[go: up one dir, main page]

JPH07172923A - Production of hard sintered material having high tenacity for tool - Google Patents

Production of hard sintered material having high tenacity for tool

Info

Publication number
JPH07172923A
JPH07172923A JP5324286A JP32428693A JPH07172923A JP H07172923 A JPH07172923 A JP H07172923A JP 5324286 A JP5324286 A JP 5324286A JP 32428693 A JP32428693 A JP 32428693A JP H07172923 A JPH07172923 A JP H07172923A
Authority
JP
Japan
Prior art keywords
sintered body
volume
raw material
tool
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5324286A
Other languages
Japanese (ja)
Inventor
Makoto Kyoda
誠 鏡田
Tadakatsu Nabeya
忠克 鍋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIIDE KK
Taiheiyo Cement Corp
Original Assignee
RIIDE KK
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIIDE KK, Chichibu Onoda Cement Corp filed Critical RIIDE KK
Priority to JP5324286A priority Critical patent/JPH07172923A/en
Publication of JPH07172923A publication Critical patent/JPH07172923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a sintered material excellent in tenacity, chipping resistance, strength, hardness, abrasion resistance and workability and useful as a material for e.g. a tool to cut hard steel, cast ion, a heat resistant alloy, an iron-reinforced building material, etc., at a low pressure at low cost. CONSTITUTION:A powdery raw material containing (A) 30-70vol.% of cubic baron nitride, (B) 20-50vol.% of powdery aluminum oxide and (C) 10-30vol.% of at least one kind selected from carbides and nitrides of transition metals of the groups 4a, 5a and 6a of the Periodic Table is sintered at 1100-1250 deg.C at a pressure of 5-20kb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた靱性、強度及び
耐摩耗性を有し、高硬度鋼、鋳鉄、耐熱合金、鉄筋入り
建材等の切削工具材料として好適な焼結体の製造方法に
関する。
The present invention relates to a method for producing a sintered body which has excellent toughness, strength and wear resistance and is suitable as a cutting tool material such as high hardness steel, cast iron, heat resistant alloys and building materials with reinforcing bars. Regarding

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】立方晶
窒化硼素(以下、cBNという)は、ダイヤモンドに次
ぐ高硬度の材料であり、優れた熱伝導度を有すると共
に、高温における鉄系金属との反応性がダイヤモンドに
比較して著しく小さいことから、その超高圧焼結体は、
高硬度鋼、鋳鉄、耐熱合金等の切削工具材料として最近
特に注目されている。
BACKGROUND OF THE INVENTION Cubic boron nitride (hereinafter referred to as cBN) is a material having the second highest hardness after diamond, has excellent thermal conductivity, and at the same time, is an iron-based metal at high temperatures. Since the reactivity of is extremely smaller than that of diamond,
Recently, it has been particularly noted as a cutting tool material such as high hardness steel, cast iron, and heat resistant alloy.

【0003】しかしながら、従来のcBN焼結体は、通
常50kb以上の超高圧力下で焼結されるため、これを用
いた切削工具は、セラミックス、サーメット、超硬合金
工具に比較して数十倍以上の価格になるという問題があ
った。また、この工具は高硬度鋼、鋳鉄、耐熱合金等の
切削加工、特に断続切削において、工具刃先に衝撃力が
作用するので、時としてチッピング摩耗あるいは刃先破
損を起こすという問題も有していた。
However, since the conventional cBN sintered body is usually sintered under an ultrahigh pressure of 50 kb or more, a cutting tool using this is several tens of thousands as compared with ceramics, cermet and cemented carbide tools. There was a problem that it would be more than double the price. In addition, this tool has a problem that chipping wear or breakage of the cutting edge sometimes occurs because an impact force acts on the cutting edge of the tool during cutting of high hardness steel, cast iron, heat-resistant alloy, etc., particularly intermittent cutting.

【0004】吉田らは、cBN含有無機複合焼結体は、
これを焼結する際には、cBNが安定ではない(準安定
な)圧力温度条件であっても、1200℃以下の低温度
であれば、cBNの相転移速度が著しく抑えられるた
め、その結合相を形成する無機材料の緻密化を促進する
ことにのみ効果のある圧力を作用させれば、cBN含有
無機複合焼結体をある程度緻密化させることが可能であ
ると報告している(第29回高圧討論会講演要旨集(1
988年)、特開平2−302371号公報)。
[0004] Yoshida et al.
When this is sintered, even if the pressure and temperature conditions are such that cBN is not stable (metastable), at a low temperature of 1200 ° C. or lower, the phase transition rate of cBN is remarkably suppressed, so that the bonding It has been reported that it is possible to densify the cBN-containing inorganic composite sintered body to some extent by applying a pressure effective only for promoting densification of the phase-forming inorganic material (29th). Abstracts of the 1st High-Volume Debate Conference (1
1988), JP-A-2-302371).

