[go: up one dir, main page]

JPH07178319A - Method for producing aqueous acid solution and aqueous alkali solution - Google Patents

Method for producing aqueous acid solution and aqueous alkali solution

Info

Publication number
JPH07178319A
JPH07178319A JP32815693A JP32815693A JPH07178319A JP H07178319 A JPH07178319 A JP H07178319A JP 32815693 A JP32815693 A JP 32815693A JP 32815693 A JP32815693 A JP 32815693A JP H07178319 A JPH07178319 A JP H07178319A
Authority
JP
Japan
Prior art keywords
aqueous solution
acid
chamber
alkaline
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32815693A
Other languages
Japanese (ja)
Other versions
JP3324853B2 (en
Inventor
Taro Kobayashi
太郎 小林
Fumito Kishimoto
文都 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP32815693A priority Critical patent/JP3324853B2/en
Publication of JPH07178319A publication Critical patent/JPH07178319A/en
Application granted granted Critical
Publication of JP3324853B2 publication Critical patent/JP3324853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

(57)【要約】 【目的】酸水溶液及びアルカリ水溶液を循環供給する方
式によりバイポーラ膜電気透析を実施して、塩水溶液か
ら酸水溶液及びアルカリ水溶液を製造するに際し、塩室
内の塩水溶液が、過剰に酸性やアルカリ性を帯びてくる
ことが防止され、効率的に該電気透析が遂行できる方法
を開発すること。 【構成】陽極と陰極の間に陽イオン交換膜、バイポーラ
膜及び陰イオン交換膜を順に配列させて、塩室、酸室及
びアルカリ室を形成させ、塩室に塩水溶液を供給して電
気透析を行い酸室及びアルカリ室から酸水溶液及びアル
カリ水溶液をそれぞれ排出させ、フィードアンドブリー
ド方式等のように排出された酸水溶液及びアルカリ水溶
液を循環して再び酸室及びアルカリ室にそれぞれ供給
し、循環中に酸水溶液及びアルカリ水溶液を一部取得
し、且つ濃度調整を行う方法において、上記濃度調整さ
れる酸水溶液及びアルカリ水溶液の各濃度を、電気透析
中における酸及びアルカリの電流効率が概ね等しくなる
濃度とすることを特徴とする酸水溶液及びアルカリ水溶
液の製造方法。
(57) [Summary] [Objective] When an acid aqueous solution and an alkaline aqueous solution are produced from a salt aqueous solution by performing bipolar membrane electrodialysis by a method of circulatingly supplying the acid aqueous solution and the alkaline aqueous solution, the salt aqueous solution in the salt chamber is excessive. To develop a method capable of efficiently carrying out the electrodialysis, which is prevented from being acidic or alkaline. [Structure] A cation exchange membrane, a bipolar membrane and an anion exchange membrane are sequentially arranged between an anode and a cathode to form a salt chamber, an acid chamber and an alkali chamber, and an aqueous salt solution is supplied to the salt chamber for electrodialysis. Then, the acid aqueous solution and the alkaline aqueous solution are discharged from the acid chamber and the alkaline chamber, respectively, and the discharged acidic aqueous solution and the alkaline aqueous solution are circulated as in the feed-and-bleed method, and are supplied again to the acid chamber and the alkaline chamber, respectively, and circulated. In the method of partially acquiring an acid aqueous solution and an alkaline aqueous solution and adjusting the concentration, the current efficiencies of the acid and the alkali during electrodialysis are approximately the same for each concentration of the acid aqueous solution and the alkaline aqueous solution whose concentration is adjusted as described above. A method for producing an acid aqueous solution and an alkaline aqueous solution, which is characterized by having a concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、塩水溶液のバイポーラ
膜を使用した電気透析により酸水溶液及びアルカリ水溶
液を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing an acid aqueous solution and an alkaline aqueous solution by electrodialysis using a bipolar membrane of a salt aqueous solution.

【0002】[0002]

【従来の技術】バイポーラ膜を使用した塩水溶液の電気
透析(以下、バイポーラ膜電気透析とも略する)によ
り、酸水溶液及びアルカリ水溶液を生成させることは公
知である。例えば、陽極と陰極の間に陽イオン交換膜、
バイポーラ膜及び陰イオン交換膜を順に複数配列させ
て、塩室、酸室及びアルカリ室を形成させ、塩室に塩水
溶液を供給して電気透析を行い酸室及びアルカリ室から
酸水溶液及びアルカリ水溶液をそれぞれ排出させる三室
式セル方式は、特公昭32−3962号公報、特公昭3
3−6963号公報、特開昭63−65912号公報な
どで知られている。
2. Description of the Related Art It is known to produce an acid aqueous solution and an alkaline aqueous solution by electrodialysis of a salt aqueous solution using a bipolar membrane (hereinafter also referred to as bipolar membrane electrodialysis). For example, a cation exchange membrane between the anode and cathode,
A plurality of bipolar membranes and anion exchange membranes are arranged in order to form a salt chamber, an acid chamber and an alkaline chamber, and an aqueous salt solution is supplied to the salt chamber for electrodialysis to carry out an acid aqueous solution and an alkaline aqueous solution from the acid chamber and the alkaline chamber. The three-chamber cell system for discharging each of the three types is disclosed in Japanese Examined Patent Publication No. 32-3962 and Japanese Examined Patent Publication No.
It is known from JP-A-3-6963, JP-A-63-65912 and the like.

【0003】こうした三室式セル方式による電気透析の
運転方法の一つとして、それぞれタンク内に張られた酸
水溶液、アルカリ水溶液を電気透析槽に循環して供給
し、生じてくる酸、アルカリに相当する量の水を上記各
タンクに補充し、該タンクよりこの補充した量に相当す
る酸水溶液、アルカリ水溶液をオーバーフローさせて、
該酸水溶液、アルカリ水溶液を逐次一定濃度で取得す
る、いわゆるフィードアンドブリード方式が知られてい
る。このフィードアンドブリード方式では、取得される
酸水溶液及びアルカリ水溶液の酸、アルカリ濃度は、各
々のタンクに補充する上記水の量を調製することによ
り、任意に設定することができる。しかして、該取得さ
れる酸水溶液及びアルカリ水溶液の酸、アルカリ濃度
は、通常、互いに同一濃度となるように設定されている
のが一般的であり、この場合、電気透析槽に循環供給さ
れる酸水溶液、アルカリ水溶液の各酸、アルカリ濃度
も、当然同じ濃度となっている。
As one of the operating methods of the electrodialysis using the three-chamber cell system, an acid aqueous solution and an alkaline aqueous solution, which are respectively stretched in the tank, are circulated and supplied to the electrodialysis tank, which corresponds to the generated acid and alkali. To the above tanks, and overflow the acid aqueous solution and alkaline aqueous solution corresponding to the supplemented amounts from the tanks,
A so-called feed-and-bleed method is known in which the acid aqueous solution and the alkaline aqueous solution are sequentially obtained at a constant concentration. In this feed-and-bleed method, the acid and alkali concentrations of the obtained aqueous acid solution and aqueous alkali solution can be arbitrarily set by adjusting the amount of water to be replenished in each tank. Then, the acid and alkali concentrations of the obtained acid aqueous solution and alkali aqueous solution are generally set to be the same as each other, and in this case, they are circulated and supplied to the electrodialysis tank. The acid and alkali concentrations of the acid aqueous solution and the alkali aqueous solution are naturally the same.

