JPH07174925A - Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickup - Google Patents
Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickupInfo
- Publication number
- JPH07174925A JPH07174925A JP31981093A JP31981093A JPH07174925A JP H07174925 A JPH07174925 A JP H07174925A JP 31981093 A JP31981093 A JP 31981093A JP 31981093 A JP31981093 A JP 31981093A JP H07174925 A JPH07174925 A JP H07174925A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- light
- optical
- waveguide type
- reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光ディスクドライブ等
に適用可能なスラブ型光導波路を利用した導波路型光反
射集光光学系及びこれを用いた導波路型光信号検出素子
並びに光ピックアップに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type optical reflection and focusing optical system using a slab type optical waveguide applicable to an optical disk drive and the like, a waveguide type optical signal detecting element and an optical pickup using the same. .
【0002】[0002]
【従来の技術】近年、光ディスク装置用の光ピックアッ
プは、1枚の導波路付き基板上に集積化することで、光
ディスクの小型・低価格化を図る研究が各方面でなされ
ている。その一つとして、スラブ型光導波路(slab opt
ical waveguide)内を伝搬する導波光を反射により偏向
させる構造として、導波路内に基板に対して垂直なる断
面(境界面)を形成し、この断面で反射させる導波路型
光反射偏向器が知られている(例えば、文献“Applied
Physics Letters,Vol.27,No.4,15 August
1975”中のpp.251〜253の“Novel metal-clad optical
components andmethod of isolating high-index subs
trates forming integrated optical circuits”参
照)。即ち、媒質の屈折率に差がある場合、導波光が媒
質境界面へ向かって導波する際に導波する媒質の屈折率
が境界面先の媒質の屈折率より大きいときには、所謂、
全反射によって導波光を反射させ得るというものであ
る。2. Description of the Related Art In recent years, various studies have been made in various fields to reduce the size and cost of optical discs by integrating optical pickups for optical disc devices on a single substrate with a waveguide. One of them is the slab type optical waveguide (slab opt
As a structure for deflecting guided light propagating in an optical waveguide by reflection, a waveguide type optical reflection deflector is known in which a cross section (boundary surface) perpendicular to the substrate is formed in the waveguide and the light is reflected at this cross section. (For example, the document “Applied
Physics Letters, Vol. 27, No. 4,15 August
Pp.251-253 in "1975""Novel metal-clad optical"
components and method of isolating high-index subs
trates forming integrated optical circuits ”). That is, when there is a difference in the refractive index of the medium, the refractive index of the medium guided when the guided light is guided toward the boundary surface of the medium is When it is higher than the rate, the so-called
The guided light can be reflected by total internal reflection.
【0003】このような性質に加えて、境界面に曲率を
与えることによって、スラブ型光導波路内を伝搬する導
波光を反射により集光又は発散させることができる。こ
のような導波路型光反射集光器は、反射面を形成する境
界面を挾む屈折率の異なる2つの媒質A,Bに所望の屈
折率差を与えることによる全反射条件を用いて導波光を
反射させるように設計され、その境界面に曲率を持たせ
ることにより集光作用も発揮させるものである。この
際、境界面はスラブ型光導波路平面(基板)に対して垂
直に形成される。In addition to such a property, by giving a curvature to the boundary surface, guided light propagating in the slab type optical waveguide can be condensed or diverged by reflection. Such a waveguide-type light reflection concentrator is guided using a total reflection condition by giving a desired difference in refractive index to two media A and B having different refractive indices that sandwich the boundary surface forming the reflection surface. It is designed to reflect wave light, and its boundary surface has a curvature so that it also exerts a condensing effect. At this time, the boundary surface is formed perpendicular to the slab type optical waveguide plane (substrate).
【0004】このような条件下に、境界面を挾む2つの
媒質A,Bがともに導波路媒質である場合、媒質A,B
間の屈折率差を大きくするのが難しい現状にある。例え
ば、導波路のコア層の屈折率ncore=1.8(シリコン
ナイトライドを想定)、導波路のクラッド層の屈折率n
clad=1.5(シリコンオキシナイトライドを想定)の
とき、境界面における臨界角θはθ=56.4°であ
り、光学系を小型化するためには反射回数を増す必要が
ある。Under these conditions, when the two media A and B sandwiching the boundary surface are both waveguide media, the media A and B are used.
Under the current circumstances, it is difficult to increase the refractive index difference between the two. For example, the refractive index of the core layer of the waveguide n core = 1.8 (assuming silicon nitride), the refractive index of the cladding layer of the waveguide n.
When clad = 1.5 (assuming silicon oxynitride), the critical angle θ at the interface is θ = 56.4 °, and it is necessary to increase the number of reflections in order to downsize the optical system.
【0005】しかし、境界面を挾む2つの媒質A,Bを
導波路媒質と空気層とした場合には、境界面における臨
界角θを上記の場合よりも小さくできる。例えば、導波
路媒質の屈折率ncore=1.8(シリコンナイトライド
を想定)としたときにはθ=33.7°となり、導波路
媒質の屈折率nclad=1.5(シリコンオキシナイトラ
イドを想定)としたきでもθ=41.8°となる。However, when the two media A and B sandwiching the boundary surface are the waveguide medium and the air layer, the critical angle θ at the boundary surface can be made smaller than the above case. For example, when the refractive index n core of the waveguide medium is 1.8 (assuming silicon nitride), θ = 33.7 °, and the refractive index n clad of the waveguide medium is 1.5 (silicon oxynitride is Assuming), θ = 41.8 °.
【0006】[0006]
【発明が解決しようとする課題】このような検討結果に
よれば、境界面を導波路媒質と空気層とにより形成した
ほうが、導波光をより大きく折返し反射させ得ることが
明らかであるにもかかわらず、このような特性を用い
て、導波路型光反射集光光学系のコンパクト化を図った
提案例はない(ここでいう「コンパクト化」とは、光学
系の焦点距離やNA(開口数)が同等値であっても光学
系の占める面積が小さいことを意味する)。スラブ型光
導波路デバイスに期待される特性は、薄型・小型・軽量
化及び低コスト化等であるが、小型・軽量化・低コスト
化を図る上で改善の余地を残している。According to the results of such examination, it is clear that the guided light can be reflected and reflected more greatly when the boundary surface is formed by the waveguide medium and the air layer. However, there is no example of a proposal to make the waveguide type light reflection / focusing optical system compact by using such characteristics ("compacting" here means the focal length and NA (numerical aperture) of the optical system. ) Means that the area occupied by the optical system is small even if the value is equal). The characteristics expected of the slab type optical waveguide device are thinness, small size, light weight and cost reduction, but there is room for improvement in order to achieve size reduction, weight reduction and cost reduction.
【0007】例えば、本出願人らによる提案例の一つと
して、図9に示すような導波路型光反射集光光学系ない
しは導波路型光信号検出素子がある。これは、バッファ
層を介して光導波層(コア層、クラッド層)を積層させ
てなるスラブ型光導波路付き基板1上にプリズムカプラ
2を実装し、光ディスク(図示せず)からの反射光をプ
リズムカプラ2を介してスラブ型光導波路内に導波励振
させ、導波路層3と空気層4との曲率を持たせた境界面
(基板1に対して垂直面)を光軸対称に形成してなる一
対の凹面ミラー5a,5bにより2分割させつつ反射集
光させ、さらに、基板1の外側に配設させた一対の平面
ミラー6a,6bで後方に反射させ、基板1端部の焦点
位置付近に光軸対称で一対ずつ設けた光検出器7a〜7
d側に導波するようにしたものである。図10に示すも
のも同様であり、凹面ミラー5bと平面ミラー6aとを
同一の空気層4を利用して背中合わせに形成し、光検出
器7a〜7dを片側に寄せて配設させたものである。For example, as one of the examples proposed by the present applicants, there is a waveguide type light reflection / focusing optical system or a waveguide type optical signal detecting element as shown in FIG. This is because a prism coupler 2 is mounted on a substrate 1 with a slab type optical waveguide, which is formed by stacking optical waveguide layers (core layer, clad layer) via a buffer layer, and reflects light from an optical disc (not shown). Waveguide excitation is performed in the slab type optical waveguide through the prism coupler 2, and a boundary surface (a surface vertical to the substrate 1) having a curvature between the waveguide layer 3 and the air layer 4 is formed symmetrically with the optical axis. The pair of concave mirrors 5a and 5b are divided into two parts to reflect and condense the light, and further, the pair of flat mirrors 6a and 6b arranged outside the substrate 1 reflect the light toward the rear to focus the focus position at the end of the substrate 1. A pair of photodetectors 7a to 7 provided in the vicinity with optical axis symmetry
It is configured such that the wave is guided to the d side. 10 is also similar, in which the concave mirror 5b and the plane mirror 6a are formed back to back using the same air layer 4, and the photodetectors 7a to 7d are arranged close to one side. is there.