【0005】しかしながら、この圧力が2000MPa
以内で、1500℃を超えない温度で焼結するという条
件においても、焼結条件は原料により異なるため、必ず
しも高硬度の焼結体が得られるというものではなかっ
た。また、硬度の面でも未だ充分ではなかった。従っ
て、靱性、耐欠損性、強度、耐摩耗性、加工性などの特
性に優れ、しかも経済的に得ることができ、切削工具材
料として好適な焼結体が望まれていた。
However, this pressure is 2000 MPa.
Even under the condition that the sintering is performed at a temperature not exceeding 1500 ° C., the sintering conditions are different depending on the raw materials, so that it is not always possible to obtain a high hardness sintered body. Moreover, the hardness was not yet sufficient. Therefore, a sintered body having excellent characteristics such as toughness, fracture resistance, strength, wear resistance, and workability, which can be economically obtained, and which is suitable as a cutting tool material has been desired.

【0006】[0006]

【課題を解決するための手段】かかる実情において、本
発明者らは鋭意研究を行った結果、cBNと酸化アルミ
ニウム粉末、周期律表第4a、5a、6a族の遷移金属
の炭化物又は窒化物を組合わせた原料粉末を、1100
〜1250℃で5〜20kbの、従来のcBN焼結体に比
較して著しく低圧力下で焼結することにより、前記課題
を解決した優れた特性を有する工具用高靱性硬質焼結体
が得られることを見出し、本発明を完成した。
Under these circumstances, the inventors of the present invention have conducted extensive studies and as a result, have found that cBN and aluminum oxide powder, carbides or nitrides of transition metals of Groups 4a, 5a and 6a of the Periodic Table. 1100 of the combined raw material powder
By sintering at a temperature of ˜1250 ° C. and a size of 5 to 20 kb, which is significantly lower than that of a conventional cBN sintered body, a high toughness hard sintered body for a tool having excellent characteristics, which solves the above problems, is obtained. Therefore, the present invention has been completed.

【0007】すなわち、本発明は、次の(A)〜
(C): (A)立方晶窒化硼素粉末 30〜70容量%、 (B)酸化アルミニウム粉末 20〜50容量%、 (C)周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれ る1種又は2種以上 10〜30容量% を含有する原料粉末を、温度1100〜1250℃、圧
力5〜20kbで焼結することを特徴とする工具用高靱性
硬質焼結体の製造方法を提供するものである。
That is, the present invention provides the following (A)-
(C): (A) Cubic boron nitride powder 30 to 70% by volume, (B) Aluminum oxide powder 20 to 50% by volume, (C) Carbides and nitriding of transition metals of Groups 4a, 5a and 6a of the periodic table. A high toughness hard sintered body for tools, characterized in that a raw material powder containing one or more kinds selected from the group of 10 to 30% by volume is sintered at a temperature of 1100 to 1250 ° C. and a pressure of 5 to 20 kb. The present invention provides a method for manufacturing the same.

【0008】本発明で用いられる(A)cBN粉末とし
ては、特に制限されないが、その平均粒径が100μm
以下のものが好ましい。平均粒径が100μmを超えた
ものを用いると、刃先強度が低下する傾向がある。cB
N粉末は、ダイヤモンドに次ぐ著しい硬度を有するた
め、焼結体の硬度、耐摩耗性の向上、さらに結合相中に
分散することによる焼結体の強靱化に役立つものであ
る。
The (A) cBN powder used in the present invention is not particularly limited, but its average particle size is 100 μm.
The following are preferred. If the average particle size exceeds 100 μm, the cutting edge strength tends to decrease. cB
Since the N powder has a remarkable hardness second only to diamond, it is useful for improving the hardness and wear resistance of the sintered body and for strengthening the sintered body by dispersing it in the binder phase.

【0009】cBN粉末は、原料粉末中に30〜70容
量%、好ましくは45〜65容量%配合される。30容
量%未満では、cBN固有の特性に由来する充分な硬
度、耐摩耗性を有する焼結体が得られず、70容量%を
超えると、連続したネットワークを形成する上記結合相
の緻密化が阻害され、緻密でかつ高硬度の焼結体を得る
ことができない。
The cBN powder is mixed in the raw material powder in an amount of 30 to 70% by volume, preferably 45 to 65% by volume. If it is less than 30% by volume, a sintered body having sufficient hardness and wear resistance derived from the properties peculiar to cBN cannot be obtained, and if it exceeds 70% by volume, the above binder phase forming a continuous network is densified. It is difficult to obtain a dense and high-hardness sintered body.

【0010】このcBN粉末は、結合相を形成する後記
成分(B)、(C)のいずれかと同じ物質、すなわち、
酸化アルミニウム粉末並びに周期律表第4a、5a、6
a族の遷移金属の炭化物及び窒化物から選ばれる1種以
上の成分により表面をコーティングして用いるのが好ま
しい。このようにコーティングすることにより、cBN
粉末と結合相を形成する物質の濡れ性を改善し、塑性変
形し難いcBN同志が直接に接する部分を排除し、かつ
結合相を形成する塑性変性し易い物質の塑性変形によっ
てcBN粒子間の空隙を充填して緻密化し、機械的物性
に優れた焼結体を可能にする。なお、焼結時に付加する
圧力はこの緻密化を助長する作用をも有する。
This cBN powder is the same substance as one of the components (B) and (C) described below, which forms a binder phase, that is,
Aluminum oxide powder and Periodic Table Nos. 4a, 5a, 6
The surface is preferably coated with one or more components selected from carbides and nitrides of Group a transition metals. By coating in this way, cBN
Improves the wettability of the substance that forms the binder phase with the powder, eliminates the parts where the cBN that is difficult to plastically deform directly contacts, and the voids between the cBN particles due to the plastic deformation of the substance that easily forms the binder phase and that is easily plastically modified. To densify it to enable a sintered body with excellent mechanical properties. The pressure applied during sintering also has the function of promoting this densification.