【0004】[0004]

【発明が解決しようとする課題】ところが、こうしたフ
ィードアンドブリード方式等の、電気透析槽に酸水溶液
及びアルカリ水溶液を循環して供給し、かかる循環中に
酸水溶液及びアルカリ水溶液を一部取得し、且つ濃度調
整を行う方式により、上記バイポーラ膜電気透析を実施
した場合、電気透析槽の塩室内の塩水溶液が、該塩水溶
液に溶解する塩の種類及び濃度から予測される酸性度や
アルカリ性度よりもずれてくることが多々生じる。例え
ば、硫酸ナトリウムの水溶液は中性であり、該硫酸ナト
リウム水溶液の上記バイポーラ膜電気透析では、その塩
室内の該水溶液は脱塩の程度にかかわらず本来なら一貫
して中性が維持されるはずであるが、実際には、上記電
気透析の進行に伴って酸性或いはアルカリ性を呈してく
る。
However, in such a feed-and-bleed system, an acid aqueous solution and an alkaline aqueous solution are circulated and supplied to an electrodialysis tank, and the acid aqueous solution and the alkaline aqueous solution are partially acquired during the circulation, And when the bipolar membrane electrodialysis is carried out by a method of adjusting the concentration, the salt aqueous solution in the salt chamber of the electrodialysis tank is more acidic than the acidity or alkalinity predicted from the type and concentration of the salt dissolved in the salt aqueous solution. It often happens that it slips. For example, an aqueous solution of sodium sulfate is neutral, and in the above bipolar membrane electrodialysis of the aqueous solution of sodium sulfate, the aqueous solution in the salt chamber should be consistently kept neutral regardless of the degree of desalting. However, in reality, it becomes acidic or alkaline with the progress of the electrodialysis.

【0005】そうして、このように塩室内の塩水溶液が
過剰に酸性、アルカリ性を呈すようになった場合、該塩
室内から、隣接するアルカリ室にH+イオンが陽イオン
交換膜を透過して浸入したり、同じく隣接する酸室にO
-イオンが陰イオン交換膜を透過して浸入したりする
ようになり、電気透析により折角生じた酸やアルカリが
中和される問題が生じる。また、塩室から排出される脱
塩液が、上記の如く酸性やアルカリ性を呈するようにな
ると、該脱塩液は、さらに中和処理を施す必要が生じ、
操作が煩雑になる。
When the aqueous salt solution in the salt chamber becomes excessively acidic or alkaline in this way, H + ions permeate the cation exchange membrane from the salt chamber to the adjacent alkaline chamber. In the acid chamber, and O
H ions come to permeate through the anion exchange membrane and enter, which causes a problem of neutralizing the acid or alkali produced by electrodialysis. Further, when the desalted solution discharged from the salt chamber becomes acidic or alkaline as described above, it becomes necessary to further neutralize the desalted solution,
The operation becomes complicated.

【0006】以上の背景から、フィードアンドブリード
方式によりバイポーラ膜電気透析を実施して、塩水溶液
から酸水溶液及びアルカリ水溶液を製造するに際し、塩
室内の塩水溶液が、過剰に酸性やアルカリ性を帯びてく
ることが防止され、効率的に該電気透析が遂行できる方
法を開発することが望まれていた。
From the above background, when the bipolar membrane electrodialysis is carried out by the feed-and-bleed method to produce the acid aqueous solution and the alkaline aqueous solution from the salt aqueous solution, the salt aqueous solution in the salt chamber becomes excessively acidic or alkaline. It has been desired to develop a method capable of efficiently carrying out the electrodialysis, which is prevented.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記の技
術課題を解決するべく鋭意研究してきた。その結果、電
気透析時、循環供給される酸水溶液及びアルカリ水溶液
の各濃度を、電気透析中における酸及びアルカリの電流
効率が概ね等しくなる濃度とすることにより、上記課題
が解決できることを見出し、本発明を提供するに至っ
た。
[Means for Solving the Problems] The present inventors have conducted extensive studies to solve the above technical problems. As a result, during electrodialysis, it was found that the above problems can be solved by setting the respective concentrations of the acid aqueous solution and the alkaline aqueous solution that are circulated and supplied so that the current efficiencies of the acid and the alkali during electrodialysis are approximately equal. The invention has been provided.

【0008】即ち、本発明は、陽極と陰極の間に陽イオ
ン交換膜、バイポーラ膜及び陰イオン交換膜を順に配列
させて、塩室、酸室及びアルカリ室を形成させ、塩室に
塩水溶液を供給して電気透析を行い酸室及びアルカリ室
から酸水溶液及びアルカリ水溶液をそれぞれ排出させ、
排出された酸水溶液及びアルカリ水溶液を循環して再び
酸室及びアルカリ室にそれぞれ供給し、循環中に酸水溶
液及びアルカリ水溶液を一部取得し、且つ濃度調整を行
う方法において、上記濃度調整される酸水溶液及びアル
カリ水溶液の各濃度を、電気透析中における酸及びアル
カリの電流効率が概ね等しくなる濃度とすることを特徴
とする酸水溶液及びアルカリ水溶液の製造方法である。
That is, according to the present invention, a cation exchange membrane, a bipolar membrane and an anion exchange membrane are sequentially arranged between an anode and a cathode to form a salt chamber, an acid chamber and an alkaline chamber, and a salt aqueous solution is placed in the salt chamber. Is supplied to perform electrodialysis to discharge the acid aqueous solution and the alkaline aqueous solution from the acid chamber and the alkaline chamber, respectively,
In the method in which the discharged aqueous acid solution and alkaline solution are circulated and supplied again to the acidic chamber and the alkaline chamber, respectively, the acidic aqueous solution and the alkaline aqueous solution are partially acquired during the circulation, and the concentration is adjusted, the concentration is adjusted A method for producing an acid aqueous solution and an alkali aqueous solution, wherein each concentration of the acid aqueous solution and the alkali aqueous solution is set to a concentration at which current efficiencies of the acid and the alkali during electrodialysis are substantially equal to each other.

【0009】本発明において使用する電気透析槽は、図
1に示すように陽極11と陰極12との間にバイポーラ
膜(B)、陰イオン交換膜(A)及び陽イオン交換膜
(C)の3種類を順に配列し、アルカリ室13、酸室1
4及び塩室15の三室を形成させた構造のものであれ
ば、公知のものが何等制限されることなく採用される。
ここで、陽イオン交換膜(C)とバイポーラ膜(B)の
間の室をアルカリ室13、バイポーラ膜(B)と陰イオ
ン交換膜(A)の間の室を酸室14、陰イオン交換膜
(A)と陽イオン交換膜(C)の間の室を塩室15とい
う。
The electrodialysis cell used in the present invention comprises a bipolar membrane (B), an anion exchange membrane (A) and a cation exchange membrane (C) between an anode 11 and a cathode 12, as shown in FIG. 3 types are arranged in order, and the alkaline chamber 13 and the acid chamber 1
As long as it has a structure in which three chambers of 4 and the salt chamber 15 are formed, known ones can be adopted without any limitation.
Here, the chamber between the cation exchange membrane (C) and the bipolar membrane (B) is the alkali chamber 13, the chamber between the bipolar membrane (B) and the anion exchange membrane (A) is the acid chamber 14, and the anion exchange chamber. The chamber between the membrane (A) and the cation exchange membrane (C) is called the salt chamber 15.

【0010】電気透析槽の代表的な構成は、陽極−(C
−B−A−)n−C−陰極で示される。ここで、陽イオ
ン交換膜、バイポーラ膜及び陰イオン交換膜などで構成
される最小の繰返単位をセルと称し、また、電極を除い
た膜、ガスケット、スペーサーの集合体をスタックと称
する。nはセルの繰返積層数である。なお、バイポーラ
膜は、通常、陰イオン交換体側を陽極側に、また、陽イ
オン交換体側を陰極側に向けて使用される。
A typical construction of an electrodialysis cell is an anode- (C
-BA-) nC-cathode. Here, the minimum repeating unit composed of a cation exchange membrane, a bipolar membrane, an anion exchange membrane and the like is called a cell, and an assembly of membranes, gaskets and spacers excluding electrodes is called a stack. n is the number of repeated stacks of cells. The bipolar membrane is usually used with the anion exchanger side facing the anode side and the cation exchanger side facing the cathode side.

