0.45kgを仕込んだ。外部ジ
ャケットに比重0.861kg/リットル、比熱0.5
64kcal/kgの熱媒を3.6m3/hrで流しな
がら、窒素吹き込み量30リットル/hr、撹拌数13
0rpm、圧力600Torrで加熱した。反応混合物
が259℃になったときを0時間として、それから熱媒
の温度を調節して、反応混合物と熱媒との温度差が39
℃になるようにした。
Example 1 A stainless steel 100-liter stirring tank equipped with an anchor-type stirring blade, an outer jacket, and a condenser was equipped with 45 kg of 3,4-dihydrocoumarin and a 50% water-containing catalyst in which activated carbon was loaded with 5% by weight of palladium. 0.45 kg was charged. Specific gravity 0.861kg / l, specific heat 0.5 in the outer jacket
While flowing 64 kcal / kg of heat medium at 3.6 m 3 / hr, nitrogen blowing rate was 30 liters / hr, stirring number was 13
It was heated at 0 rpm and a pressure of 600 Torr. When the temperature of the reaction mixture reached 259 ° C., it was set as 0 hour, and then the temperature of the heating medium was adjusted to make the temperature difference between the reaction mixture and the heating medium 39 °
It was set to ℃.

【0029】0時間、5時間、10時間で反応混合物を
サンプリングしてガスクロマトグラフィーにより分析し
た。その結果、3,4−ジヒドロクマリンとクマリンの
濃度はそれぞれ、0時間が84.5重量%、12.8重
量%、5時間が68.2重量%、28.8重量%、10
時間が61.5重量%、34.5重量%であり、反応速
度定数は、6.21×10-63 /mol・hrであっ
た。
The reaction mixture was sampled at 0 hours, 5 hours and 10 hours and analyzed by gas chromatography. As a result, the concentrations of 3,4-dihydrocoumarin and coumarin were 84.5% by weight, 12.8% by weight for 5 hours, 68.2% by weight, 28.8% by weight and 10% for 5 hours, respectively.
The time was 61.5% by weight, 34.5% by weight, and the reaction rate constant was 6.21 × 10 −6 m 3 / mol · hr.

【0030】5時間後の、外部ジャケットの入口での熱
媒の温度は305.0℃、出口での熱媒の温度は29
9.6℃であり、熱媒の温度差は、5.4℃であった。
また、発生熱量は−199kcal/hr、反応を通し
ての反応器からの放熱量は1500kcal/hrであ
った。したがって、反応液を蒸発させるための単位反応
液量あたりの加熱量は172kcal/kg・hrであ
る。また3,4−ジヒドロクマリンの蒸発潜熱は81.
6kcal/kgであり、単位反応液量あたりの反応液
の蒸発量はほぼ2.1kg/kg・hrである。
After 5 hours, the temperature of the heat medium at the inlet of the outer jacket was 305.0 ° C., and the temperature of the heat medium at the outlet was 29.
It was 9.6 ° C, and the temperature difference of the heating medium was 5.4 ° C.
The generated heat amount was -199 kcal / hr, and the heat release amount from the reactor through the reaction was 1500 kcal / hr. Therefore, the heating amount per unit reaction liquid amount for evaporating the reaction liquid is 172 kcal / kg · hr. The latent heat of vaporization of 3,4-dihydrocoumarin is 81.
It is 6 kcal / kg, and the evaporation amount of the reaction liquid per unit reaction liquid amount is about 2.1 kg / kg · hr.

【0031】実施例2〜5及び比較例1 表1に示す条件以外は実施例1と同様に操作した。その
結果を表1に示す。なお、表中のDHCMは3,4−ジ
ヒドロクマリンを、Pd/Cは活性炭にパラジウムを5
重量%担持した50%含水触媒を、蒸発加熱量は反応液
を蒸発させるための単位反応液量あたりの加熱量を、蒸
発量は単位反応液量あたりの反応液の蒸発量を表す。
Examples 2 to 5 and Comparative Example 1 The same operation as in Example 1 was carried out except for the conditions shown in Table 1. The results are shown in Table 1. In addition, DHCM in the table is 3,4-dihydrocoumarin, and Pd / C is palladium on activated carbon.
With respect to the 50% water-containing catalyst supported by weight%, the evaporation heating amount represents the heating amount per unit reaction liquid amount for evaporating the reaction liquid, and the evaporation amount represents the evaporation amount of the reaction liquid per unit reaction liquid amount.