【0011】コーティング方法としては特に制限され
ず、例えばPVD法、CVD法等を適用することができ
る。また、コーティング量は、cBN粉末に対して外割
りで0.5〜15容量%、特に5〜10容量%であるの
が好ましい。0.5容量%未満では充分なコーティング
効果が得られず、15容量%を超えると、cBN粉末に
コーティングされない遊離物質が生成するので好ましく
ない。
The coating method is not particularly limited, and for example, PVD method, CVD method and the like can be applied. The coating amount is preferably 0.5 to 15% by volume, and particularly preferably 5 to 10% by volume, based on the cBN powder. If it is less than 0.5% by volume, a sufficient coating effect cannot be obtained, and if it exceeds 15% by volume, a free substance which is not coated on the cBN powder is produced, which is not preferable.

【0012】また、(B)酸化アルミニウム粉末は、原
料粉末中に20〜50容量%、好ましくは25〜40容
量%配合される。20容量%未満では、難焼結性成分で
ある(A)又は(C)の配合割合が大きくなり、本発明
の焼結温度である1100〜1250℃のようなcBN
の相転移速度の非常に遅い低温下での緻密化が行われ
ず、また耐酸化性、化学的安定性といった酸化アルミニ
ウム特有の特長が生かされない。また50容量%を超え
ると、原料粉末中における成分(A)又は(C)の配合
割合が小さくなるため、耐摩耗性、高温特性が低下し、
良好な焼結体が得られない。
The aluminum oxide powder (B) is mixed in the raw material powder in an amount of 20 to 50% by volume, preferably 25 to 40% by volume. If it is less than 20% by volume, the mixing ratio of (A) or (C), which is a hardly sinterable component, becomes large, and cBN such as 1100 to 1250 ° C., which is the sintering temperature of the present invention.
It does not undergo densification at low temperatures, which has a very slow phase transition rate, and does not take advantage of the unique features of aluminum oxide such as oxidation resistance and chemical stability. On the other hand, when it exceeds 50% by volume, the blending ratio of the component (A) or (C) in the raw material powder becomes small, so that the wear resistance and the high temperature characteristics deteriorate,
A good sintered body cannot be obtained.

【0013】本発明で用いる(C)周期律表第4a、5
a、6a族の遷移金属の炭化物、窒化物としては、例え
ばTiC、ZrC、WC、TaC、VC、MoC、Ti
N、ZrN、TaN等が挙げられる。これらは1種又は
2種以上を組合わせて用いることができ、さらに、これ
らの固溶体粉末を用いることもできる。これらの成分
(C)は、原料粉末中に10〜30容量%、好ましくは
15〜25容量%配合される。10容量%未満では、切
削工具として使用した場合の、これらの化合物に特徴的
な高温時の特性(硬度、強度、熱伝導率、熱膨張率)及
び通電性を有することによる易加工性が生かされず、3
0容量%を超えると、結合相に占めるこれら難焼結性の
高融点化合物の割合が多くなり、結合相の緻密化が阻害
されるため好ましくない。
(C) Periodic Table Nos. 4a and 5 used in the present invention
Examples of the carbides and nitrides of the a and 6a group transition metals include TiC, ZrC, WC, TaC, VC, MoC and Ti.
N, ZrN, TaN, etc. are mentioned. These may be used alone or in combination of two or more, and further, solid solution powders thereof may be used. These components (C) are mixed in the raw material powder in an amount of 10 to 30% by volume, preferably 15 to 25% by volume. When the content is less than 10% by volume, when used as a cutting tool, the high temperature characteristics (hardness, strength, thermal conductivity, thermal expansion coefficient) characteristic of these compounds and the easy workability due to the electrical conductivity are utilized. Not 3
If it exceeds 0% by volume, the proportion of these refractory metal compounds having high sinterability in the binder phase increases, which hinders the densification of the binder phase, which is not preferable.

【0014】また、本発明においては、原料粉末中に金
属アルミニウム粉末を配合することができる。この金属
アルミニウムは焼結助剤として作用するものであり、焼
結時に粘性流動によって緻密化を促進し、かつ焼結中に
AlNが生じ、その過程で焼結体を強固に結合する作用
を有し、密度及び靱性により優れた焼結体を得ることが
できる。金属アルミニウム粉末を用いる場合には、原料
粉末中に0.1〜10容量%、特に1〜5容量%配合す
るのが好ましい。10容量%を超えて配合すると、金属
アルミニウムが残留し、焼結体の硬度が低下するので好
ましくない。
Further, in the present invention, metallic aluminum powder can be mixed in the raw material powder. This metallic aluminum acts as a sintering aid, promotes densification by viscous flow at the time of sintering, and AlN is generated during sintering, and has a function of firmly bonding the sintered body in the process. However, it is possible to obtain a sintered body that is more excellent in density and toughness. When metallic aluminum powder is used, it is preferable to add 0.1 to 10% by volume, especially 1 to 5% by volume to the raw material powder. If the content exceeds 10% by volume, metallic aluminum remains and the hardness of the sintered body decreases, which is not preferable.