【0011】本発明では、かかるバイポーラ膜電気透析
槽の塩室に塩水溶液を供給して電気透析を行い酸室及び
アルカリ室から酸水溶液及びアルカリ水溶液をそれぞれ
排出させる。そうして、排出された酸水溶液及びアルカ
リ水溶液は、循環して再び酸室及びアルカリ室にそれぞ
れ供給される。また、この循環中において、酸水溶液及
びアルカリ水溶液は、その一部が生産液として取得さ
れ、且つ酸室及びアルカリ室に循環供給されるための濃
度調整が施される。その場合、この酸水溶液及びアルカ
リ水溶液の取得や濃度調製は、循環する該酸水溶液及び
アルカリ水溶液の流れの如何なる箇所で、どのような手
段により実施されても良い。通常は、酸水溶液及びアル
カリ水溶液の循環ラインの任意の箇所に酸水溶液タンク
及びアルカリ水溶液タンクを設置し、該タンクのそれぞ
れに循環する酸水溶液及びアルカリ水溶液を貯留し、そ
れに電気透析により生成した酸及びアルカリに相当する
量の水を補充し、且つ該タンクよりこの補充した量に相
当する酸水溶液、アルカリ水溶液をオーバーフローさせ
て、該酸水溶液、アルカリ水溶液を逐次一定濃度で取得
する、いわゆるフィードアンドブリード方式により行う
のが好ましい。
In the present invention, an aqueous salt solution is supplied to the salt chamber of the bipolar membrane electrodialysis tank to perform electrodialysis to discharge the acid aqueous solution and the alkaline aqueous solution from the acid chamber and the alkaline chamber, respectively. Then, the discharged acidic aqueous solution and alkaline aqueous solution are circulated and supplied again to the acidic chamber and the alkaline chamber, respectively. Further, during this circulation, the acid aqueous solution and the alkaline aqueous solution are partially concentrated as a production liquid, and the concentration is adjusted so as to be circulated and supplied to the acid chamber and the alkaline chamber. In that case, the acquisition and concentration adjustment of the acid aqueous solution and the alkaline aqueous solution may be carried out by any means at any point in the circulating flow of the acid aqueous solution and the alkaline aqueous solution. Usually, an acid aqueous solution tank and an alkaline aqueous solution tank are installed at arbitrary points in a circulation line of the acid aqueous solution and the alkaline aqueous solution, and the acid aqueous solution and the alkaline aqueous solution which circulate in each of the tanks are stored, and the acid produced by electrodialysis is stored therein. And an amount of water corresponding to the alkali is replenished, and the acid aqueous solution and the alkaline aqueous solution corresponding to the replenished amount are overflowed from the tank to sequentially obtain the acid aqueous solution and the alkaline aqueous solution at a constant concentration. It is preferable to use a bleed method.

【0012】本発明の最大の特徴は、以上説明したよう
な酸水溶液、アルカリ水溶液を循環供給するバイポーラ
膜電気透析を実施するに際し、該循環供給中において濃
度調整される酸水溶液及びアルカリ水溶液の各濃度を、
電気透析中における酸及びアルカリの電流効率が概ね等
しくなる濃度とした点にある。即ち、バイポーラ膜電気
透析では、酸室或いはアルカリ室に供給される酸水溶液
及びアルカリ水溶液の各濃度に相関して、生成する酸及
びアルカリの電流効率は変化する。一般的な傾向として
は、供給される酸及びアルカリ水溶液の濃度が高くなる
につれて、膜に吸着するドナンイオンの影響で、それぞ
れの電流効率は低くなる。ところが、その際の電流効率
の低下率は、酸、アルカリ種の違いや使用する陽イオン
交換膜及び陰イオン交換膜の種類、さらには温度、電流
密度等の運転条件等に起因して、酸の場合とアルカリの
場合とでは互いに異なるものとなる。その結果、こうし
たバイポーラ膜電気透析では、前記した通り、たとえ酸
室及びアルカリ室に供給される酸水溶液及びアルカリ水
溶液の酸、アルカリ濃度が互いに等しかったとしても、
その濃度条件での電気透析における酸及びアルカリの電
流効率の間には、ある程度の差が生じる。しかして、こ
うしたバイポーラ膜電気透析では、この電流効率の差に
相当する、酸もしくはアルカリが塩質に侵入し、前記の
如く該塩室の室液の酸性度やアルカリ性度が変質してく
る問題が生じる。
The greatest feature of the present invention is that when carrying out bipolar membrane electrodialysis for circulating and supplying the acid aqueous solution and the alkaline aqueous solution as described above, the concentration of each of the acid aqueous solution and the alkaline aqueous solution is adjusted during the circulating supply. Concentration
The point is that the concentration is such that the current efficiencies of the acid and alkali during electrodialysis are approximately equal. That is, in the bipolar membrane electrodialysis, the current efficiency of the generated acid and alkali changes in correlation with the respective concentrations of the acid aqueous solution and the alkaline aqueous solution supplied to the acid chamber or the alkaline chamber. As a general tendency, as the concentration of the supplied acid and alkaline aqueous solution becomes higher, the current efficiency of each becomes lower due to the influence of the Donan ion adsorbed on the membrane. However, the rate of decrease in current efficiency at that time is due to the difference in acid and alkali species, the types of cation exchange membrane and anion exchange membrane used, and operating conditions such as temperature and current density. The case and the case of alkali are different from each other. As a result, in such bipolar membrane electrodialysis, as described above, even if the acid and alkali concentrations of the acid aqueous solution and the alkaline aqueous solution supplied to the acid chamber and the alkaline chamber are equal to each other,
There is some difference between the current efficiencies of acid and alkali in electrodialysis at that concentration condition. However, in such a bipolar membrane electrodialysis, an acid or an alkali, which corresponds to the difference in the current efficiency, invades the salt, and as described above, the acidity or alkalinity of the liquid in the salt chamber is altered. Occurs.

【0013】これに対して、本発明では、該バイポーラ
膜電気透析を運転するに際し、この酸室、アルカリ室に
供給される各水溶液の酸濃度及びアルカリ濃度を、上記
のように電気透析中における酸及びアルカリの電流効率
が概ね等しくなる濃度とすれば、塩室に侵入する酸、も
しくはアルカリの量が概ね等しくなり、該塩室の酸性度
やアルカリ性度が変質することが防止できることを見出
しなされたものである。
On the other hand, in the present invention, when the bipolar membrane electrodialysis is operated, the acid concentration and the alkali concentration of each aqueous solution supplied to the acid chamber and the alkali chamber are determined as described above during the electrodialysis. It has been found that it is possible to prevent the acidity and alkalinity of the salt chamber from deteriorating by setting the concentration so that the current efficiency of the acid and the alkali are approximately equal to each other, so that the amount of the acid or the alkali that enters the salt chamber becomes approximately the same. It is a thing.

【0014】本発明において、酸水溶液及びアルカリ水
溶液の、電気透析中における酸及びアルカリの電流効率
が概ね等しくなる濃度とは、バイポーラ膜電気透析によ
り塩室の塩水溶液を電気分解するに際し、塩を構成する
陽イオンがアルカリ室に移行してアルカリを生成する電
流効率と、塩を構成する陰イオンが酸室に移行して酸を
生成する電流効率が、互いにほぼ等しくなるときのアル
カリ室及び酸室のそれぞれのアルカリ水溶液と酸水溶液
の濃度をいう。なお、電流効率は以下の式で求められ
る、流した電気量に対する生成した酸、アルカリの量を
いう。
In the present invention, the concentration of the acid aqueous solution and the alkaline aqueous solution at which the current efficiencies of the acid and the alkali during electrodialysis are substantially equal to each other means that when the salt aqueous solution in the salt chamber is electrolyzed by bipolar membrane electrodialysis The current efficiency at which the constituent cations move to the alkali chamber to generate alkali and the current efficiency at which the anions forming the salt move to the acid chamber to generate acid are almost equal to each other. It means the concentration of each of the aqueous alkali solution and the aqueous acid solution in the chamber. The current efficiency refers to the amount of generated acid and alkali with respect to the amount of electricity supplied, which is calculated by the following formula.