【0008】よって、このような提案例による場合、無
駄なスペースが発生し、基板1、従って、素子の全長が
長いものとなっている。特に、光ディスク位置のデフォ
ーカス量を検出する機能を有し、かつ、その検出感度を
高くするために、集光光学系の光学長を長くするほうが
有利な点を考えると、図9や図10の構成の場合、素子
の全長が長めとなってしまう。Therefore, in the case of such a proposed example, useless space is generated, and the total length of the substrate 1, and hence the element, is long. In particular, considering that it is advantageous to lengthen the optical length of the condensing optical system in order to have a function of detecting the defocus amount at the optical disk position and to increase the detection sensitivity thereof, FIG. 9 and FIG. In the case of the above configuration, the total length of the element becomes long.
【0009】この結果、上記提案例の他、例えば、特開
平2−176606号公報に示されるように導波路型光
反射集光器付きのスラブ型光導波路の集光点に光検出器
を外付けしたり、或いは、特開平2−7238号公報に
示されるようにスラブ型光導波路内に光検出器を内付け
してなるような導波路型光信号検出器や光ピックアップ
を構成する上でも、その小型・軽量化に制約を与えるも
のとなってしまう。As a result, in addition to the above proposed example, as shown in, for example, Japanese Patent Application Laid-Open No. 2-176606, a photodetector is provided outside the converging point of a slab type optical waveguide with a waveguide type optical reflection concentrator. In addition, or in constructing a waveguide type optical signal detector or optical pickup in which a photodetector is internally provided in a slab type optical waveguide as shown in JP-A-2-7238. However, it will limit the size and weight.
【0010】[0010]
【課題を解決するための手段】請求項1記載の発明で
は、スラブ型光導波路を形成する導波路層と空気層との
境界面により前記スラブ型光導波路平面に対して略垂直
に形成される反射面を有する導波路型光反射集光器によ
り形成される導波路型光反射集光光学系において、前記
スラブ型光導波路に対する導波光の光軸を含むこの導波
光の略半分を取込んで導波路外方に向けて反射集光させ
る第1の導波路型光反射集光器と、この第1の導波路型
光反射集光器の近傍に形成されて前記第1の導波路型光
反射集光器からの反射光束の最外側の入射角が境界面に
おける臨界角より大きくなるように配置させた反射面を
有して前記第1の導波路型光反射集光器の後方に向けて
反射させる第2の導波路型光反射集光器と、この第2の
導波路型光反射集光器の近傍に形成されて前記第2の導
波路型光反射集光器からの反射光束の入射角が境界面に
おける臨界角より大きくなるように配置させた反射面を
有して前記第1の導波路型光反射集光器の後部位置に向
けて折返し反射させる第3の導波路型光反射集光器とを
設けた。According to a first aspect of the present invention, a boundary surface between a waveguide layer forming a slab type optical waveguide and an air layer is formed substantially perpendicular to the plane of the slab type optical waveguide. In a waveguide type light reflection / collection optical system formed by a waveguide type light reflection / condenser having a reflection surface, by taking in approximately half of this guided light including the optical axis of the guided light with respect to the slab type optical waveguide. A first waveguide type light reflection concentrator for reflecting and concentrating toward the outside of the waveguide, and the first waveguide type light reflection concentrator formed in the vicinity of the first waveguide type light reflection concentrator. A reflection surface is arranged so that the outermost incident angle of the reflected light flux from the reflection condenser is larger than the critical angle at the boundary surface, and is directed toward the rear of the first waveguide type light reflection condenser. Second waveguide type optical reflection condensing unit for reflecting and reflecting The first guide having a reflecting surface formed in the vicinity of the first waveguide type optical reflection concentrator so that the incident angle of the reflected light beam from the second waveguide type light reflecting concentrator is larger than the critical angle at the boundary surface. A third waveguide type light reflection concentrator for reflecting back toward the rear position of the waveguide type light reflection concentrator is provided.
【0011】請求項2記載の発明では、外部光をスラブ
型光導波路に結合励振させる導波路結合器と、請求項1
記載の導波路型光反射集光光学系と、この導波路型光反
射集光光学系の焦点位置近傍に配置させた光検出器とを
前記スラブ型光導波路に対して設けて導波路型光信号検
出素子を構成した。According to a second aspect of the present invention, there is provided a waveguide coupler which couples and excites external light to the slab type optical waveguide.
The waveguide-type light reflection / focusing optical system described above and a photodetector arranged near the focal point of the waveguide-type light reflection / focusing optical system are provided for the slab-type optical waveguide to provide the waveguide-type light. A signal detecting element was constructed.
【0012】請求項3記載の発明では、請求項2記載の
発明の構成に加え、光検出器に対する導波光入射位置に
入射方向規制開口を設けた。According to the third aspect of the invention, in addition to the configuration of the second aspect of the invention, an incident direction regulating opening is provided at the guided light incident position with respect to the photodetector.
【0013】請求項4記載の発明では、請求項3記載の
構成に加え、光検出器位置に対応するスラブ型光導波路
の最表面に遮光部材を設けた。According to a fourth aspect of the invention, in addition to the structure of the third aspect, a light shielding member is provided on the outermost surface of the slab type optical waveguide corresponding to the position of the photodetector.
【0014】請求項5記載の発明では、光源と、この光
源から出射された光を光情報記録媒体上に集光照射させ
る集光光学系と、前記光情報記録媒体からの戻り光に基
づき信号を検出するための請求項1記載の導波路型光反
射集光光学系とこの導波路型光反射集光光学系の焦点位
置近傍に配置させた光検出器とを実装したスラブ型光導
波路付き基板と、このスラブ型光導波路付き基板上に実
装されて前記光源から出射された光を取込む入射面と取
込んだ光を反射させる底面と反射光を前記集光光学系に
向けて出射させるとともに前記戻り光の一部を前記底面
を介して前記スラブ型光導波路に結合させる出射面とを
有するプリズムカプラとにより光ピックアップを構成し
た。According to a fifth aspect of the present invention, a light source, a condensing optical system for converging and irradiating the light emitted from the light source onto the optical information recording medium, and a signal based on the return light from the optical information recording medium With a slab type optical waveguide, which mounts the waveguide type light reflection / focusing optical system according to claim 1 and a photodetector arranged in the vicinity of the focal point of the waveguide type light reflection / focusing optical system. A substrate, an incident surface that is mounted on the substrate with the slab type optical waveguide and receives the light emitted from the light source, a bottom surface that reflects the captured light, and the reflected light is emitted toward the condensing optical system. In addition, an optical pickup is constituted by a prism coupler having an emission surface for coupling a part of the return light to the slab type optical waveguide via the bottom surface.
【0015】[0015]
【作用】請求項1記載の発明においては、導波路層と空
気層との境界面により光導波路平面に対して略垂直に形
成される反射面を有する導波路型光反射集光器によれ
ば、臨界角を小さくでき、導波光の光路を大きく変更し
得る特徴を活かし、このような構成を持つ第1ないし第
3の導波路型光反射集光器を全反射により内側に向けた
折返し集光光路を形成するような位置関係でスラブ型光
導波路に形成したので、反射時の光量損失を抑え効率よ
く導波光を集光させ得る条件下に、スラブ型光導波路面
内を有効に活用するものとなり、無駄なスペースがな
く、導波路型光反射集光光学系デバイスの構成のコンパ
クト化が可能となる。According to the invention of claim 1, a waveguide-type optical reflection concentrator has a reflection surface which is formed substantially perpendicularly to the optical waveguide plane by the boundary surface between the waveguide layer and the air layer. Taking advantage of the feature that the critical angle can be made small and the optical path of the guided light can be largely changed, the first to third waveguide type light reflection concentrators having such a configuration are folded back by inward reflection. Since the slab type optical waveguide is formed in such a positional relationship as to form a light optical path, the inside of the slab type optical waveguide can be effectively utilized under the condition that the guided light can be efficiently condensed while suppressing the light quantity loss at the time of reflection. Therefore, there is no wasted space, and the structure of the waveguide type light reflection and collection optical system device can be made compact.