【0015】また、原料粉末には、さらに炭化珪素ウィ
スカーを配合することもできる。ここで用いる炭化珪素
ウィスカーとしては、α型、β型のいずれでも良く、特
に純度98%以上、長さ100μm以下で、アスペクト
比10〜30程度のものが好ましい。このような炭化珪
素ウィスカーを用いることにより、さらに強靱な焼結体
を得ることができる。炭化珪素ウィスカーを用いる場合
には、原料粉末中に1〜20容量%、特に5〜15容量
%配合するのが好ましい。20容量%を超えて配合する
と、結合相に占める難焼結性の高融点の炭化珪素ウィス
カーの割合が多くなり、結合相の緻密化が阻害されるの
で好ましくない。
Further, the raw material powder may further contain silicon carbide whiskers. The silicon carbide whiskers used here may be either α-type or β-type, and are preferably those having a purity of 98% or more, a length of 100 μm or less, and an aspect ratio of about 10 to 30. By using such a silicon carbide whisker, a tougher sintered body can be obtained. When silicon carbide whiskers are used, it is preferable to add 1 to 20% by volume, especially 5 to 15% by volume to the raw material powder. If the content exceeds 20% by volume, the proportion of the refractory silicon carbide whiskers with high melting point which occupy the binder phase increases and the densification of the binder phase is hindered.

【0016】本発明においては、まず、前記(A)〜
(C)を含む成分を混合して原料粉末を調製する。この
原料粉末は、そのまま又は型押し成型等の処理後、例え
ばピストンシリンダー型高温高圧発生装置等の高温高圧
発生装置を使用し、1100〜1250℃、5〜20kb
の熱力学的にcBNの準安定な領域で焼結する。
In the present invention, first, the above (A)-
A raw material powder is prepared by mixing components including (C). This raw material powder is used as it is or after treatment such as embossing molding, using a high temperature and high pressure generator such as a piston cylinder type high temperature and high pressure generator, 1100 to 1250 ° C., 5 to 20 kb.
Sintering in the metastable region of thermodynamically cBN.

【0017】焼結温度が1100℃未満では焼結体は緻
密化せず、また1250℃を超える場合は、著しいcB
Nの相転移が起こり、機械的に軟弱な六方晶窒化硼素
(hBN)が多量に生じ、cBN固有の硬度、耐摩耗性
が損なわれる。特に1150〜1200℃で焼結するの
が好ましい。
If the sintering temperature is less than 1100 ° C., the sintered body will not be densified, and if it exceeds 1250 ° C., a significant cB will occur.
A phase transition of N occurs, a large amount of mechanically weak hexagonal boron nitride (hBN) is generated, and the hardness and wear resistance inherent to cBN are impaired. It is particularly preferable to sinter at 1150 to 1200 ° C.

【0018】また、焼結圧力が5kb未満では、1100
〜1250℃の温度領域において結合相の緻密化に寄与
する圧力の効果が充分に作用しないため高硬度、高密度
の焼結体が得られず、焼結圧力が20kbを超えると、驚
くべきことに焼結体の靱性及び強度が低下する。20kb
を超える焼結圧力にて得られた焼結体の靱性及び強度が
低下する理由については必ずしも完全には解明されてい
ないが、以下の理由によると推測される。すなわち、焼
結圧力が高い場合には、焼結体を構成するcBN及び結
合相粒子が塑性変形すると同時に相当量の歪み、粒内破
壊が導入される。この歪み、粒内破壊の存在によって、
焼結体の靱性を決定する亀裂の伸長に対する抵抗が著し
く低下し、靱性及び強度が低下したものと考えられる。
従って、焼結圧力は、5〜20kbとすることが必要であ
り、特に5〜15kbで焼結するのが好ましい。
When the sintering pressure is less than 5 kb, it is 1100.
In the temperature range of ~ 1250 ° C, the effect of the pressure that contributes to the densification of the binder phase does not sufficiently act, so that a high hardness and high density sintered body cannot be obtained, and it is surprising that the sintering pressure exceeds 20 kb. In addition, the toughness and strength of the sintered body decrease. 20 kb
Although the reason why the toughness and strength of the sintered body obtained at a sintering pressure exceeding 10 is deteriorated has not been completely clarified, it is presumed that the reason is as follows. That is, when the sintering pressure is high, the cBN and the binder phase particles constituting the sintered body are plastically deformed, and at the same time, a considerable amount of strain and intragranular fracture are introduced. Due to this strain and the existence of intragranular fracture,
It is considered that the resistance to the elongation of cracks, which determines the toughness of the sintered body, was remarkably lowered, and the toughness and strength were lowered.
Therefore, it is necessary to set the sintering pressure to 5 to 20 kb, and it is particularly preferable to sinter at 5 to 15 kb.