【0015】[0015]

【数1】 [Equation 1]

【0016】ここで、本発明では、上記酸室、アルカリ
室に供給される各水溶液の酸濃度及びアルカリ濃度は、
必ずしも上記酸及びアルカリの電流効率が互いに全く等
しくなる濃度である必要はなく、かかる両者の値は概ね
一致していれば若干の差があっても許容される。好適に
は、その電気透析中における酸及びアルカリの電流効率
の差の絶対値が、供給する該酸、アルカリ水溶液の各規
定度の小さい方の値よりも大きくならない程度に、上記
酸、アルカリ水溶液の濃度が一致しているのが好まし
い。また、この酸及びアルカリの電流効率の差は、電気
透析を長期間運転しても、塩室のpHが5〜9に維持さ
れるような値であるのが好ましい。
Here, in the present invention, the acid concentration and alkali concentration of each aqueous solution supplied to the acid chamber and the alkali chamber are
It is not always necessary that the current efficiencies of the acid and the alkali are completely equal to each other, and if the values of the two are substantially the same, a slight difference is acceptable. Preferably, the absolute value of the difference between the current efficiencies of the acid and the alkali during the electrodialysis is such that the absolute value of the acid and the alkali aqueous solution is not larger than the smaller one of the normalities of the acid and the alkali aqueous solution to be supplied. It is preferable that the concentrations of are the same. Further, it is preferable that the difference between the current efficiencies of the acid and the alkali is such that the pH of the salt chamber is maintained at 5 to 9 even if the electrodialysis is operated for a long time.

【0017】また、本発明において、電気透析中に上記
の如く循環供給される酸水溶液及びアルカリ水溶液の濃
度を、酸及びアルカリの電流効率が概ね等しくなるよう
に調製する方法は、特に制限されるものではなく如何な
る方法により行っても良い。通常は、実施するバイポー
ラ膜電気透析と等しい条件で電気透析を実施した際の、
酸室内或いはアルカリ室内の各水溶液の酸、アルカリ濃
度と、生成する酸、アルカリの電流効率の関係を、予め
測定しておき、その関係から上記酸及びアルカリの電流
効率が等しくなる酸水溶液とアルカリ水溶液の濃度を求
め、それに基づいて、実際の電気透析における上記各水
溶液の濃度を調節するのが好ましい。なお、この酸水溶
液及びアルカリ水溶液の、電気透析中における酸及びア
ルカリの電流効率が等しくなる濃度は、必ずしも陽イオ
ン交換膜、バイポーラ膜及び陰イオン交換膜の3種を使
用して、酸及びアルカリを同時に生成する条件で測定し
なくても、陽イオン交換膜または陰イオン交換膜の個々
において、該膜を介して電極を置き、該膜の陽極側、陰
極側の室に塩水溶液および酸、アルカリ水溶液を供給し
て通電して、酸またはアルカリを生成させ、それぞれの
酸、アルカリ濃度と、生成する酸、アルカリの電流効率
の関係を測定する簡易な方法により求めても良い。一般
には、かかる酸水溶液とアルカリ水溶液の濃度は、0.
1〜8.0N、好ましくは2.0〜6.0Nの範囲から
採択される。また、酸水溶液、アルカリ水溶液の各濃度
の測定は、電導度、比重計、屈折率計、超音波計、ガス
クロマトグラフィ等により測定する方法が任意に適用で
きる。
Further, in the present invention, the method for adjusting the concentrations of the acid aqueous solution and the alkaline aqueous solution which are circulated and supplied during the electrodialysis as described above so that the current efficiencies of the acid and the alkali are approximately equal is particularly limited. Any method may be used instead of the one. Usually, when performing electrodialysis under the same conditions as the bipolar membrane electrodialysis to be performed,
The relationship between the acid and alkali concentrations of each aqueous solution in the acid chamber or alkali chamber and the current efficiencies of the generated acid and alkali is measured in advance, and from that relation, the current efficiencies of the acid and alkali are equal and the acid aqueous solution and the alkali. It is preferable to determine the concentration of the aqueous solution and adjust the concentration of each aqueous solution in the actual electrodialysis based on it. The concentration of the acid aqueous solution and the alkaline aqueous solution at which the current efficiencies of the acid and the alkali during the electrodialysis are equal to each other are not limited to the cation exchange membrane, the bipolar membrane, and the anion exchange membrane. Even if it is not measured under the condition of simultaneously producing, in each of the cation exchange membrane or the anion exchange membrane, an electrode is placed through the membrane, and an aqueous salt solution and an acid are placed in the chambers on the anode side and the cathode side of the membrane, It may be determined by a simple method of supplying an alkaline aqueous solution and energizing it to generate an acid or an alkali, and measuring the relationship between each acid or alkali concentration and the current efficiency of the generated acid or alkali. Generally, the concentration of the aqueous acid solution and the aqueous alkali solution is 0.
It is selected from the range of 1 to 8.0 N, preferably 2.0 to 6.0 N. Further, for the measurement of each concentration of the acid aqueous solution and the alkaline aqueous solution, a method of measuring with an electric conductivity, a pycnometer, a refractometer, an ultrasonic meter, a gas chromatography or the like can be arbitrarily applied.

【0018】次に、本発明のバイポーラ膜電気透析に使
用する陽イオン交換膜は、特に限定されず公知の陽イオ
ン交換膜を用いることが出来る。例えば、スルホン酸
基、カルボン酸基、ホスホン酸基、硫酸エステル基、リ
ン酸エステル基を有するもの、さらにこれらのイオン交
換基の複数種類が混在した陽イオン交換膜を使用でき
る。また、陽イオン交換膜は重合型、縮合型、均一型、
不均一型の別なく、また、補強心材の有無や、炭化水素
系のもの、フッ素系のもの、材料・製造方法に由来する
陽イオン交換膜の種類、型式などの別なく如何なるもの
であってもよい。さらに、2N−食塩水溶液を5A/d
2の電流密度で電気透析し、電流効率が70%以上の
実質的に陽イオン交換膜として機能するものであれば、
一般に両性イオン交換膜と称されるものであっても本発
明の陽イオン交換膜として使用できる。また、陽極室に
接する陽イオン交換膜は、フッ素系のものを使用するこ
とが好ましい。
The cation exchange membrane used in the bipolar membrane electrodialysis of the present invention is not particularly limited, and a known cation exchange membrane can be used. For example, a cation exchange membrane having a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, a sulfuric acid ester group and a phosphoric acid ester group, and a cation exchange membrane in which a plurality of these ion exchange groups are mixed can be used. In addition, the cation exchange membrane is a polymerization type, condensation type, uniform type,
Whatever the type, whether it is a non-uniform type or not, regardless of the presence or absence of reinforcing core material, hydrocarbon type, fluorine type, cation exchange membrane type and model derived from the material and manufacturing method, Good. Furthermore, 2N-saline solution was added at 5 A / d.
If electrodialyzed at a current density of m 2 and having a current efficiency of 70% or more and substantially functioning as a cation exchange membrane,
Even what is generally called an amphoteric ion exchange membrane can be used as the cation exchange membrane of the present invention. Further, it is preferable to use a fluorine-based cation exchange membrane in contact with the anode chamber.