【0016】請求項2記載の発明においては、このよう
な導波路型光反射集光光学系に導波路結合器と光検出器
とを加えて導波路型光信号検出素子を構成しているの
で、導波路型光信号検出素子デバイスのコンパクト化を
達成し得る。この結果、導波路型光信号検出素子デバイ
スを同一ウエハ上に同時に作製する製造方法による場
合、ウエハ1枚当りの作製素子数が増えるものとなり、
素子の製造コストを低下させ得る。According to the second aspect of the invention, since a waveguide coupler and a photodetector are added to such a waveguide type optical reflection and focusing optical system to form a waveguide type optical signal detecting element. It is possible to achieve compactness of the waveguide type optical signal detection element device. As a result, when the waveguide type optical signal detecting element device is manufactured on the same wafer at the same time, the number of manufacturing elements per wafer increases,
The manufacturing cost of the device can be reduced.
【0017】この場合、集光導波する光路が内側に向け
て折返し集光光路を形成するように設定されているの
で、光検出器に向かう導波光が導波路内で交差してお
り、反射面と光検出器が近接するため、散乱光が光検出
器へ入射する確率が高くなる。この点、請求項3記載の
発明においては、各光検出器の導波光入射位置に入射方
向規制開口を設けているので、散乱光の入射を低減させ
ることができ、光検出器による検出信号のS/N比を向
上させることができる。In this case, since the optical path of the condensed and guided light is set so as to form the folded condensed optical path toward the inside, the guided light directed to the photodetector intersects within the waveguide, and the reflection surface. Since the photodetectors are close to each other, the probability that scattered light enters the photodetectors becomes high. In this respect, in the invention according to claim 3, since the incident direction regulating aperture is provided at the guided light incident position of each photodetector, the incidence of scattered light can be reduced, and the detection signal of the photodetector can be reduced. The S / N ratio can be improved.
【0018】さらに、請求項4記載の発明においては、
光検出器位置に対応するスラブ型光導波路の最表面にも
遮光部材を設けているので、導波路外から光検出器への
散乱光の入射も防止できるものとなり、検出信号のS/
N比を一層向上させ得る。Further, in the invention according to claim 4,
Since the light shielding member is also provided on the outermost surface of the slab type optical waveguide corresponding to the position of the photodetector, it is possible to prevent the scattered light from entering the photodetector from the outside of the waveguide, and the S /
The N ratio can be further improved.
【0019】請求項5記載の発明においては、このよう
な導波路型光反射集光光学系及び光検出器を実装したス
ラブ型光導波路付き基板とプリズムカプラとを光源等と
組合せて集積型の光ピックアップを構成しているので、
検出感度を損なうことなく、光ピックアップのコンパク
ト化を達成し得る。According to a fifth aspect of the present invention, a substrate with a slab type optical waveguide on which such a waveguide type light reflection / focusing optical system and a photodetector are mounted and a prism coupler are combined with a light source or the like to form an integrated type. Since it constitutes an optical pickup,
The optical pickup can be made compact without impairing the detection sensitivity.
【0020】[0020]
【実施例】本発明の第一の実施例を図1及び図2に基づ
いて説明する。まず、図2に示すように導波路基板11
上にバッファ層12を介してコア層(導波路層)13と
クラッド層14とを順次積層したスラブ型光導波路15
が設けられている。このようなスラブ型光導波路15上
には外部光をコア層13に導波励振させるためのプリズ
ムカプラ(導波路結合器)16が例えば接着層等を介し
て実装されている。このようなプリズムカプラ16を介
してコア層13中を導波する導波光の光軸φを含むこの
導波光の左右半分ずつを取込んで反射集光させる一対の
凹面ミラー(第1の導波路型光反射集光器)17a,1
7bが光軸対称に形成されている。これらの凹面ミラー
17a,17bは各々の導波光を導波路基板11の外方
斜め後方に向けて反射集光させるもので、その導波光路
上には一対の平面ミラー(第2の導波路型光反射集光
器)18a,18bが光軸対称に形成されている。これ
らの平面ミラー18a,18bは各々の導波光を導波路
基板11の後方側一端内側に向けて反射させるもので、
その導波光路上には一対の平面ミラー(第3の導波路型
光反射集光器)19a,19bが光軸対称に形成されて
いる。これらの平面ミラー19a,19bは各々の導波
光を前記凹面ミラー17b,17aの後部位置に向けて
交差する状態で折返し反射させるものであり、全体とし
て、順次外側から内側に向かう折返し集光光路を持つ導
波路型光反射集光光学系20が形成されている。より具
体的には、凹面ミラー17a,17bは球面収差を持た
ないように例えば放物面により集光作用を示すように形
成され、前記平面ミラー18a,18bは光軸φ(デバ
イスの稜線)に平行に形成され、前記平面ミラー19
a,19bは光軸φに直交させて形成されている。最後
の平面ミラー19a,19bを経た焦点位置近傍(凹面
ミラー17a,17bの直後なる後部位置)には各々一
対ずつの光検出器21a〜21dが配設されている。こ
れらのプリズムカプラ16、導波路型光反射集光光学系
20及び光検出器21a〜21dにより導波路型光信号
検出素子22が構成されている。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. First, as shown in FIG. 2, the waveguide substrate 11
A slab type optical waveguide 15 in which a core layer (waveguide layer) 13 and a clad layer 14 are sequentially laminated on a buffer layer 12
Is provided. On such a slab type optical waveguide 15, a prism coupler (waveguide coupler) 16 for guiding and exciting external light to the core layer 13 is mounted, for example, via an adhesive layer. A pair of concave mirrors (first waveguide) that captures and collects the left and right halves of the guided light including the optical axis φ of the guided light guided through the core layer 13 via the prism coupler 16 (first waveguide). Type light reflection concentrator) 17a, 1
7b is formed symmetrically about the optical axis. These concave mirrors 17a and 17b reflect and condense each guided light toward the outside obliquely rearward of the waveguide substrate 11, and a pair of plane mirrors (second waveguide type light) on the guided light path. Reflective concentrators 18a and 18b are formed symmetrically with respect to the optical axis. These plane mirrors 18a and 18b reflect the guided light toward the inside of the rear end of the waveguide substrate 11, respectively.
A pair of plane mirrors (third waveguide type light-reflecting concentrator) 19a, 19b are formed on the guided optical path symmetrically with respect to the optical axis. These plane mirrors 19a and 19b reflect back the respective guided lights in a state of intersecting toward the rear positions of the concave mirrors 17b and 17a, and as a whole, the return converging light path from the outer side to the inner side is sequentially formed. A waveguide-type light reflection / focusing optical system 20 is formed. More specifically, the concave mirrors 17a and 17b are formed so as not to have spherical aberration so as to exhibit a condensing function by, for example, a parabolic surface, and the flat mirrors 18a and 18b are arranged along the optical axis φ (ridgeline of the device). The plane mirror 19 is formed in parallel.
a and 19b are formed so as to be orthogonal to the optical axis φ. A pair of photodetectors 21a to 21d is provided near the focal point position (the rear position immediately after the concave mirrors 17a and 17b) passing through the last plane mirrors 19a and 19b. A waveguide type optical signal detection element 22 is constituted by the prism coupler 16, the waveguide type optical reflection and focusing optical system 20, and the photodetectors 21a to 21d.