【0019】また、焼結の際には、原料粉末を超硬合金
原料基板上に積層配置し、これらを同時に焼結、接合す
ることもできる。基板となる超硬合金原料としては、W
C−Co等が挙げられ、これらは靱性、剛性、及び熱伝
導性に優れ、切削工具として使用するのに適しており、
工具基材とのロウ付け性にも優れている。本発明におい
ては、焼結温度が1100〜1250℃と低いため、通
常の超硬合金焼結プロセスにおいて認められる液相は、
超硬合金基板中には出現しないが、高圧力下での焼結で
あるため、充分に固相焼結する。また、焼結中に液相が
出現しないため、超硬合金に積層配置した上記cBN含
有硬質層を形成する原料中に、Co等の液相が侵入する
ことも無いために、硬質層が変質したり、Co等の液相
侵入によるcBNの相転移の著しい促進に起因した耐摩
耗性の低下もない。硬質層を形成する焼結体厚さは、用
途、経済性及び工具強度を考慮して適宜決定すればよ
く、0.5〜10mmが好ましく、0.5〜2mmであるの
が更に好ましい。
Further, at the time of sintering, the raw material powders may be laminated and arranged on the cemented carbide raw material substrate, and these may be simultaneously sintered and joined. As a cemented carbide raw material for the substrate, W
C-Co and the like, which are excellent in toughness, rigidity, and thermal conductivity, and are suitable for use as a cutting tool,
It is also excellent in brazability with tool base materials. In the present invention, since the sintering temperature is as low as 1100 to 1250 ° C., the liquid phase found in the ordinary cemented carbide sintering process is
Although it does not appear in the cemented carbide substrate, it is sufficiently solid-phase sintered because it is sintered under high pressure. Further, since the liquid phase does not appear during sintering, the hard layer is altered because the liquid phase such as Co does not enter the raw material for forming the cBN-containing hard layer laminated on the cemented carbide. Also, there is no decrease in wear resistance due to the remarkable promotion of the phase transition of cBN due to the penetration of liquid phase such as Co. The thickness of the sintered body forming the hard layer may be appropriately determined in consideration of use, economy and tool strength, and is preferably 0.5 to 10 mm, more preferably 0.5 to 2 mm.

【0020】本発明により得られる焼結体は、成分
(B)及び(C)が結合相を形成し、この結合相がcB
N粒子間に連続的に分布して強固なネットワークを形成
し、その状態が焼結体の靱性を著しく左右する。そし
て、本発明によれば、靱性、耐欠損性、強度、硬度、耐
摩耗性及び加工性に優れた焼結体が得られる。
In the sintered body obtained according to the present invention, the components (B) and (C) form a binder phase, and this binder phase is cB.
The N particles are continuously distributed to form a strong network, and the state thereof significantly affects the toughness of the sintered body. Then, according to the present invention, a sintered body having excellent toughness, fracture resistance, strength, hardness, wear resistance and workability can be obtained.

【0021】[0021]

【実施例】次に、実施例を挙げて本発明を更に説明する
が、本発明はこれら実施例に限定されるものではない。
EXAMPLES Next, the present invention will be further described with reference to examples, but the present invention is not limited to these examples.

【0022】実施例1 表1〜表6に示す組成の原料を混合して原料粉末を調製
し、これを表1〜表6に示す圧力及び温度で焼成した。
原料に使用したcBN粉末の平均粒径は3μm程度であ
るが、他の粒度においても粒径依存性はあまり認められ
ず、物性はほぼ同等であった。結合相に使用した各種化
合物、アルミニウム原料粉末は、平均粒径数μm以下の
市販品を使用し、炭化珪素ウィスカーには、長さ約10
μm、アスペクト比20程度のものを使用した。また、
cBN粉末のコーティングは、CVD法により行った。
コーティング粒子の表面状態を電子顕微鏡にて観察した
ところ、いずれの粒子も均一にコーティングされている
のが確認された。
Example 1 Raw materials having the compositions shown in Tables 1 to 6 were mixed to prepare raw material powders, which were fired at the pressures and temperatures shown in Tables 1 to 6.
The cBN powder used as a raw material had an average particle size of about 3 μm, but other particle sizes did not show much particle size dependence, and the physical properties were almost the same. As the various compounds used for the binder phase and the aluminum raw material powder, commercially available products having an average particle diameter of several μm or less are used, and the silicon carbide whiskers have a length of about 10 μm.
A film having a micrometer and an aspect ratio of about 20 was used. Also,
The coating of the cBN powder was performed by the CVD method.
When the surface condition of the coated particles was observed with an electron microscope, it was confirmed that all the particles were uniformly coated.