【0019】一方、バイポーラ膜は、陽イオン交換膜と
陰イオン交換膜とが張り合わさった構造をした複合イオ
ン交換膜が、公知のものが特に制限されずに使用でき
る。その製造方法としては、次のようなものが知られて
いる。例えば、陽イオン交換膜と陰イオン交換膜とをポ
リエチレンイミン−エピクロルヒドリンの混合物で張り
合わせ硬化接着する方法(特公昭32−3962号公
報)、陽イオン交換膜と陰イオン交換膜とをイオン交換
性接着剤で接着させる方法(特公昭34−3961号公
報)、陽イオン交換膜と陰イオン交換膜とを微粉のイオ
ン交換樹脂、陰または陽イオン交換樹脂と熱可塑性物質
とのペースト状混合物を塗布し圧着させる方法(特公昭
35−14531号公報)、陽イオン交換膜の表面にビ
ニルピリジンとエポキシ化合物とからなる糊状物質を塗
布し、これに放射線照射することによって製造する方法
(特公昭38−16633号公報)、陰イオン交換膜の
表面にスルホン酸型高分子電解質とアリルアミン類を付
着させた後、電離性放射線を照射架橋させる方法(特公
昭51−4113号公報)、イオン交換膜の表面に反対
電荷を有するイオン交換樹脂の分散系と母体重合体との
混合物を沈着させる方法(特開昭53−37190号公
報)、ポリエチレンフィルムにスチレン、ジビニルベン
ゼンを含浸重合したシート状物をステンレス製の枠には
さみつけ、一方の側をスルホン化させた後、シートを取
り外して残りの部分にクロルメチル化、次いでアミノ化
処理する方法(米国特許3562139号明細書)、ま
た陰イオン交換膜と陽イオン交換膜との界面を無機化合
物で処理し、両膜を接合する方法(特開昭59−472
35号公報)などである。
On the other hand, as the bipolar membrane, a composite ion exchange membrane having a structure in which a cation exchange membrane and an anion exchange membrane are adhered together can be used without particular limitation. The following is known as a manufacturing method thereof. For example, a method of laminating a cation exchange membrane and an anion exchange membrane with a mixture of polyethyleneimine-epichlorohydrin and curing and adhering them (Japanese Patent Publication No. 32-3962), anion exchange membrane and an anion exchange membrane. Method of adhering with an agent (Japanese Patent Publication No. 34-3961), a cation exchange membrane and an anion exchange membrane are coated with a fine powder of an ion exchange resin, or a paste-like mixture of an anion or cation exchange resin and a thermoplastic substance. A method of press-bonding (Japanese Patent Publication No. 35-14531), a method of coating a paste-like substance composed of vinylpyridine and an epoxy compound on the surface of a cation exchange membrane, and irradiating the paste-like substance (Japanese Patent Publication No. 38- 16633), after adhering a sulfonic acid type polymer electrolyte and allylamines on the surface of an anion exchange membrane, ionizing radiation Irradiation cross-linking method (Japanese Patent Publication No. 51-4113), and a method of depositing a mixture of a dispersion of an ion exchange resin having an opposite charge and a base polymer on the surface of an ion exchange membrane (Japanese Patent Laid-Open No. 53-37190). ), Polyethylene film impregnated with styrene and divinylbenzene for polymerization, sandwiched between sheets, sandwiched in a stainless steel frame, sulfonated on one side, and then removed the sheet to chlormethylate the rest, then amination (US Pat. No. 3,562,139), or a method in which the interface between the anion exchange membrane and the cation exchange membrane is treated with an inorganic compound and the two membranes are joined (JP-A-59-472).
35).

【0020】さらに、陰イオン交換膜は、特に限定され
ず公知の陰イオン交換膜を用いることが出来る。例え
ば、4級アンモニウム基、1級アミノ基、2級アミノ
基、3級アミノ基、さらにこれらのイオン交換基が複数
混在した陰イオン交換膜を使用できる。また該陰イオン
交換膜は重合型、縮合型、均一型、不均一型の別なく、
また、補強心材の有無や、炭化水素系のもの、フッ素系
のもの、材料・製造方法に由来する陰イオン交換膜の種
類、型式などの別なく如何なるものであってもよい。さ
らに2N−食塩溶液を5A/dm2の電流密度で電気透
析し、電流効率が70%以上の実質的に陰イオン交換膜
として機能するものであれば、一般に両性イオン交換膜
と称されるものであっても本発明の陰イオン交換膜とし
て使用できる。陰イオン交換膜は酸を透過させ易い傾向
があるので、酸を透過させにくい陰イオン交換膜使用す
ることが好ましい。
Further, the anion exchange membrane is not particularly limited, and a known anion exchange membrane can be used. For example, a quaternary ammonium group, a primary amino group, a secondary amino group, a tertiary amino group, or an anion exchange membrane in which a plurality of these ion exchange groups are mixed can be used. Further, the anion exchange membrane may be a polymerization type, a condensation type, a uniform type, or a non-uniform type,
Further, any material may be used regardless of the presence / absence of the reinforcing core material, the hydrocarbon-based material, the fluorine-based material, the type and model of the anion exchange membrane derived from the material and the manufacturing method. Further, if a 2N-salt solution is electrodialyzed at a current density of 5 A / dm 2 and has a current efficiency of 70% or more and substantially functions as an anion exchange membrane, it is generally called an amphoteric ion exchange membrane. Even so, it can be used as the anion exchange membrane of the present invention. Since an anion exchange membrane tends to easily permeate an acid, it is preferable to use an anion exchange membrane that hardly permeates an acid.

【0021】電気透析槽に使用する陽極及び陰極は、水
電解、食塩電解など電気化学工業で用いられる電極が、
何等制限なく用いられる。例えば、陽極材料としてはニ
ッケル、鉄、鉛、白金または黒鉛等が、また、陰極材料
としてはニッケル、鉄、ステンレススチールまたは白金
等が好適に使用できる。
As the anode and cathode used in the electrodialysis tank, electrodes used in the electrochemical industry such as water electrolysis and salt electrolysis are
It is used without any restrictions. For example, nickel, iron, lead, platinum, graphite or the like can be suitably used as the anode material, and nickel, iron, stainless steel, platinum or the like can be suitably used as the cathode material.

【0022】陽極室に供給する陽極液の種類は、陽極材
料の種類に応じて適宜選択することができる。これらの
組合せとして好ましいものを例示すると、例えば、次の
とおりである。ニッケルまたは鉄−水酸化ナトリウム水
溶液、鉛−硫酸水溶液、白金−硫酸または硫酸ナトリウ
ム水溶液、黒鉛−食塩水溶液を挙げることができる。ま
た、陰極材料と陰極液の組合せとして好ましいものは以
下のようである。ニッケル、鉄、またはステンレススチ
ール−水酸化ナトリウム、硫酸ナトリウムまたは食塩水
溶液を挙げることができる。
The type of anolyte supplied to the anode chamber can be appropriately selected according to the type of anode material. Examples of preferable combinations of these are as follows. Examples thereof include nickel or iron-sodium hydroxide aqueous solution, lead-sulfuric acid aqueous solution, platinum-sulfuric acid or sodium sulfate aqueous solution, and graphite-salt aqueous solution. Further, preferable combinations of the cathode material and the catholyte are as follows. Mention may be made of nickel, iron or stainless steel-sodium hydroxide, sodium sulphate or saline solution.

【0023】本発明において、電気透析の対象として使
用される塩は、電気透析により塩分解を行って生成する
酸及びアルカリが水溶液を形成するものであれば、有機
塩及び無機塩を問わず何等制限なく使用できる。塩を構
成する陽イオンとしては、例えば、ナトリウム、カリウ
ム、リチウム、アンモニウムイオン等がある。また塩を
構成する陰イオンとしてはフッ素、塩素、臭素、ヨウ素
の各ハロゲンイオン、硫酸イオン、硝酸イオン、酢酸イ
オン、乳酸イオン等がある。こうした塩の水溶液は、電
気透析槽の塩室に供給して電気透析した後、前記酸水溶
液やアルカリ水溶液と同様に、途中に塩水溶液タンクが
設置される塩水溶液タンクを通して、再度塩室に供給
し、該脱塩を所定の塩濃度に到達するまで繰り返して行
うのが好ましい。
In the present invention, the salt used as the subject of electrodialysis is not limited to organic salts and inorganic salts, as long as the acid and alkali produced by salt decomposition by electrodialysis form an aqueous solution. Can be used without restrictions. Examples of the cations forming the salt include sodium, potassium, lithium and ammonium ions. Examples of anions constituting the salt include halogen ions such as fluorine, chlorine, bromine and iodine, sulfate ion, nitrate ion, acetate ion, lactate ion and the like. The aqueous salt solution is supplied to the salt chamber of the electrodialysis tank for electrodialysis, and then supplied again to the salt chamber through a salt aqueous solution tank in which a salt aqueous solution tank is installed in the same manner as the acid aqueous solution and the alkaline aqueous solution. However, it is preferable to repeat the desalting until a predetermined salt concentration is reached.