【0021】このようなコンパクトなデバイス構成が可
能な理由を説明する。まず、各ミラー17a〜19bを
形成する反射面23は、図2に示すように、導波路基板
11平面に対して垂直面として形成されている。また、
各ミラー17a〜19bの反射面23は2つの媒質の境
界面により形成されるものであるが、本実施例では、コ
ア層13と空気層24との境界面として形成されてい
る。この結果、例えば、コア層13をシリコンオキシナ
イトライド(SiON)で形成した場合には、その屈折
率が1.5近傍にあり、n=1.5を例にとると、反射
面23での臨界角θはθ=sin~1(1/1.5) ≒4
1.8°と小さなものとなる。つまり、前述したよう
に、導波路媒質同士による場合に比して反射面23での
臨界角度θを15°以上小さくし得る。そして、集光作
用を示す凹面ミラー17a,17bによる反射光に対し
て、パワーを持たない平面ミラー18a〜19bを組合
せることにより、集光特性を維持したまま、その光路を
順次内側に折返して小型化を図っている。まず、凹面ミ
ラー17a,17bによる反射光はデバイスの外側に向
かっているので、平面ミラー18a,18bによって内
側へ折返すようにしている。この場合、臨界角θを小さ
くし得ることから、平面ミラー18a,18bに対する
入射角を45°以下にできるため、この平面ミラー18
a,18bを光軸φに平行となるように配置し得るもの
となる。そして、この平面ミラー18a,18bによる
反射光については、再度凹面ミラー17a,17b側に
導かれない範囲で、この凹面ミラー17a,17bに近
接配置し得るものとなる。The reason why such a compact device configuration is possible will be described. First, the reflecting surface 23 forming each of the mirrors 17a to 19b is formed as a surface vertical to the plane of the waveguide substrate 11 as shown in FIG. Also,
The reflecting surface 23 of each of the mirrors 17a to 19b is formed by a boundary surface between two media, but in this embodiment, it is formed as a boundary surface between the core layer 13 and the air layer 24. As a result, for example, when the core layer 13 is formed of silicon oxynitride (SiON), its refractive index is in the vicinity of 1.5, and taking n = 1.5 as an example, the reflection surface 23 The critical angle θ is θ = sin ~ 1 (1 / 1.5) ≒ 4
It is as small as 1.8 °. That is, as described above, the critical angle θ at the reflecting surface 23 can be reduced by 15 ° or more as compared with the case where the waveguide media are used. Then, by combining the plane mirrors 18a to 19b having no power with the light reflected by the concave mirrors 17a and 17b exhibiting the light condensing action, the light path is sequentially folded back inward while maintaining the light condensing characteristic. We are aiming for miniaturization. First, since the light reflected by the concave mirrors 17a and 17b is directed to the outside of the device, the plane mirrors 18a and 18b are used to return the light to the inside. In this case, since the critical angle θ can be made small, the incident angle with respect to the plane mirrors 18a and 18b can be set to 45 ° or less.
The a and 18b can be arranged so as to be parallel to the optical axis φ. The reflected light from the plane mirrors 18a and 18b can be placed close to the concave mirrors 17a and 17b within a range that is not guided to the concave mirrors 17a and 17b again.
【0022】ここで、平面ミラー18a,18bへの反
射光の内、光軸光入射角をθ20、周辺光(最外側)入射
角をθ21とすると、集光光であるので、θ20>θ21が成
立する。従って、凹面ミラー17a,17bと平面ミラ
ー18a,18bとの関係については、周辺光入射角θ
21が平面ミラー18a,18bにおける臨界角θに対し
て、θ21>θなる関係を満足するような位置関係とすれ
ば、θ20>θも常に満たされるので、凹面ミラー17
a,17bによる反射光は全て平面ミラー18a,18
bにおいて全反射されるものとなる。つまり、反射時の
光量損失が抑制され、効率よく導波光を平面ミラー19
a,19b側へ導波させ得る。Here, of the light reflected on the plane mirrors 18a and 18b, if the optical axis light incident angle is θ 20 and the peripheral light (outermost) incident angle is θ 21 , it is a condensed light, so θ 20 > Θ 21 holds. Therefore, regarding the relationship between the concave mirrors 17a and 17b and the plane mirrors 18a and 18b, the ambient light incident angle θ
21 plane mirror 18a, relative to the critical angle theta in 18b, if a positional relationship that satisfies theta 21> theta the relationship, is always filled even theta 20> theta, a concave mirror 17
Light reflected by a and 17b are all plane mirrors 18a and 18b.
It will be totally reflected at b. That is, the loss of light quantity at the time of reflection is suppressed, and the guided light is efficiently guided by the plane mirror 19.
The light can be guided to the a and 19b sides.
【0023】一方、平面ミラー19a,19bへの反射
光の内、光軸光入射角をθ30、周辺光(最外側)入射角
をθ31とすると、逆に、θ30<θ31が成立する。従っ
て、凹面ミラー18a,18bと平面ミラー19a,1
9bとの関係については、光軸光入射角θ30が平面ミラ
ー19a,19bにおける臨界角θに対して、θ30>θ
なる関係を満足するような位置関係とすれば、θ31>θ
も常に満たされるので、凹面ミラー18a,18bによ
る反射光は全て平面ミラー19a,19bにおいて全反
射されるものとなる。つまり、反射時の光量損失が抑制
され、効率よく導波光を光検出器20a〜20d側へ導
波させ得る。On the other hand, of the light reflected by the plane mirrors 19a and 19b, if the optical axis light incident angle is θ 30 and the ambient light (outermost) incident angle is θ 31 , conversely, θ 30 <θ 31 is established. To do. Therefore, the concave mirrors 18a, 18b and the plane mirrors 19a, 1
Regarding the relationship with 9b, the optical axis light incident angle θ 30 is θ 30 > θ with respect to the critical angle θ in the plane mirrors 19a and 19b.
If the positional relationship is such that the following relationship is satisfied, then θ 31 > θ
Is always satisfied, the light reflected by the concave mirrors 18a and 18b is totally reflected by the plane mirrors 19a and 19b. That is, the loss of light quantity at the time of reflection is suppressed, and the guided light can be efficiently guided to the photodetectors 20a to 20d side.
【0024】このような本実施例によれば、空気層24
を境界面に利用した垂直な反射面23による場合、その
臨界角θを小さくすることができ、光路偏向量を大きく
とれる点を活用し、複数のミラー17a〜19bを全反
射条件を満たす配置関係の下に導波光を順次デバイス内
側に折返すようにしているので、凹面ミラー17a,1
7b後方のデッドスペースに集光させ得るものとなり、
導波路全面を有効に活用したものとなって、デバイスの
コンパクト化を達成できるものとなる。According to this embodiment, the air layer 24
In the case of the vertical reflecting surface 23 using the boundary surface as a boundary surface, the critical angle θ can be made small and the amount of deflection of the optical path can be made large, and the plurality of mirrors 17a to 19b are arranged to satisfy the total reflection condition. Since the guided light is sequentially folded back inside the device, the concave mirrors 17a, 1
It will be able to focus in the dead space behind 7b,
By effectively utilizing the entire surface of the waveguide, the device can be made compact.
【0025】図3は変形例を示し、平面ミラー18a,
18bを光軸φに対して非平行状態に配置させたもので
ある。この場合も、平面ミラー18a,18bの傾き
は、前述した条件、即ち、θ21>θが成立することが必
要であり、かつ、この平面ミラー18a,18bによる
反射光中の光軸φ寄りのものが凹面ミラー17a,17
bによってけられない範囲で極力、素子の内側(光軸φ
寄り)へ寄せて配置させるのがよい。また、これに対応
して平面ミラー19a,19bの位置は、この平面ミラ
ー19a,19bで反射されて集光する光の集光位置が
凹面ミラー17a,17bの後部に極力近づくように素
子の内側(凹面ミラー17a,17b寄り)に寄せて配
置させるのがよい。FIG. 3 shows a modification of the flat mirror 18a,
18b is arranged non-parallel to the optical axis φ. Also in this case, the inclinations of the plane mirrors 18a and 18b need to satisfy the above-described condition, that is, θ 21 > θ, and the tilts of the plane mirrors 18a and 18b are closer to the optical axis φ in the reflected light. Things are concave mirrors 17a, 17
As much as possible inside the element (optical axis φ
It is better to place them closer to each other. Correspondingly, the positions of the plane mirrors 19a and 19b are set inside the element so that the light collection positions of the light reflected and condensed by the plane mirrors 19a and 19b are as close as possible to the rear part of the concave mirrors 17a and 17b. It is preferable to dispose them closer to the concave mirrors 17a and 17b.
【0026】図4は別の変形例を示し、平面ミラー19
a,19bを光軸φに対して直交しない状態に配置させ
たものである。この場合も、平面ミラー19a,19b
の傾きは、前述した条件、即ち、θ30>θが成立するこ
とが必要である。FIG. 4 shows another modification, which is a plane mirror 19.
a and 19b are arranged in a state not orthogonal to the optical axis φ. Also in this case, the plane mirrors 19a and 19b
Is required to satisfy the above-mentioned condition, that is, θ 30 > θ.
【0027】また、これらの変形例を含む本実施例で
は、平面ミラー18a〜19bを連続する空気層24の
パターンにより連続する反射面を形成するものとして形
成したが、これらは各々分離して形成してもよい(例え
ば、後述する図6参照)。分離形成によれば、エッチン
グ領域が少なくなるため、エッチングに要する時間を短
縮でき、チャンバ内の汚染も少なくなる。Further, in this embodiment including these modifications, the plane mirrors 18a to 19b are formed so as to form a continuous reflecting surface by the pattern of the continuous air layer 24, but these are formed separately. Alternatively (see, for example, FIG. 6 described later). The separated formation reduces the etching area, so that the time required for etching can be shortened and the contamination in the chamber can be reduced.