【0023】得られた焼結体について、相対密度、ビッ
カース硬度、破壊靱性値(K1c)及び曲げ強度を測定し
た。結果を表1〜表6に示す。 (測定方法) 相対密度:JIS C 2141(電気絶縁用セラミッ
クス材料試験方法)に準じて測定した。 ビッカース硬度:圧子荷重を500gとし、JIS C
2141(ビッカース硬さ試験方法)に準じて測定し
た。 破壊靱性値(K1c):JIS R 1607(ファイン
セラミックスの破壊靱性試験方法)のIF法に基づき行
い、試料には充分に研磨を施した。 曲げ強度:焼結体を切断して1mm×1.3mm×12mm
(±0.1mm)の角形試験片を作製した。作製した試験
片を、JIS R 1601(ファインセラミックスの
曲げ強さ試験方法)にのっとり3点曲げ強度を測定し
た。なお、支点間のスパンは10mmとした。
The relative density, Vickers hardness, fracture toughness value (K 1c ) and bending strength of the obtained sintered body were measured. The results are shown in Tables 1 to 6. (Measurement method) Relative density: Measured according to JIS C 2141 (Testing method for ceramic materials for electrical insulation). Vickers hardness: JIS C with an indenter load of 500 g
2141 (Vickers hardness test method). Fracture toughness value (K 1c ): Performed based on the IF method of JIS R 1607 (Fracture toughness test method for fine ceramics), and the sample was sufficiently polished. Bending strength: 1mm x 1.3mm x 12mm by cutting the sintered body
A square test piece of (± 0.1 mm) was prepared. The produced test piece was measured for three-point bending strength according to JIS R 1601 (bending strength test method for fine ceramics). The span between the fulcrums was 10 mm.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】表1〜表6の結果から明らかなように、本
発明により得られた焼結体は、相対密度、ビッカース硬
度、破壊靱性値及び曲げ強度のいずれも高い値を示し
た。
As is clear from the results of Tables 1 to 6, the sintered body obtained according to the present invention showed high relative density, Vickers hardness, fracture toughness and bending strength.

【0031】実施例2 表1〜表6に示す試料No.9、14、21、23、2
5、29、35及び39、並びに比較例4、11に示す
組成の原料を混合し、直径20mm、厚さ2mmの予備成形
体を得た。この成形体と、あらかじめ作製した直径20
mm、厚さ2mmのWC−Co超硬合金予備成形体とを、ピ
ストンシリンダー型超高圧装置に装入した。発熱体とし
ては黒鉛ヒーターを使用し、固体圧力媒体としては、蝋
石及び六方晶窒化硼素を用いた。焼結条件は表1〜表6
に示すとおりであり、圧力10kb、温度1150℃で1
0分間保持して焼結した。回収された焼結体は、cBN
を含有する硬質層と超硬合金部分が強固に一体化したも
のであった。
Example 2 Sample Nos. Shown in Tables 1 to 6 9, 14, 21, 23, 2
5, 29, 35 and 39 and the raw materials having the compositions shown in Comparative Examples 4 and 11 were mixed to obtain a preform having a diameter of 20 mm and a thickness of 2 mm. This molded body and a diameter of 20 produced in advance
A WC-Co cemented carbide preform having a thickness of 2 mm and a thickness of 2 mm was placed in a piston cylinder type ultrahigh pressure apparatus. A graphite heater was used as the heating element, and roxite and hexagonal boron nitride were used as the solid pressure medium. The sintering conditions are shown in Tables 1 to 6
As shown in Fig. 1 at a pressure of 10 kb and a temperature of 1150 ° C.
Hold for 0 minutes to sinter. The recovered sintered body is cBN
The hard layer containing C and the cemented carbide portion were firmly integrated.

【0032】このcBN/超硬合金同時焼結体を、放電
加工によって切断、刃付け加工してTNGN16030
4(ISOミリ呼び)の切削工具の形状にした。なお、
比較のため市販cBN焼結体(比較例19、20)を準
備した。被削材としては、SK4(HRC61)を使用
し、断続切削性能を評価するため、図1に示すような、
外径50mm、長さ250mmの円筒に円周上で等間隔に4
つの溝を形成させた。切削条件は下記の通りである。 切削速度;120m/分 切り込み;0.5mm 送り ;0.1mm/回転 汎用旋盤を使用し、上記切削条件にて切削し、逃げ面の
摩耗幅が0.3mmになったところで寿命とし、それまで
の時間を工具寿命とし、表7に示した。
This cBN / cemented carbide simultaneous sintered body was cut by electric discharge machining and bladed to produce TNGN16030.
The shape of the cutting tool was 4 (ISO mm nominal). In addition,
For comparison, commercially available cBN sintered bodies (Comparative Examples 19 and 20) were prepared. As the work material, SK4 (HRC61) is used, and in order to evaluate the intermittent cutting performance, as shown in FIG.
Four cylinders with an outer diameter of 50 mm and a length of 250 mm are arranged at equal intervals on the circumference.
Two grooves were formed. The cutting conditions are as follows. Cutting speed: 120 m / min Depth of cut: 0.5 mm Feed: 0.1 mm / revolution Using a general-purpose lathe and cutting under the above cutting conditions, the life is reached when the flank wear width reaches 0.3 mm, until then. Table 7 shows the tool life as time.

【0033】[0033]

【表7】 [Table 7]

【0034】表7の結果から明らかなように、本発明に
より得られた焼結体を用いたチップは、工具寿命が長い
ものであった。また、本発明により得られた焼結体を用
いたチップの場合、工具逃げ面の摩耗状態は定常摩耗で
あったのに対し、比較焼結体を用いたチップの場合に
は、逃げ面の摩耗幅が0.1mm程度において、工具刃先
が欠損してしまった。
As is clear from the results shown in Table 7, the chips using the sintered body obtained according to the present invention had a long tool life. Further, in the case of the tip using the sintered body obtained by the present invention, the wear state of the tool flank was steady wear, whereas in the case of the tip using the comparative sintered body, the flank face When the wear width was about 0.1 mm, the cutting edge of the tool was chipped.