【0024】なお、以上のバイポーラ膜電気透析の運転
条件として、温度は、通常5〜70℃、好ましくは20
〜50℃の範囲であることが好適である。また、電流密
度は、特に制限を受けないが、一般には1〜30A/d
2、好ましくは、3〜20A/dm2であることが好適
である。
As operating conditions for the above bipolar membrane electrodialysis, the temperature is usually 5 to 70 ° C., preferably 20.
It is preferably in the range of -50 ° C. The current density is not particularly limited, but is generally 1 to 30 A / d.
It is suitable that it is m 2 , preferably 3 to 20 A / dm 2 .

【0025】[0025]

【発明の効果】本発明によれば、フィードアンドブリー
ド方式等の酸水溶液、アルカリ水溶液を電気透析槽に各
一定濃度で循環供給する方式によりバイポーラ膜電気透
析を実施して、塩水溶液から酸水溶液及びアルカリ水溶
液を製造するに際し、塩室内の塩水溶液が、過剰に酸性
やアルカリ性を帯びてくることが防止できる。従って、
本発明では、脱塩液を中和処理すること等もなく、極め
て効率的に電気透析を実施して酸水溶液及びアルカリ水
溶液を製造することができ、極めて有用である。
According to the present invention, bipolar membrane electrodialysis is carried out by a method of circulating and supplying an acidic aqueous solution and an alkaline aqueous solution to an electrodialysis tank at constant concentrations, such as a feed-and-bleed method, and a salt aqueous solution to an acidic aqueous solution. Also, it is possible to prevent the salt aqueous solution in the salt chamber from becoming excessively acidic or alkaline when producing the alkaline aqueous solution. Therefore,
The present invention is extremely useful because it is possible to produce an acid aqueous solution and an alkaline aqueous solution by performing electrodialysis extremely efficiently without neutralizing the desalted solution.

【0026】[0026]

【実施例】本発明を更に具体的に説明するために下記に
実施例及び比較例を掲げて説明するが、本発明はこれら
の実施例に限定されるものではない。実施例に使用した
イオン交換膜を以下に示す。
EXAMPLES In order to more specifically describe the present invention, examples and comparative examples will be given below, but the present invention is not limited to these examples. The ion exchange membrane used in the examples is shown below.

【0027】・陰イオン交換膜及び陽イオン交換膜Anion exchange membrane and cation exchange membrane

【0028】[0028]

【表1】 [Table 1]

【0029】・バイポーラ膜 次のようにして得たものである。即ち、ビニルベンジル
クロリド50部、スチレン35部、純度50%のジビニ
ルベンゼン15部、ベンゾイルパーオキサイド2部、ス
チレンオキサイド2部及びアクリロニトリル−ブタジエ
ンゴム5部からなる粘稠なポリマー溶液を調製した。こ
のポリマー溶液をガラス板間において、窒素雰囲気中の
70℃で16時間の加熱重合を行って高分子膜状物を得
た。次に、この高分子膜状物を96%硫酸に60度で1
0分間浸漬し、膜状物の表面にスルホン酸基を導入し
た。さらに、トリメチルアミン−アセトン−水(1:
1:8)混合溶液中に置いて、30℃で1日処理して、
膜状物の内部に陰イオン交換基を導入し陰イオン交換膜
を得た。この表面がスルホン化された陰イオン交換膜と
徳山曹達社製陽イオン交換膜(商品名、CM−1)の間
に、5%ポリビニルアルコールと5%グルタルアルデヒ
ドの等量よりなる混合物を塗り、50℃にて加熱プレス
を1時間行って接着し、バイポーラ膜を得た。
Bipolar film It was obtained as follows. That is, a viscous polymer solution containing 50 parts of vinylbenzyl chloride, 35 parts of styrene, 15 parts of divinylbenzene having a purity of 50%, 2 parts of benzoyl peroxide, 2 parts of styrene oxide and 5 parts of acrylonitrile-butadiene rubber was prepared. This polymer solution was subjected to heat polymerization between glass plates at 70 ° C. for 16 hours in a nitrogen atmosphere to obtain a polymer film. Next, this polymer film was added to 96% sulfuric acid at 60 ° C. for 1 hour.
It was immersed for 0 minutes to introduce a sulfonic acid group on the surface of the film. Furthermore, trimethylamine-acetone-water (1:
1: 8) Place in mixed solution, treat at 30 ° C for 1 day,
An anion exchange group was introduced into the membrane to obtain an anion exchange membrane. A mixture of 5% polyvinyl alcohol and 5% glutaraldehyde in an equal amount was applied between the surface-sulfonated anion exchange membrane and the Tokuyama Soda Co., Ltd. cation exchange membrane (trade name, CM-1), A hot press was carried out at 50 ° C. for 1 hour for adhesion to obtain a bipolar film.

【0030】実施例1 陽イオン交換膜CM−1を用いて硫酸ナトリウムを電気
透析した時の、アルカリ室の水酸化ナトリウム水溶液の
濃度と生成する水酸化ナトリウムの電流効率の関係を、
次の方法により測定した。陽イオン交換膜の場合の測定
は、該膜を介して電極を置き、陽極側に2N硫酸ナトリ
ウム水溶液を、陰極側に各種濃度の水酸化ナトリウム水
溶液を入れ通電した。電極は両極とも白金板を使用し
た。有効膜面積は1cm2、電流密度は10A/dm2
温度は40℃で行った。通電中陽極側は酸性になるの
で、pHが8以上になると水酸化ナトリウムを投入し
て、中性を維持した。陰極液は電導度が上昇すると水を
加えて、濃度を一定に保った。20分後陰極液の増加量
より電流効率を求めた。上記アルカリ濃度と電流効率の
関係を表2に示した。
Example 1 The relationship between the concentration of the aqueous sodium hydroxide solution in the alkaline chamber and the current efficiency of sodium hydroxide produced when sodium sulfate was electrodialyzed using the cation exchange membrane CM-1 was calculated as follows.
It was measured by the following method. In the case of a cation exchange membrane, an electrode was placed through the membrane, a 2N sodium sulfate aqueous solution was placed on the anode side, and various concentrations of sodium hydroxide aqueous solution were placed on the cathode side to conduct electricity. Both electrodes were platinum plates. Effective membrane area is 1 cm 2 , current density is 10 A / dm 2 ,
The temperature was 40 ° C. Since the anode side becomes acidic during energization, sodium hydroxide was added to maintain the neutrality when the pH became 8 or more. When the conductivity of the catholyte increased, water was added to keep the concentration constant. After 20 minutes, the current efficiency was determined from the amount of increase in the catholyte. Table 2 shows the relationship between the alkali concentration and the current efficiency.

【0031】[0031]

【表2】 [Table 2]

【0032】次に、陰イオン交換膜AMXを用いて電気
透析した時の、酸室の硫酸水溶液の濃度と生成する硫酸
の電流効率の関係を同様にして測定した。結果を表3に
示した。陰イオン交換膜の場合の電流効率の測定では、
陽極側に硫酸を、陰極側に硫酸ナトリウムを入れ、水と
硫酸をそれぞれ補給した。通電条件は陽イオン交換膜の
場合と同じである。
Next, the relationship between the concentration of the sulfuric acid aqueous solution in the acid chamber and the current efficiency of the generated sulfuric acid during electrodialysis using the anion exchange membrane AMX was similarly measured. The results are shown in Table 3. In the measurement of current efficiency in the case of anion exchange membrane,
Sulfuric acid was placed on the anode side and sodium sulfate was placed on the cathode side to replenish water and sulfuric acid, respectively. The energization conditions are the same as for the cation exchange membrane.