【0028】つづいて、本発明の第二の実施例を図4及
び図5により説明する。基本的には、前記実施例と同一
の構成を採るものであるが、本実施例では、導波路型光
信号検出素子22としての光検出器21a〜21dの構
成・作用を明らかにするものである。Next, a second embodiment of the present invention will be described with reference to FIGS. Basically, the same configuration as that of the above-described embodiment is adopted, but in this embodiment, the configuration and operation of the photodetectors 21a to 21d as the waveguide type optical signal detection element 22 will be clarified. is there.
【0029】光検出器21a〜21dは前述したように
導波路型光反射集光光学系20の焦点位置近傍に配置さ
れるが、より具体的には、焦点位置より後方に光軸対称
に並置される。光検出器21a,21bと光検出器21
c,21dとは互いに光軸φを挾んで対称配置されてい
るので、図5では、光検出器21a,21bの対を例に
とり説明する。即ち、対となる光検出器21a,21b
は導波光25の光軸に対して対称位置に並置されてい
る。The photodetectors 21a to 21d are arranged in the vicinity of the focal position of the waveguide type light reflection / focusing optical system 20 as described above, but more specifically, they are juxtaposed rearward of the focal position and symmetrically with respect to the optical axis. To be done. Photodetectors 21a and 21b and photodetector 21
Since they are arranged symmetrically with respect to c and 21d with respect to the optical axis φ, a pair of photodetectors 21a and 21b will be described as an example in FIG. That is, the pair of photodetectors 21a and 21b
Are juxtaposed at symmetrical positions with respect to the optical axis of the guided light 25.
【0030】この結果、例えば、プリズムカプラ16を
経て導波される外部入射光が平行光であるときには、導
波光25は図5(a)に示すように光検出器21a,2
1b間中央位置に集光されるので、これらの光検出器2
1a,21bの出力信号差はゼロとなる。一方、外部入
射光が非平行光(発散光)のときには、導波路型光反射
集光光学系20が有限系となって像側焦点距離が伸び
て、導波光25が図5(c)に示すようになるため、こ
れらの光検出器21a,21bの出力信号に差を生ずる
(この場合、光検出器21bのほうが大きくなる)。逆
に、外部入射光が非平行光(収束光)のときには、焦点
距離が短縮され、導波光25が図5(b)に示すように
なるため、これらの光検出器21a,21bの出力信号
に差を生ずる(この場合、光検出器21aのほうが大き
くなり、図5(c)の場合の差信号とは符号が異な
る)。As a result, for example, when the external incident light guided through the prism coupler 16 is parallel light, the guided light 25 is detected by the photodetectors 21a and 2a as shown in FIG. 5 (a).
Since the light is focused at the central position between 1b, these photodetectors 2
The output signal difference between 1a and 21b becomes zero. On the other hand, when the external incident light is non-parallel light (divergent light), the waveguide type light reflection / condensing optical system 20 becomes a finite system, the focal length on the image side is extended, and the guided light 25 becomes as shown in FIG. As shown, a difference occurs in the output signals of these photodetectors 21a and 21b (in this case, photodetector 21b becomes larger). On the contrary, when the external incident light is non-parallel light (convergent light), the focal length is shortened and the guided light 25 becomes as shown in FIG. 5B, so that the output signals of these photodetectors 21a and 21b are output. (In this case, the photodetector 21a becomes larger and the sign is different from that of the difference signal in the case of FIG. 5C).
【0031】よって、例えば、光ディスク装置におい
て、図5(a)に示す状態を合焦状態、図5(b)に示
す状態を光ディスクが遠いデフォーカス状態、図5
(c)に示す状態を光ディスクが近いデフォーカス状態
とすることにより、光ディスクのフォーカス誤差信号検
出に利用できる等、光信号検出系として活用し得ること
が判る。Therefore, for example, in the optical disc apparatus, the state shown in FIG. 5A is the focused state, the state shown in FIG. 5B is the defocused state where the optical disc is far, and the state shown in FIG.
It can be seen that the state shown in (c) can be utilized as an optical signal detection system, for example, by detecting the focus error signal of the optical disc by setting the optical disc to a near defocused state.
【0032】ところで、本実施例の導波路型光反射集光
光学系20の構成の場合、複数のミラー17a〜19b
により順次内側に折返す反射光路を形成してコンパクト
化を図っているため、スラブ型光導波路15平面内の光
路が複雑に交差している。このとき、ミラーと光検出器
とが近接しているため、反射面で生ずる迷光が光検出器
21a〜21dに入り込む可能性がある。この場合、迷
光は雑音信号となり、光検出器21a〜21dの検出機
能(S/N比)を低下させる要因となる。そこで、本実
施例では、図6に示すように、光検出器21a,21b
対と光検出器21c,21d対との両側を各々囲んで対
応する平面ミラー19a,19b側からの導波光のみを
導波させ得るように開口させた入射方向規制開口26が
形成されている。この入射方向規制開口26も例えばミ
ラー17a〜19b等と同様にスラブ型光導波路15の
一部を所定パターンでエッチングした空気層との境界面
により形成されている。このような入射方向規制開口2
6を光検出器21a〜21d周りに有することにより、
散乱光成分なる迷光の光検出器21a〜21dへの入射
を極力減らすことができ、光検出器21a〜21dのS
/N比を向上させることができる。By the way, in the case of the configuration of the waveguide type light reflection and collection optical system 20 of the present embodiment, a plurality of mirrors 17a to 19b are provided.
Thus, since the reflected light paths that are sequentially turned inward are formed to achieve compactness, the light paths in the plane of the slab type optical waveguide 15 intersect in a complicated manner. At this time, since the mirror and the photodetector are close to each other, stray light generated on the reflecting surface may enter the photodetectors 21a to 21d. In this case, the stray light becomes a noise signal and becomes a factor that reduces the detection function (S / N ratio) of the photodetectors 21a to 21d. Therefore, in this embodiment, as shown in FIG. 6, the photodetectors 21a and 21b are
An incident direction regulation opening 26 is formed so as to surround only the pair and the pair of photodetectors 21c and 21d, and to allow only guided light from the corresponding plane mirrors 19a and 19b to be guided. The incident direction regulating opening 26 is also formed by a boundary surface with an air layer obtained by etching a part of the slab type optical waveguide 15 in a predetermined pattern similarly to the mirrors 17a to 19b. Such an incident direction control opening 2
By having 6 around the photodetectors 21a-21d,
Incident of stray light, which is a scattered light component, on the photodetectors 21a to 21d can be reduced as much as possible, and S of the photodetectors 21a to 21d can be reduced.
The / N ratio can be improved.
【0033】また、本発明の第三の実施例を図7により
説明する。本実施例は、図6に示した前記実施例の構成
に加え、光検出器21(21a〜21d)位置に対応す
るスラブ型光導波路15の最表面に遮光層(遮光部材)
27を形成したものである。なお、前述した実施例も含
め、本実施例でも光検出器21は導波路基板11上に内
付けで形成されてコア層13と結合するように構成さ
れ、外部に通ずるリード線パターン28を通して電気的
信号として取出し得るようにされている。A third embodiment of the present invention will be described with reference to FIG. In this embodiment, in addition to the structure of the embodiment shown in FIG. 6, a light shielding layer (light shielding member) is provided on the outermost surface of the slab type optical waveguide 15 corresponding to the positions of the photodetectors 21 (21a to 21d).
27 is formed. In the present embodiment as well as the above-mentioned embodiment, the photodetector 21 is internally formed on the waveguide substrate 11 and is configured to be coupled to the core layer 13, and is electrically connected through the lead wire pattern 28 communicating to the outside. It can be taken out as a target signal.
【0034】本実施例によれば、光検出器21に対する
スラブ型光導波路15の平面内における迷光を入射方向
規制開口26により規制し得る上に、スラブ型光導波路
15の平面に垂直なる方向から光検出器21に侵入しよ
うとするノイズ光は遮光層27によってカットし得るも
のとなる。結局、光検出器21に対して平面ミラー19
a,19bから導波される本来の検出光以外の光は極力
カットし得るものとなり、光検出信号におけるノイズ成
分やオフセットを抑制し、一層S/N比を向上させ得る
ものとなる。According to this embodiment, stray light in the plane of the slab type optical waveguide 15 with respect to the photodetector 21 can be regulated by the incident direction regulating aperture 26, and in addition, from the direction perpendicular to the plane of the slab type optical waveguide 15. The noise light that tries to enter the photodetector 21 can be cut by the light shielding layer 27. Eventually, the plane mirror 19 for the photodetector 21
Light other than the original detection light guided from a and 19b can be cut as much as possible, and noise components and offsets in the light detection signal can be suppressed, and the S / N ratio can be further improved.