【0035】実施例3 実施例2と同じ焼結体を、同様に加工してチップを作製
した。比較のため、実施例2と同じチップ以外に、市販
K10種超硬合金及びダイヤモンド焼結体工具を準備し
た。被削材としては、図2に示すような、外径50mm、
長さ200mmの円筒状のセメントモルタルに円周上で等
間隔に4つの溝を形成させ、それらの溝に加工したSS
材(鉄板)を接着剤にて固定した。切削条件は下記のと
おりである。 切削速度;50m/分 切り込み;0.5mm 送り ;0.1mm/回転 汎用旋盤を使用し、上記切削条件にて切削し、逃げ面の
摩耗幅が0.3mmになったところで寿命とし、それまで
の時間を工具寿命として表8に示した。
Example 3 The same sintered body as in Example 2 was processed in the same manner to produce chips. For comparison, in addition to the same tip as in Example 2, commercially available K10 type cemented carbide and diamond sintered body tools were prepared. As the work material, an outer diameter of 50 mm, as shown in Fig. 2,
SS made by forming four grooves at regular intervals on the circumference of a cylindrical cement mortar with a length of 200 mm and processing them
The material (iron plate) was fixed with an adhesive. The cutting conditions are as follows. Cutting speed: 50 m / min Depth of cut: 0.5 mm Feed: 0.1 mm / revolution Using a general-purpose lathe, cutting under the above cutting conditions, the life is reached when the flank wear width becomes 0.3 mm, until then Table 8 shows the tool life as time.

【0036】[0036]

【表8】 [Table 8]

【0037】本発明により得られた焼結体を用いたチッ
プは、比較焼結体を用いたものに比べ、工具寿命が長か
った。また、本発明焼結体を用いたチップの場合、工具
逃げ面の摩耗状態は定常摩耗であったのに対し、比較焼
結体(比較例4、11、19、20)を用いたチップの
場合には、逃げ面の摩耗幅が0.1mm以下において、工
具刃先が欠損してしまった。市販ダイヤモンド焼結体工
具の場合には、工具刃先の欠損は認められなかったが、
本発明焼結材料チップに比較して、摩耗速度が速く、刃
先を詳細に観察したところ、ダイヤモンドと被削材中の
鉄との反応が認められた。また、市販K10種超硬合金
の場合には、摩耗速度が著しく速く、30秒たらずで刃
先が欠損してしまった。
The chips using the sintered body obtained according to the present invention had a longer tool life than those using the comparative sintered body. Further, in the case of the chip using the sintered body of the present invention, the wear state of the tool flank was steady wear, whereas the chips using the comparative sintered body (Comparative Examples 4, 11, 19, 20) In this case, the tool edge was chipped when the wear width of the flank was 0.1 mm or less. In the case of a commercially available diamond sintered body tool, no breakage of the tool edge was observed,
As compared with the sintered material chip of the present invention, the wear rate was faster, and when the cutting edge was observed in detail, a reaction between diamond and iron in the work material was recognized. Further, in the case of the commercially available K10 type cemented carbide, the wear rate was remarkably high, and the cutting edge was broken within 30 seconds.

【0038】[0038]

【発明の効果】本発明によれば、靱性、耐欠損性、強
度、硬度、耐摩耗性及び加工性に優れ、高硬度鋼、鋳
鉄、耐熱合金、鉄筋入り建材等の切削工具材料などとし
て有用な焼結体を低圧力下で経済的に得ることができ
る。
INDUSTRIAL APPLICABILITY According to the present invention, it is excellent in toughness, fracture resistance, strength, hardness, wear resistance and workability, and is useful as a cutting tool material such as high hardness steel, cast iron, heat resistant alloys and building materials with reinforcing bars. An excellent sintered body can be economically obtained under a low pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】断続切削を行うための焼入鋼丸棒を示す図面で
ある。
FIG. 1 is a view showing a hardened steel round bar for performing interrupted cutting.

【図2】セメントモルタル丸棒に鉄板を埋め込んだ被削
材を示す図面である。
FIG. 2 is a drawing showing a work material in which an iron plate is embedded in a round bar of cement mortar.

【符号の説明】[Explanation of symbols]