【0033】[0033]

【表3】 [Table 3]

【0034】以上の結果を基に、図1に示されるような
フィードアンドブリード方式で運転されるバイポーラ膜
電気透析を用い、硫酸ナトリウムの電気透析による硫酸
水溶液及び水酸化ナトリウム水溶液の製造を実施した。
電気透析槽は、1対の陰陽極間に陽イオン交換膜CM−
1、バイポーラ膜及び陰イオン交換膜AMXが順番にそ
れぞれ11枚、10枚、10枚(陽イオン交換膜、バイ
ポーラ膜、陰イオン交換膜の有効膜面積はいずれも1d
2、総膜面積はそれぞれ11、10、10dm2)配置
され、アルカリ室13、酸室14及び塩室15が形成さ
れたフィルタープレス型バイポーラ膜電気透析槽を使用
した。
Based on the above results, a bipolar membrane electrodialysis operated by a feed-and-bleed system as shown in FIG. 1 was used to produce an aqueous sulfuric acid solution and an aqueous sodium hydroxide solution by electrodialysis of sodium sulfate. .
The electrodialysis tank has a cation exchange membrane CM- between a pair of anion and anode.
1. Bipolar membrane and anion exchange membrane AMX are sequentially 11 sheets, 10 sheets, 10 sheets (the effective membrane area of the cation exchange membrane, the bipolar membrane and the anion exchange membrane is 1d, respectively).
m 2 and the total membrane area were 11, 10 and 10 dm 2 respectively, and a filter press type bipolar membrane electrodialysis tank in which an alkali chamber 13, an acid chamber 14 and a salt chamber 15 were formed was used.

【0035】まず、容量が3Lで、それ以上液が入ると
オーバーフローする酸室タンク21とアルカリ室タンク
23に、電気透析中における酸及びアルカリの電流効率
がそれぞれ75%と等しくなる濃度である2.0Nの硫
酸水溶液と3.0Nの水酸化ナトリウム水溶液を各々満
杯に張った。このタンクには電導度計(東亜電波社製C
M−40S)を取付け、濃度をモニターし、電導度が上
昇したら、水を自動で加え、濃度を一定にコントロール
した。塩室用タンクには3.0N硫酸ナトリウム水溶液
を3L張った。これらの硫酸水溶液、水酸化ナトリウム
水溶液、硫酸ナトリウム水溶液を、1cm/sec、1
cm/sec、10cm/secの膜内線速度でそれぞ
れ酸室14、アルカリ室13、塩室15を循環して供給
し通電した。運転時の電流密度は10A/dm2、温度
は40℃とした。180分後、運転を停止したところ、
塩水溶液は硫酸ナトリウム濃度0.24N、液量は2.
5L、pHは7.2であった。酸水溶液は2.0N硫酸
水溶液が4.2L、アルカリ水溶液は3.0N水酸化ナ
トリウム水溶液が2.8L得られた。電流効率を計算す
ると酸、アルカリとも75%であり、前記予め求めた各
イオン交換膜膜単独での電流効率の値と同じだった。
First, in the acid chamber tank 21 and the alkaline chamber tank 23, which have a capacity of 3 L and overflow when more liquid enters, the concentrations are such that the current efficiencies of acid and alkali during electrodialysis are equal to 75%, respectively. A 0.0 N sulfuric acid aqueous solution and a 3.0 N sodium hydroxide aqueous solution were filled up to the full extent. This tank has a conductivity meter (Toa Denpa C
(M-40S) was attached, the concentration was monitored, and when the conductivity increased, water was automatically added to control the concentration to be constant. The salt room tank was filled with 3 L of a 3.0 N sodium sulfate aqueous solution. 1 cm / sec, 1% of these sulfuric acid aqueous solution, sodium hydroxide aqueous solution, and sodium sulfate aqueous solution
It was circulated and supplied with electricity at an in-membrane linear velocity of 10 cm / sec through the acid chamber 14, the alkali chamber 13, and the salt chamber 15, respectively. The current density during operation was 10 A / dm 2 , and the temperature was 40 ° C. 180 minutes later, when the operation was stopped,
The salt solution has a sodium sulfate concentration of 0.24 N and the liquid volume is 2.
5 L, pH was 7.2. The acid aqueous solution was 4.2 L of 2.0 N sulfuric acid aqueous solution, and the alkaline aqueous solution was 2.8 L of 3.0 N sodium hydroxide aqueous solution. The current efficiency was calculated to be 75% for both acid and alkali, which was the same as the previously determined value of the current efficiency of each ion-exchange membrane alone.

【0036】比較例1 実施例1において、バイポーラ膜電気透析における、硫
酸の濃度を3Nとした以外は全く同じ条件で、硫酸水溶
液及び水酸化ナトリウム水溶液の製造を実施した。18
0分後、塩水溶液は硫酸ナトリウム濃度0.6N、液量
は2.5L、硫酸濃度は0.4Nであった。生成した酸
水溶液は3.0N硫酸水溶液が2.2L、アルカリ水溶
液は3.0N水酸化ナトリウム水溶液が2.6L得られ
た。電流効率を計算すると、酸は59%、アルカリは6
9%でいずれも膜単独の電流効率より低かった。
Comparative Example 1 An aqueous sulfuric acid solution and an aqueous sodium hydroxide solution were produced under the same conditions as in Example 1 except that the concentration of sulfuric acid was 3N in the bipolar membrane electrodialysis. 18
After 0 minutes, the salt solution had a sodium sulfate concentration of 0.6 N, a liquid volume of 2.5 L, and a sulfuric acid concentration of 0.4 N. The produced acid aqueous solution was 3.0N sulfuric acid aqueous solution 2.2L, and the alkaline aqueous solution was 3.0N sodium hydroxide aqueous solution 2.6L. Calculated current efficiency is 59% for acid and 6 for alkali
At 9%, all were lower than the current efficiency of the membrane alone.

【0037】実施例2 実施例1と同様の方法で、陰イオン交換膜AMXを用い
てリン酸ナトリウムを電気透析した時の酸室のリン酸水
溶液の濃度と生成するリン酸の電流効率の関係を測定し
た結果を表4に示した。ここでは、上記膜の陽極側にリ
ン酸を、陰極側にリン酸ナトリウムを入れ通電した。
Example 2 In the same manner as in Example 1, when the sodium phosphate was electrodialyzed using an anion exchange membrane AMX, the relationship between the concentration of the aqueous phosphoric acid solution in the acid chamber and the current efficiency of the generated phosphoric acid. Table 4 shows the results of the measurement. Here, phosphoric acid was placed on the anode side and sodium phosphate was placed on the cathode side of the film, and electricity was applied.

【0038】[0038]

【表4】 [Table 4]

【0039】表2と表4の結果を基に、図1に示される
ようなフィードアンドブリード方式で運転されるバイポ
ーラ膜電気透析を用い、リン酸ナトリウムの電気透析に
よるリン酸水溶液及び水酸化ナトリウム水溶液の製造を
実施した。電気透析槽とタンク類を含めた装置、及び運
転方法は実施例1と同様である。
Based on the results of Tables 2 and 4, a bipolar membrane electrodialysis operated by a feed and bleed system as shown in FIG. 1 was used, and an aqueous phosphoric acid solution and sodium hydroxide were obtained by electrodialysis of sodium phosphate. The production of an aqueous solution was carried out. The apparatus including the electrodialysis tank and tanks, and the operating method are the same as those in the first embodiment.