【0035】続いて、本発明の第四の実施例を図8によ
り説明する。本実施例は、前述した各実施例に示される
ようなスラブ型光導波路付き基板29を利用して、光ピ
ックアップ30を構成したものである。このスラブ型光
導波路付き基板29は前述したように、スラブ型光導波
路15に導波路型光反射集光光学系20と光検出器21
a〜21dとを組込んでなるものであり、かつ、その表
面にはプリズムカプラ16も実装されている。このプリ
ズムカプラ16は断面台形状に形成されたもので、入射
面16aと底面16bと出射面16cとを有し、底面1
6bが接着層等を介してスラブ型光導波路15表面に接
着されている。このようなプリズムカプラ16の入射面
16aに対向させて半導体レーザ(光源)31とコリメ
ートレンズ32とが配設されている。また、出射面16
cは光ディスク(光情報記録媒体)33に対向するもの
であり、出射面16cと光ディスク33との間には集光
光学系を構成する対物レンズ34が設けられ、さらに、
出射面16c側には1/4波長板35が介在されてい
る。Next, a fourth embodiment of the present invention will be described with reference to FIG. In this embodiment, the optical pickup 30 is constructed by using the slab type optical waveguide substrate 29 as shown in each of the above-mentioned embodiments. As described above, the substrate 29 with the slab type optical waveguide includes the waveguide type light reflection and collection optical system 20 and the photodetector 21 in the slab type optical waveguide 15.
a to 21d are incorporated, and the prism coupler 16 is also mounted on the surface thereof. The prism coupler 16 is formed in a trapezoidal cross section, has an entrance surface 16a, a bottom surface 16b, and an exit surface 16c.
6b is adhered to the surface of the slab type optical waveguide 15 via an adhesive layer or the like. A semiconductor laser (light source) 31 and a collimator lens 32 are arranged so as to face the entrance surface 16 a of the prism coupler 16. In addition, the exit surface 16
c is opposed to the optical disc (optical information recording medium) 33, and an objective lens 34 that constitutes a condensing optical system is provided between the emission surface 16c and the optical disc 33.
A quarter wave plate 35 is interposed on the side of the emitting surface 16c.
【0036】このような構成において、半導体レーザ3
1から出射された光(直線偏光光)はコリメートレンズ
32により平行光に変換された後、プリズムカプラ16
の入射面16aに入射し、その底面16b、接着層へと
進み、接着層とスラブ型光導波路15表面との境界面で
反射される。この反射光は再び接着層、底面16bを順
次通過し、出射面16cよりプリズムカプラ16外部へ
出射する。この出射光は1/4波長板35を通過するこ
とにより円偏光光に変換された後、対物レンズ34によ
って光ディスク33の記録面上に集光照射される。この
光ディスク33から反射される戻り光は、その反射時
に、円偏光の偏光方向が逆転し、再び対物レンズ34を
経て1/4波長板35を通過する。この1/4波長板3
5を通過することにより、戻り光はその往路とは直交す
る偏光方向を持つ直線偏光に変換されて出射面16cか
ら再びプリズムカプラ16内に入る。出射面16cから
プリズムカプラ16内に入った戻り光は、その底面16
b、接着層を経てスラブ型光導波路15中のコア層13
に結合される。この後、コア層13中を導波し、凹面ミ
ラー17a,17bによって光軸φ中心に左右対称に2
分割されつつ集光光束となって反射され、さらに、平面
ミラー18a,18b,19a,19bによる反射を受
けて光検出器21a,21b,21c,21d側に集光
される。In such a structure, the semiconductor laser 3
The light (linearly polarized light) emitted from the beam splitter 1 is converted into parallel light by the collimator lens 32, and then the prism coupler 16
Is incident on the incident surface 16a of the light source, travels to the bottom surface 16b and the adhesive layer, and is reflected by the boundary surface between the adhesive layer and the surface of the slab type optical waveguide 15. This reflected light again passes through the adhesive layer and the bottom surface 16b in order, and is emitted to the outside of the prism coupler 16 from the emission surface 16c. The emitted light is converted into circularly polarized light by passing through the quarter-wave plate 35, and then is condensed and irradiated onto the recording surface of the optical disc 33 by the objective lens 34. The return light reflected from the optical disc 33 has the polarization direction of circularly polarized light reversed when reflected, passes through the objective lens 34 again, and passes through the quarter-wave plate 35. This quarter wave plate 3
By passing through 5, the return light is converted into linearly polarized light having a polarization direction orthogonal to the forward path and enters the prism coupler 16 again from the exit surface 16c. Return light that has entered the prism coupler 16 from the exit surface 16c is
b, the core layer 13 in the slab type optical waveguide 15 through the adhesive layer
Be combined with. After that, the light is guided in the core layer 13 and symmetrically about the optical axis φ by the concave mirrors 17a and 17b.
The light is reflected as a condensed light flux while being split, and is further reflected by the plane mirrors 18a, 18b, 19a, 19b and condensed on the photodetectors 21a, 21b, 21c, 21d side.
【0037】この際、図5で説明したように、光ディス
ク33が対物レンズ34の焦点位置にあるときには図5
(a)に示すような光検出器21a,21b間の中央
(光検出器21c,21d側も同様)にあり、検出信号
の差はゼロとなる。しかし、光ディスク33が対物レン
ズ34の焦点位置より遠方にあるときには導波路型光反
射集光光学系20の焦点位置が短めとなるため、図5
(b)に示すように光検出器21a,21bの前方位置
に集光されることになり、光検出器21a,21bの検
出信号に差が生ずる。逆に、光ディスク33が対物レン
ズ34の焦点位置より近くにあるときには導波路型光反
射集光光学系20の焦点位置が長めとなるため、図5
(c)に示すように光検出器21a,21bの後方位置
に集光されることになり、光検出器21a,21bの検
出信号に差が生ずる。よって、光検出器21a,21b
(又は、21c,21d)から得られる検出信号の差を
とり、その正負符号をみることにより(所謂、フーコー
法)、光ディスク33の対物レンズ34の焦点位置から
のずれ量及びずれ方向を検知するフォーカス誤差信号検
出機能が確保される。At this time, as described with reference to FIG. 5, when the optical disk 33 is at the focal position of the objective lens 34, the operation shown in FIG.
It is at the center between the photodetectors 21a and 21b as shown in (a) (similarly to the photodetectors 21c and 21d side), and the difference between the detection signals is zero. However, when the optical disc 33 is farther than the focal position of the objective lens 34, the focal position of the waveguide-type light reflection / condensing optical system 20 becomes short, so that FIG.
As shown in (b), the light is focused at the front positions of the photodetectors 21a and 21b, and a difference occurs in the detection signals of the photodetectors 21a and 21b. On the contrary, when the optical disc 33 is closer to the focus position of the objective lens 34, the focus position of the waveguide-type light reflection / focusing optical system 20 becomes longer, so that FIG.
As shown in (c), the light is focused at the rear position of the photodetectors 21a and 21b, and a difference occurs in the detection signals of the photodetectors 21a and 21b. Therefore, the photodetectors 21a and 21b
(Or, the difference between the detection signals obtained from 21c and 21d) and the sign of the difference (so-called Foucault method) are used to detect the amount and direction of deviation of the optical disc 33 from the focus position of the objective lens 34. The focus error signal detection function is ensured.
【0038】また、光ディスク33に対する照射光がオ
ン・トラック状態のときには、光検出器21a,21b
対と光検出器21c,21d対とにより得られる検出信
号の差はゼロであるので(均等に2分割されるため)、
トラッキング誤差信号の検出は、光検出器21a,21
b対から得られる検出信号と光検出器21c,21d対
から得られる検出信号との差及びその正負符号を調べる
ことにより(所謂、プッシュプル法)、トラックずれ及
びそのずれ方向を検知し得ることになる。Further, when the irradiation light on the optical disk 33 is in the on-track state, the photodetectors 21a and 21b.
Since the difference between the detection signals obtained by the pair and the pair of photodetectors 21c and 21d is zero (because it is equally divided into two),
The tracking error signal is detected by the photodetectors 21a, 21
Track deviation and its deviation direction can be detected by examining the difference between the detection signal obtained from the pair b and the detection signal obtained from the pair of photodetectors 21c and 21d and the positive / negative sign thereof (so-called push-pull method). become.