1 SK4(HRC;60) 2 セメントモルタル 3 SS材 1 SK4 (HRC; 60) 2 Cement mortar 3 SS material

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次の(A)〜(C): (A)立方晶窒化硼素粉末 30〜70容量%、 (B)酸化アルミニウム粉末 20〜50容量%、 (C)周期律表第4a、5a、6a族の遷移金属の炭化物及び窒化物から選ばれ る1種又は2種以上 10〜30容量% を含有する原料粉末を、温度1100〜1250℃、圧
力5〜20kbで焼結することを特徴とする工具用高靱性
硬質焼結体の製造方法。
1. The following (A) to (C): (A) Cubic boron nitride powder 30 to 70% by volume, (B) Aluminum oxide powder 20 to 50% by volume, (C) Periodic table 4a, A raw material powder containing 10 to 30% by volume of one or more selected from carbides and nitrides of 5a and 6a group transition metals is sintered at a temperature of 1100 to 1250 ° C. and a pressure of 5 to 20 kb. A method for producing a high toughness hard sintered body for a tool, which is characterized.
【請求項2】 原料粉末が、さらにアルミニウム金属粉
末を0.1〜10容量%含有する請求項1記載の工具用
高靱性硬質焼結体の製造方法。
2. The method for producing a high toughness hard sintered body for a tool according to claim 1, wherein the raw material powder further contains 0.1 to 10% by volume of aluminum metal powder.
【請求項3】 原料粉末が、さらに炭化珪素ウィスカー
を1〜20容量%含有する請求項1又は2記載の工具用
高靱性硬質焼結体の製造方法。
3. The method for producing a high toughness hard sintered body for a tool according to claim 1, wherein the raw material powder further contains 1 to 20% by volume of silicon carbide whiskers.
【請求項4】 (A)立方晶窒化硼素粉末が、酸化アル
ミニウム並びに周期律表第4a、5a、6a族の遷移金
属の炭化物及び窒化物から選ばれる1種以上でコーティ
ングされたものである請求項1〜3のいずれかの項記載
の工具用高靱性硬質焼結体の製造方法。
4. The cubic boron nitride powder (A) is coated with aluminum oxide and one or more selected from carbides and nitrides of transition metals of Groups 4a, 5a and 6a of the Periodic Table. Item 5. A method for producing a high toughness hard sintered body for a tool according to any one of Items 1 to 3.
【請求項5】 原料粉末を超硬合金原料基板上に積層配
置して焼結する請求項1〜4のいずれかの項記載の工具
用高靱性硬質焼結体の製造方法。
5. The method for producing a high toughness hard sintered body for a tool according to claim 1, wherein the raw material powder is laminated and arranged on a cemented carbide raw material substrate and sintered.
JP5324286A 1993-12-22 1993-12-22 Production of hard sintered material having high tenacity for tool Pending JPH07172923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5324286A JPH07172923A (en) 1993-12-22 1993-12-22 Production of hard sintered material having high tenacity for tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5324286A JPH07172923A (en) 1993-12-22 1993-12-22 Production of hard sintered material having high tenacity for tool

Publications (1)

Publication Number Publication Date
JPH07172923A true JPH07172923A (en) 1995-07-11

Family

ID=18164114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5324286A Pending JPH07172923A (en) 1993-12-22 1993-12-22 Production of hard sintered material having high tenacity for tool

Country Status (1)

Country Link
JP (1) JPH07172923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105105A (en) * 2006-10-23 2008-05-08 Mitsubishi Materials Corp Manufacturing method for cylinder head
DE112008000176T5 (en) 2007-01-15 2009-12-31 Sumitomo Electric Hardmetal Corp., Itami cBN sintered body and cBN sintering tool
JP2015182219A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Cutting tool made of cubic crystal boron nitride based ultrahigh pressure sintered material
JP2016176322A (en) * 2015-03-19 2016-10-06 三菱マテリアル株式会社 Drilling chip and drilling bit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105105A (en) * 2006-10-23 2008-05-08 Mitsubishi Materials Corp Manufacturing method for cylinder head
DE112008000176T5 (en) 2007-01-15 2009-12-31 Sumitomo Electric Hardmetal Corp., Itami cBN sintered body and cBN sintering tool
DE112008000176B4 (en) 2007-01-15 2022-09-29 Sumitomo Electric Hardmetal Corp. cBN sinter body and cBN sinter tool
JP2015182219A (en) * 2014-03-26 2015-10-22 三菱マテリアル株式会社 Cutting tool made of cubic crystal boron nitride based ultrahigh pressure sintered material
JP2016176322A (en) * 2015-03-19 2016-10-06 三菱マテリアル株式会社 Drilling chip and drilling bit

Similar Documents

Publication Publication Date Title
KR100227879B1 (en) Group IVB boride base cutting tool
US7459105B2 (en) Nanostructured titanium monoboride monolithic material and associated methods
JPH10182234A (en) Cubic boron nitride-base sintered material and its production
JP2523452B2 (en) High strength cubic boron nitride sintered body
JP3132843B2 (en) High toughness high pressure phase boron nitride sintered body
JPH07172923A (en) Production of hard sintered material having high tenacity for tool
US6620756B2 (en) Ceramic matrix composite cutting tool material
JP3476504B2 (en) Silicon nitride based sintered body and its coated sintered body
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JP2002194474A (en) Tungsten carbide matrix super hard composite sintered body
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPH0849037A (en) Sintered compact for tool and its production
JPH07188827A (en) Sintered body for tool and its manufacture
JP2002192405A (en) Cutting tool
JPH07188804A (en) Sintered compact for tool and its production
Sobczak et al. Nitride and carbide preforms for infiltration process
JPH07188805A (en) Sintered compact for tool and its production
JPH09184030A (en) Production of high strength hard composite material excellent in thermal shock resistance
JP2001089242A (en) Ceramic sintered member and coated ceramic sintered member
JP2005239443A (en) Ceramic sintered compact and coated ceramic sintered compact

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040106