【0032】[0032]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 園部 純也 大阪府大阪市此花区春日出中3丁目1番98 号 住友化学工業株式会社内 (72)発明者 上田 博 大阪府大阪市此花区春日出中3丁目1番98 号 住友化学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Junya Sonobe 3-1,98 Kasugade, Konohana-ku, Osaka City, Osaka Prefecture Sumitomo Chemical Co., Ltd. (72) Inventor Hiroshi Ueda Kasuga, Konohana-ku, Osaka City, Osaka Prefecture Naka 3-chome 1-98 Sumitomo Chemical Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 一般式 化1、 【化1】 (式中、R1 〜R4 はそれぞれ水素原子、メチル基また
はエチル基を表し、R1〜R4 のうち少なくとも2つの
基は水素原子である)で示される3,4−ジヒドロクマ
リン類を金属触媒の存在下、脱水素反応によって一般式
化2、 【化2】 (式中R1 〜R4 は前記した基と同一である)で示され
るクマリン類を製造するに際し、反応液を蒸発させるた
めの単位反応液量あたりの加熱量を80〜1000kc
al/kg・hrで行うことを特徴とするクマリン類の
製造方法。
1. The general formula: (In the formula, R 1 to R 4 each represent a hydrogen atom, a methyl group or an ethyl group, and at least two groups of R 1 to R 4 are hydrogen atoms). By the dehydrogenation reaction in the presence of a metal catalyst, a compound represented by the general formula: When producing coumarins represented by the formula (R 1 to R 4 are the same as the groups described above), the heating amount per unit reaction liquid amount for evaporating the reaction liquid is 80 to 1000 kc.
A method for producing coumarins, characterized in that the method is performed at al / kg · hr.
【請求項2】 反応液を蒸発させるための単位反応液量
あたりの加熱量が80〜400kcal/kg・hrで
ある請求項1記載のクマリン類の製造方法。
2. The method for producing coumarins according to claim 1, wherein the heating amount per unit reaction liquid amount for evaporating the reaction liquid is 80 to 400 kcal / kg · hr.
【請求項3】 3,4−ジヒドロクマリン類が3,4−
ジヒドロクマリンであり、単位反応液量あたりの反応液
の蒸発量が1〜12kg/kg・hrである請求項1記
載のクマリン類の製造方法。
3. The 3,4-dihydrocoumarins are 3,4-
The process for producing coumarins according to claim 1, wherein the coumarin is dihydrocoumarin, and the evaporation amount of the reaction liquid per unit reaction liquid amount is 1 to 12 kg / kg · hr.
【請求項4】 3,4−ジヒドロクマリン類が3,4−
ジヒドロクマリンであり、単位反応液量あたりの反応液
の蒸発量が1〜5kg/kg・hrである請求項1記載
のクマリン類の製造方法。
4. The 3,4-dihydrocoumarins are 3,4-
The method for producing coumarins according to claim 1, wherein the coumarin is dihydrocoumarin, and the evaporation amount of the reaction liquid per unit amount of the reaction liquid is 1 to 5 kg / kg · hr.
【請求項5】 金属触媒が活性炭にパラジウムを担持し
た固体金属触媒である請求項1記載のクマリン類の製造
方法。
5. The method for producing coumarins according to claim 1, wherein the metal catalyst is a solid metal catalyst in which palladium is supported on activated carbon.
JP5325331A 1993-12-22 1993-12-22 Method for producing coumarins Pending JPH07179451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325331A JPH07179451A (en) 1993-12-22 1993-12-22 Method for producing coumarins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325331A JPH07179451A (en) 1993-12-22 1993-12-22 Method for producing coumarins

Publications (1)

Publication Number Publication Date
JPH07179451A true JPH07179451A (en) 1995-07-18

Family

ID=18175619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325331A Pending JPH07179451A (en) 1993-12-22 1993-12-22 Method for producing coumarins

Country Status (1)

Country Link
JP (1) JPH07179451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521125A (en) * 2016-06-27 2019-07-25 フイルメニツヒ ソシエテ アノニムFirmenich Sa Dehydrogenation reaction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019521125A (en) * 2016-06-27 2019-07-25 フイルメニツヒ ソシエテ アノニムFirmenich Sa Dehydrogenation reaction

Similar Documents

Publication Publication Date Title
US5808157A (en) Process for producing aromatic amines
JP5328678B2 (en) Process for producing hydroxypivalin aldehyde and neopentyl glycol
TWI267502B (en) Staged countercurrent oxidation
JPH07188079A (en) Production of cyclohexane dimethanol
JPH0859569A (en) Preparation of aromatic amine
WO2002034697A2 (en) Processes for the preparation of 2-methylfuran and 2-methyltetrahydrofuran
JPH01503459A (en) Catalytic hydrogenation of carboxylic acids and their anhydrides to alcohols and/or esters
US4260817A (en) Process for the purification of terephthalic acid
TWI247744B (en) Preparation of maleic anhydride
CZ278274B6 (en) Process for preparing acrylic acid
JP2004507560A (en) Purification method of polyester precursor
RU2121996C1 (en) Method of preparing cyclohexylhydroperoxide
JPH07179451A (en) Method for producing coumarins
JPH04225836A (en) Worganic body carried catalyst for producing ethylidenediacetate, its manufacture and manufacture of ethylidenediacetate using the same
JPH07196558A (en) Production of cyclohexane dimethanol
JP3079695B2 (en) Coumarin production method
US3998851A (en) Preparation of coumarins
JP2000327613A (en) High-purity dihydric phenol and its production method
Snyder Some Reactions of Ketene
JP2737308B2 (en) Method for producing partially chlorinated methane
EP0288144B1 (en) 3-(6'-methoxy-2'-naphthylmethyl)-2,4 pentane dione, process for its preparation and intermediates
JPH03236336A (en) Preparation of cymenol by direct dehydro- genation
JP5101486B2 (en) Improved process for producing caprolactam from impure 6-aminocaprylonitrile
US4308211A (en) Process for the preparation of anthraquinone
EP1309580A4 (en) CONTINUOUS PROCESS FOR PRODUCING OPTICALLY PURE (S) -BETA-HYDROXY-GAMMA-BUTYROLACTONE