【0040】酸液に4.0Nリン酸水溶液を、アルカリ
液に5.0N水酸化ナトリウム水溶液をそれぞれ4L張
った。塩室用タンクには3Nリン酸ナトリウム水溶液を
3L張り、85%リン酸を180ml加えてpHを7に
した。180分の通電後、運転を停止したところ、塩水
溶液はリン酸ナトリウム濃度0.90N、液量は2.5
L、pHは7.1であった。酸水溶液は4.0Nリン酸
水溶液が1.3L、アルカリ水溶液は5.0N水酸化ナ
トリウム水溶液が1.7L得られた。電流効率を計算す
ると酸、アルカリとも60%であり、前記予め求めた各
イオン交換膜膜単独での電流効率の値と同じだった。
4 L of an aqueous solution of 4.0 N phosphoric acid was added to the acid solution, and 4 L of an aqueous solution of 5.0 N sodium hydroxide was added to the alkali solution. The salt room tank was filled with 3 L of a 3N sodium phosphate aqueous solution, and 180 ml of 85% phosphoric acid was added to adjust the pH to 7. When the operation was stopped after 180 minutes of energization, the salt solution had a sodium phosphate concentration of 0.90 N and a liquid amount of 2.5.
L and pH were 7.1. As for the acid aqueous solution, 1.3 L of 4.0 N phosphoric acid aqueous solution and 1.7 L of 5.0 N sodium hydroxide aqueous solution were obtained as alkaline aqueous solution. When the current efficiency was calculated, both the acid and the alkali were 60%, which was the same as the previously determined value of the current efficiency of each ion exchange membrane alone.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明で使用するフィードアンドブリ
ード方式で運転される三室式バイポーラ膜電気透析槽の
模式図である。
FIG. 1 is a schematic diagram of the feed-and-bleed system three-chamber bipolar electrodialysis cell used in the present invention.

【符号の説明】[Explanation of symbols]

A 陰イオン交換膜 B バイポーラ膜 C 陽イオン交換膜 11 陽極 12 陰極 13 アルカリ室 14 酸室 15 塩室 21 酸水溶液タンク 22 塩水溶液タンク 23 アルカリ水溶液タンク 24 酸水溶液循環ライン 25 塩水溶液循環ライン 26 アルカリ水溶液循環ライン 27 酸水溶液タンクオーバーフローライン 28 アルカリ水溶液タンクオーバーフローライン A Anion exchange membrane B Bipolar membrane C Cation exchange membrane 11 Anode 12 Cathode 13 Alkaline chamber 14 Acid chamber 15 Salt chamber 21 Acid aqueous solution tank 22 Salt aqueous solution tank 23 Alkaline aqueous solution tank 24 Acid aqueous solution circulation line 25 Salt aqueous solution circulation line 26 Alkaline Aqueous solution circulation line 27 Acid aqueous solution tank overflow line 28 Alkaline aqueous solution tank overflow line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】陽極と陰極の間に陽イオン交換膜、バイポ
ーラ膜及び陰イオン交換膜を順に配列させて、塩室、酸
室及びアルカリ室を形成させ、塩室に塩水溶液を供給し
て電気透析を行い酸室及びアルカリ室から酸水溶液及び
アルカリ水溶液をそれぞれ排出させ、排出された酸水溶
液及びアルカリ水溶液を循環して再び酸室及びアルカリ
室にそれぞれ供給し、循環中に酸水溶液及びアルカリ水
溶液を一部取得し、且つ濃度調整を行う方法において、
上記濃度調整される酸水溶液及びアルカリ水溶液の各濃
度を、電気透析中における酸及びアルカリの電流効率が
概ね等しくなる濃度とすることを特徴とする酸水溶液及
びアルカリ水溶液の製造方法。
1. A cation exchange membrane, a bipolar membrane and an anion exchange membrane are sequentially arranged between an anode and a cathode to form a salt chamber, an acid chamber and an alkali chamber, and an aqueous salt solution is supplied to the salt chamber. By performing electrodialysis, the acid aqueous solution and the alkaline aqueous solution are discharged from the acid chamber and the alkaline chamber, respectively, and the discharged acid aqueous solution and the alkaline aqueous solution are circulated and supplied again to the acid chamber and the alkaline chamber, respectively. In the method of acquiring a part of the aqueous solution and adjusting the concentration,
A method for producing an acid aqueous solution and an alkali aqueous solution, characterized in that the respective concentrations of the acid aqueous solution and the alkali aqueous solution whose concentrations are adjusted are such that the current efficiencies of the acid and the alkali during electrodialysis are approximately equal.
JP32815693A 1993-12-24 1993-12-24 Method for producing acid aqueous solution and alkaline aqueous solution Expired - Lifetime JP3324853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32815693A JP3324853B2 (en) 1993-12-24 1993-12-24 Method for producing acid aqueous solution and alkaline aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32815693A JP3324853B2 (en) 1993-12-24 1993-12-24 Method for producing acid aqueous solution and alkaline aqueous solution

Publications (2)

Publication Number Publication Date
JPH07178319A true JPH07178319A (en) 1995-07-18
JP3324853B2 JP3324853B2 (en) 2002-09-17

Family

ID=18207115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32815693A Expired - Lifetime JP3324853B2 (en) 1993-12-24 1993-12-24 Method for producing acid aqueous solution and alkaline aqueous solution

Country Status (1)

Country Link
JP (1) JP3324853B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341421A (en) * 2017-01-24 2018-07-31 马培华 The method that lithium carbonate is directly produced from salt lake brine with high magnesium-lithium ratio
CN108341420A (en) * 2017-01-24 2018-07-31 马培华 The method that lithium hydroxide and lithium carbonate are directly produced from salt lake brine with high magnesium-lithium ratio
CN115385495A (en) * 2021-05-24 2022-11-25 中国科学院过程工程研究所 Method for treating strong acid strong base salt/strong acid weak base salt by bipolar membrane electrodialysis

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341421A (en) * 2017-01-24 2018-07-31 马培华 The method that lithium carbonate is directly produced from salt lake brine with high magnesium-lithium ratio
CN108341420A (en) * 2017-01-24 2018-07-31 马培华 The method that lithium hydroxide and lithium carbonate are directly produced from salt lake brine with high magnesium-lithium ratio
CN108341421B (en) * 2017-01-24 2022-02-08 马培华 Method for directly preparing lithium carbonate from salt lake brine with high magnesium-lithium ratio
CN108341420B (en) * 2017-01-24 2022-02-08 马培华 Method for directly preparing lithium hydroxide and lithium carbonate from salt lake brine with high magnesium-lithium ratio
CN115385495A (en) * 2021-05-24 2022-11-25 中国科学院过程工程研究所 Method for treating strong acid strong base salt/strong acid weak base salt by bipolar membrane electrodialysis

Also Published As

Publication number Publication date
JP3324853B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP4384444B2 (en) Electric demineralizer and electrodialyzer
CN116829514A (en) Electrodialysis method using bipolar membranes
JP5188454B2 (en) Method for producing organic acid
JP3151043B2 (en) Method for producing acid and alkali
EP1188784B1 (en) Cation-exchange membrane selectively permeable to monovalent cation and process for producing the same
JP4377104B2 (en) Desalination equipment
JP4065386B2 (en) Electrodialysis machine
JP6496146B2 (en) Electric deionized water production equipment
JPH07171353A (en) Electrodialysis method
JP3324853B2 (en) Method for producing acid aqueous solution and alkaline aqueous solution
JP3952127B2 (en) Electrodeionization treatment method
JP3151042B2 (en) Method for producing acid and alkali
JPH0824587A (en) Electrodialysis method
JP3151045B2 (en) Method for producing acid and alkali
JP3144652B2 (en) Method for producing acid and alkali
JP3967585B2 (en) Method for producing aqueous alkali metal silicate solution
JP4016663B2 (en) Operation method of electrodeionization equipment
JP2002220220A (en) Method for producing alkali-free water glass solution
JP2002309391A (en) Method for producing cysteine and cysteine mineral salt
JP4494612B2 (en) Method for producing hydroxyl group-containing salt
JPH0663365A (en) Method and device for electrodialysis
JP3144655B2 (en) Method for producing acid and alkali
JPH0663364A (en) Method for producing acid and alkali
JP7693930B2 (en) Method for operating an electrodialysis device equipped with a hydrocarbon-based anion exchange membrane having ion-selective permeability
JP3305017B2 (en) Electrodialysis stack and electrodialysis method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20080705

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20110705

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110705

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130705

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20130705

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20140705

EXPY Cancellation because of completion of term