【0039】さらに、光ディスク33上の記録信号(即
ち、RF信号)の検出(再生)は、全ての光検出器21
a〜21dにおける検出信号の和をとればよい。この場
合、光ディスク33としては、記録ピットが存在すると
きに記録ピットによって反射光が散乱するCD(コンパ
クトディスク)や、反射光強度が変化する相変化型の記
録媒体であっても、その記録信号を検出し得るものとな
る。Further, the detection (reproduction) of the recording signal (that is, the RF signal) on the optical disk 33 is performed by all the photodetectors 21.
It suffices to take the sum of the detection signals at a to 21d. In this case, even if the optical disc 33 is a CD (compact disc) in which reflected light is scattered by the recording pits when there are recording pits, or a phase change type recording medium in which the intensity of the reflected light changes, the recording signal Can be detected.
【0040】[0040]
【発明の効果】請求項1記載の発明によれば、スラブ型
光導波路を形成する導波路層と空気層との境界面により
前記スラブ型光導波路平面に対して略垂直に形成される
反射面を有する導波路型光反射集光器により形成される
導波路型光反射集光光学系において、前記スラブ型光導
波路に対する導波光の光軸を含むこの導波光の略半分を
取込んで導波路外方に向けて反射集光させる第1の導波
路型光反射集光器と、この第1の導波路型光反射集光器
の近傍に形成されて前記第1の導波路型光反射集光器か
らの反射光束の最外側の入射角が境界面における臨界角
より大きくなるように配置させた反射面を有して前記第
1の導波路型光反射集光器の後方に向けて反射させる第
2の導波路型光反射集光器と、この第2の導波路型光反
射集光器の近傍に形成されて前記第2の導波路型光反射
集光器からの反射光束の入射角が境界面における臨界角
より大きくなるように配置させた反射面を有して前記第
1の導波路型光反射集光器の後部位置に向けて折返し反
射させる第3の導波路型光反射集光器とを設けたので、
導波路層と空気層との境界面により光導波路平面に対し
て略垂直に形成される反射面を有する導波路型光反射集
光器によれば臨界角を小さくでき導波光の光路を大きく
変更し得る特徴を最大限活かしつつ、導波光の光利用効
率を高く維持したまま、スラブ型光導波路面内を有効に
活用できるものとなり、無駄なスペースがなく、導波路
型光反射集光光学系デバイスの構成を小型・コンパクト
化することができる。According to the first aspect of the invention, the reflecting surface is formed substantially perpendicular to the plane of the slab type optical waveguide by the interface between the waveguide layer forming the slab type optical waveguide and the air layer. In a waveguide type light reflection / condensation optical system formed by a waveguide type light reflection / concentrator having a waveguide, the waveguide is formed by taking in approximately half of the guided light including the optical axis of the guided light with respect to the slab type optical waveguide. A first waveguide type light reflection concentrator for reflecting and concentrating toward the outside, and the first waveguide type light reflection concentrator formed near the first waveguide type light reflection concentrator. Reflecting toward the rear of the first waveguide type optical reflection concentrator having a reflection surface arranged such that the outermost incident angle of the reflected light flux from the optical device is larger than the critical angle at the boundary surface. A second waveguide type light reflection concentrator to be provided, and in the vicinity of the second waveguide type light reflection concentrator. The first waveguide type light having a reflecting surface formed so that the incident angle of the reflected light flux from the second waveguide type optical reflection concentrator is larger than the critical angle at the boundary surface. Since a third waveguide type optical reflection concentrator for reflecting back toward the rear position of the reflection concentrator is provided,
With a waveguide-type optical reflection concentrator having a reflecting surface formed almost perpendicular to the optical waveguide plane by the boundary surface between the waveguide layer and the air layer, the critical angle can be made smaller and the optical path of the guided light can be greatly changed. The slab optical waveguide surface can be effectively used while keeping the light utilization efficiency of the guided light high while making maximum use of the features that can be achieved, and there is no wasted space, and the waveguide type light reflection and collection optical system is available. The device configuration can be made smaller and more compact.
【0041】請求項2記載の発明によれば、このような
導波路型光反射集光光学系に導波路結合器と光検出器と
を加えて導波路型光信号検出素子を構成したので、導波
路型光信号検出素子デバイスを小型・コンパクト化で
き、この結果、導波路型光信号検出素子デバイスを同一
ウエハ上に同時に作製する製造方法による場合、ウエハ
1枚当りの作製素子数を増やすことができ、素子の製造
コストを低下させることもできる。According to the second aspect of the invention, since a waveguide coupler and a photodetector are added to such a waveguide type optical reflection and collection optical system to form a waveguide type optical signal detecting element, The waveguide type optical signal detecting element device can be made compact and compact. As a result, when the waveguide type optical signal detecting element device is produced on the same wafer at the same time, the number of producing elements per wafer is increased. Therefore, the manufacturing cost of the device can be reduced.
【0042】請求項3記載の発明によれば、請求項2記
載の発明の構成に加え、光検出器に対する導波光入射位
置に入射方向規制開口を設けたので、集光導波する光路
が内側に向けて折返し集光光路を形成するように設定さ
れ光検出器に向かう導波光が導波路内で交差しており、
反射面と光検出器が近接するため、散乱光が光検出器へ
入射する確率が高くなってしまう懸念に対して、この入
射方向規制開口により散乱光の入射を低減させることが
でき、光検出器による検出信号のS/N比を向上させる
ことができる。According to the third aspect of the invention, in addition to the configuration of the second aspect of the invention, since the incident direction regulating opening is provided at the guided light incident position with respect to the photodetector, the optical path for collecting and guiding the light is inward. The guided light directed to the photodetector, which is set so as to form a folded converging optical path, crosses in the waveguide,
Due to the proximity of the reflection surface and the photodetector, the probability that scattered light will enter the photodetector will increase, but this incident direction control aperture can reduce the incidence of scattered light. It is possible to improve the S / N ratio of the detection signal by the detector.
【0043】請求項4記載の発明によれば、請求項3記
載の構成に加え、光検出器位置に対応するスラブ型光導
波路の最表面に遮光部材を設けたので、このような部位
から光検出器への散乱光の入射も防止できるものとな
り、検出信号のS/N比を一層向上させることができ
る。According to the invention described in claim 4, in addition to the structure described in claim 3, since the light shielding member is provided on the outermost surface of the slab type optical waveguide corresponding to the position of the photodetector, the light is emitted from such a portion. The scattered light can be prevented from entering the detector, and the S / N ratio of the detection signal can be further improved.
【0044】請求項5記載の発明によれば、このような
導波路型光反射集光光学系及び光検出器を実装したスラ
ブ型光導波路付き基板とプリズムカプラとを光源、集光
光学系等と組合せて集積型の光ピックアップを構成した
ので、検出感度を損なうことなく、光ピックアップを小
型・コンパクト化することができる。According to the fifth aspect of the present invention, a substrate with a slab type optical waveguide on which such a waveguide type light reflection / focusing optical system and a photodetector are mounted and a prism coupler are used as a light source, a focusing optical system, etc. Since the integrated optical pickup is configured in combination with the optical pickup, the optical pickup can be made compact and compact without impairing the detection sensitivity.
【図1】本発明の第一の実施例を示す平面的構成図であ
る。FIG. 1 is a plan configuration diagram showing a first embodiment of the present invention.
【図2】導波路構造を示す断面図である。FIG. 2 is a cross-sectional view showing a waveguide structure.
【図3】変形例を示す平面的構成図である。FIG. 3 is a plan configuration diagram showing a modified example.
【図4】別の変形例を示す平面的構成図である。FIG. 4 is a plan configuration diagram showing another modification.
【図5】本発明の第二の実施例を示す光検出器に対する
集光状態を説明するための平面的構成図である。FIG. 5 is a plan configuration diagram for explaining a condensed state of a photodetector showing a second embodiment of the present invention.
【図6】平面的構成図である。FIG. 6 is a plan configuration diagram.
【図7】本発明の第三の実施例を示す断面図である。FIG. 7 is a sectional view showing a third embodiment of the present invention.
【図8】本発明の第四の実施例を示す概略側面図であ
る。FIG. 8 is a schematic side view showing a fourth embodiment of the present invention.
【図9】従来例を示す平面的構成図である。FIG. 9 is a plan configuration diagram showing a conventional example.
【図10】従来例を示す平面的構成図である。FIG. 10 is a plan configuration diagram showing a conventional example.
13 導波路層 15 スラブ型光導波路 16 導波路結合器、プリズムカプラ 16a 入射面 16b 底面 16c 出射面 17a,17b 第1の導波路型光反射集光器 18a,18b 第2の導波路型光反射集光器 19a,19b 第3の導波路型光反射集光器 20 導波路型光反射集光光学系 21a〜21d 光検出器 22 導波路型光信号検出素子 23 反射面 24 空気層 26 入射方向規制開口 27 遮光部材 29 スラブ型光導波路付き基板 30 光ピックアップ 31 光源 33 光情報記録媒体 34 集光光学系 13 Waveguide Layer 15 Slab Optical Waveguide 16 Waveguide Coupler, Prism Coupler 16a Incident Surface 16b Bottom Surface 16c Emission Surface 17a, 17b First Waveguide Type Light Reflecting Concentrator 18a, 18b Second Waveguide Type Light Reflector Concentrators 19a, 19b Third waveguide type light reflection / concentrator 20 Waveguide type light reflection / condensing optical system 21a to 21d Photodetector 22 Waveguide type optical signal detection element 23 Reflective surface 24 Air layer 26 Incident direction Restriction opening 27 Light-shielding member 29 Substrate with optical waveguide 30 Optical pickup 31 Light source 33 Optical information recording medium 34 Condensing optical system
Claims (5)
空気層との境界面により前記スラブ型光導波路平面に対
して略垂直に形成される反射面を有する導波路型光反射
集光器により形成される導波路型光反射集光光学系にお
いて、前記スラブ型光導波路に対する導波光の光軸を含
むこの導波光の略半分を取込んで導波路外方に向けて反
射集光させる第1の導波路型光反射集光器と、この第1
の導波路型光反射集光器の近傍に形成されて前記第1の
導波路型光反射集光器からの反射光束の最外側の入射角
が境界面における臨界角より大きくなるように配置させ
た反射面を有して前記第1の導波路型光反射集光器の後
方に向けて反射させる第2の導波路型光反射集光器と、
この第2の導波路型光反射集光器の近傍に形成されて前
記第2の導波路型光反射集光器からの反射光束の入射角
が境界面における臨界角より大きくなるように配置させ
た反射面を有して前記第1の導波路型光反射集光器の後
部位置に向けて折返し反射させる第3の導波路型光反射
集光器とを設けたことを特徴とする導波路型光反射集光
光学系。1. A waveguide type optical reflection concentrator having a reflection surface formed substantially perpendicular to the plane of the slab type optical waveguide by an interface between a waveguide layer forming the slab type optical waveguide and an air layer. In the waveguide type light reflection / condensation optical system formed by, approximately half of the guided light including the optical axis of the guided light with respect to the slab type optical waveguide is taken in and reflected and condensed toward the outside of the waveguide. 1 waveguide type light reflection concentrator, and the first
Is formed in the vicinity of the waveguide type optical reflection concentrator, and is arranged so that the outermost incident angle of the reflected light flux from the first waveguide type optical reflection concentrator is larger than the critical angle at the boundary surface. A second waveguide type optical reflection concentrator having a reflective surface and reflecting toward the rear of the first waveguide type optical reflection concentrator;
It is formed in the vicinity of the second waveguide type light reflection concentrator and is arranged so that the incident angle of the reflected light flux from the second waveguide type light reflection concentrator is larger than the critical angle at the boundary surface. And a third waveguide type optical reflection concentrator having a reflecting surface for reflecting back toward the rear position of the first waveguide type optical reflection concentrator. Type light reflection condensing optical system.
せる導波路結合器と、請求項1記載の導波路型光反射集
光光学系と、この導波路型光反射集光光学系の焦点位置
近傍に配置させた光検出器とを前記スラブ型光導波路に
対して設けたことを特徴とする導波路型光信号検出素
子。2. A waveguide coupler for coupling and exciting external light to a slab type optical waveguide, a waveguide type light reflection and focusing optical system according to claim 1, and a focus of the waveguide type light reflection and focusing optical system. A waveguide type optical signal detecting element, characterized in that a photodetector disposed near the position is provided for the slab type optical waveguide.
方向規制開口を設けたことを特徴とする請求項2記載の
導波路型光信号検出素子。3. The waveguide type optical signal detecting element according to claim 2, wherein an incident direction regulating opening is provided at a guided light incident position with respect to the photodetector.
路の最表面に遮光部材を設けたことを特徴とする請求項
3記載の導波路型光信号検出素子。4. A waveguide type optical signal detecting element according to claim 3, wherein a light shielding member is provided on the outermost surface of the slab type optical waveguide corresponding to the position of the photodetector.
情報記録媒体上に集光照射させる集光光学系と、前記光
情報記録媒体からの戻り光に基づき信号を検出するため
の請求項1記載の導波路型光反射集光光学系とこの導波
路型光反射集光光学系の焦点位置近傍に配置させた光検
出器とを実装したスラブ型光導波路付き基板と、このス
ラブ型光導波路付き基板上に実装されて前記光源から出
射された光を取込む入射面と取込んだ光を反射させる底
面と反射光を前記集光光学系に向けて出射させるととも
に前記戻り光の一部を前記底面を介して前記スラブ型光
導波路に結合させる出射面とを有するプリズムカプラと
よりなることを特徴とする光ピックアップ。5. A light source, a condensing optical system for condensing and irradiating light emitted from the light source onto an optical information recording medium, and a signal for detecting a signal based on the return light from the optical information recording medium. A substrate with a slab type optical waveguide on which the waveguide type light reflection / focusing optical system according to Item 1 and a photodetector arranged near the focal point of the waveguide type light reflection / focusing optical system are mounted, and this slab type An incident surface that is mounted on a substrate with an optical waveguide and that captures the light emitted from the light source, a bottom surface that reflects the captured light, and a reflected light that is emitted toward the converging optical system An optical pickup comprising: a prism coupler having an exit surface for coupling the portion to the slab type optical waveguide through the bottom surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31981093A JPH07174925A (en) | 1993-12-20 | 1993-12-20 | Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickup |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31981093A JPH07174925A (en) | 1993-12-20 | 1993-12-20 | Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickup |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07174925A true JPH07174925A (en) | 1995-07-14 |
Family
ID=18114457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31981093A Pending JPH07174925A (en) | 1993-12-20 | 1993-12-20 | Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickup |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07174925A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501876B1 (en) | 1998-04-20 | 2002-12-31 | Sharp Kabushiki Kaisha | Bidirectional optical communication device and bidirectional optical communication apparatus |
JP2006058499A (en) * | 2004-08-18 | 2006-03-02 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide device |
-
1993
- 1993-12-20 JP JP31981093A patent/JPH07174925A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501876B1 (en) | 1998-04-20 | 2002-12-31 | Sharp Kabushiki Kaisha | Bidirectional optical communication device and bidirectional optical communication apparatus |
JP2006058499A (en) * | 2004-08-18 | 2006-03-02 | Nippon Telegr & Teleph Corp <Ntt> | Optical waveguide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4022412B2 (en) | Composite reflection prism and optical pickup device using the same | |
US6747939B2 (en) | Semiconductor laser device and optical pickup device using the same | |
US5418765A (en) | Apparatus for recording and reproducing optical information having an optical waveguide | |
KR20060095433A (en) | Optical head, optical information reproducing apparatus and manufacturing method thereof | |
JP2682087B2 (en) | Optical pickup device | |
JPH08171747A (en) | Optical pickup device | |
JPH06267108A (en) | Mode separating element and pickup for magneto-optical disk | |
JP2000339744A (en) | Optical integrated device and its production | |
JP3545028B2 (en) | Optical pickup device | |
JP3635522B2 (en) | Optical integrated device | |
JPH07174925A (en) | Waveguide type light reflecting and condensing optical system and waveguide type optical signal detecting element using the same as well as optical pickup | |
JPH09106569A (en) | Optical pickup device | |
JP3067906B2 (en) | Optical pickup device | |
JPH0246536A (en) | Optical pickup device | |
JP2506972B2 (en) | Optical pickup device | |
JP2825873B2 (en) | Optical waveguide | |
JP3152456B2 (en) | Focus error signal detecting device, optical information recording / reproducing device, and magneto-optical information recording / reproducing device | |
JP2002367218A (en) | Optical pickup device | |
JP3393680B2 (en) | Optical pickup | |
JPH03192542A (en) | Optical pickup | |
JP2709090B2 (en) | Waveguide type optical head | |
JPH04228119A (en) | Focusing position detector | |
JP2513237B2 (en) | Optical head device | |
JPH11232685A (en) | Beam shaping device and optical pickup using the same | |
JPS62102437A (en) | Optical head device |