JPH07170677A - Storage battery charging circuit for uninterruptible power supply - Google Patents
Storage battery charging circuit for uninterruptible power supplyInfo
- Publication number
- JPH07170677A JPH07170677A JP5312362A JP31236293A JPH07170677A JP H07170677 A JPH07170677 A JP H07170677A JP 5312362 A JP5312362 A JP 5312362A JP 31236293 A JP31236293 A JP 31236293A JP H07170677 A JPH07170677 A JP H07170677A
- Authority
- JP
- Japan
- Prior art keywords
- current
- storage battery
- charger
- charging
- charging current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inverter Devices (AREA)
- Stand-By Power Supply Arrangements (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
(57)【要約】
【目的】無停電電源装置が負荷へ供給する電流の変動に
対応して、充電器の定格電流の範囲内で蓄電池への充電
電流を大きくできるようにする。
【構成】充電電流制御回路22からの指令で、インバー
タ電流検出器21が検出する電流と蓄電池電流検出器1
2が検出する電流との和が充電器3の定格電流を越えな
いように充電器3を制御する。或いは、充電器電流設定
器31が設定する充電器3の定格電流からインバータ電
流検出器21が検出する電流を減算器32で減算した値
を充電電流指令値とし、偏差演算器13は蓄電池電流検
出器12が検出する充電電流検出値とこの充電電流指令
値との偏差を演算する。電流調節器14はこの偏差を入
力して、入力偏差を零にする制御信号を充電器3へ与え
ることで、充電器3の定格電流範囲内で蓄電池5へは大
きな充電電流を与えることを可能にする。
(57) [Abstract] [Purpose] To allow the uninterruptible power supply to increase the charging current to the storage battery within the range of the rated current of the charger in response to fluctuations in current supplied to the load. [Structure] A current detected by an inverter current detector 21 and a storage battery current detector 1 according to a command from a charging current control circuit 22.
The charger 3 is controlled so that the sum of the current detected by 2 does not exceed the rated current of the charger 3. Alternatively, a value obtained by subtracting the current detected by the inverter current detector 21 from the rated current of the charger 3 set by the charger current setter 31 by the subtractor 32 is used as the charging current command value, and the deviation calculator 13 detects the storage battery current. The deviation between the charging current detection value detected by the container 12 and this charging current command value is calculated. The current regulator 14 inputs this deviation and gives a control signal to the charger 3 to make the input deviation zero, thereby making it possible to give a large charging current to the storage battery 5 within the rated current range of the charger 3. To
Description
【0001】[0001]
【産業上の利用分野】この発明は、無停電電源装置を構
成している蓄電池の充電電流を制御する回路に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circuit for controlling a charging current of a storage battery which constitutes an uninterruptible power supply.
【0002】[0002]
【従来の技術】図3は無停電電源装置を構成している蓄
電池の充電回路の従来例を示した回路図である。無停電
電源装置は第1電力変換手段としての充電器3と、第2
電力変換手段としてのインバータ4、及び蓄電池5とで
構成していて、交流電源2からの交流電力を充電器3で
所望電圧の直流電力に変換するが、この直流電力はイン
バータ4で所望の電圧と周波数の交流電力に変換された
後、負荷6へ供給するようにしている。充電器3の直流
側とインバータ4の直流側とを結合している所謂直流中
間回路には蓄電池5を接続する。充電器3はインバータ
4を介して負荷6へ電力を供給すると共に、蓄電池5を
常時充電しているので、交流電源2が停電した場合は、
この蓄電池5が交流電源2の代わりにこれに蓄積した電
力をインバータ4を介して負荷6へ供給するので、この
負荷6は停電すること無く、運転を継続することができ
る。2. Description of the Related Art FIG. 3 is a circuit diagram showing a conventional example of a charging circuit for a storage battery that constitutes an uninterruptible power supply. The uninterruptible power supply includes a charger 3 as a first power conversion means, a second power converter, and a second power converter.
It is composed of an inverter 4 as a power conversion means and a storage battery 5, and AC power from an AC power source 2 is converted into DC power of a desired voltage by a charger 3. This DC power is converted to a desired voltage by the inverter 4. It is supplied to the load 6 after being converted into AC power of the frequency. The storage battery 5 is connected to a so-called DC intermediate circuit that connects the DC side of the charger 3 and the DC side of the inverter 4. Since the charger 3 supplies electric power to the load 6 via the inverter 4 and constantly charges the storage battery 5, when the AC power supply 2 fails,
Since the storage battery 5 supplies the electric power stored therein instead of the AC power supply 2 to the load 6 via the inverter 4, the load 6 can continue to operate without a power failure.
【0003】前述したように、充電器3はインバータ4
を介して負荷6へ電力を供給すると共に、蓄電池5へも
充電電力を供給しなければならないので、例えばインバ
ータ4の定格電流を 100Aとし、蓄電池5を所定の充電
率で充電する際の充電電流が15Aであったとすると、充
電器3の定格電流はこれら両者の和、即ち 115Aに選定
する。ここで蓄電池5に15Aよりも大きい充電電流が流
れている状態でインバータ4に定格電流(即ち 100A)
が流れると、充電器3を流れる電流は定格値の100%を
越える電流が流れる不都合を生じてしまう。そこで蓄電
池5への充電電流を調節して、その値が予め定めた値を
越えないように制御する。そのために予め定めた充電電
流指令値(この場合は15A)を設定する充電電流設定器
11を設けて、蓄電池電流検出器12が検出する充電電
流とこの充電電流指令値との偏差を偏差演算器13で行
わせ、この演算結果を電流調節器14へ入力させる。電
流調節器14は入力偏差を零にする制御信号を充電器3
へ出力して、充電器3の出力電圧を制御するので、蓄電
池5への充電電流は常に充電電流指令値に一致するよう
に制御される。従って、充電器3が過電流状態になる恐
れは無い。As described above, the charger 3 includes the inverter 4
Since it is necessary to supply electric power to the load 6 via the battery and also supply charging power to the storage battery 5, for example, the rated current of the inverter 4 is set to 100 A, and the charging current for charging the storage battery 5 at a predetermined charging rate is set. Is 15 A, the rated current of the charger 3 is selected to be the sum of both, that is, 115 A. Here, the rated current (that is, 100A) is applied to the inverter 4 while the charging current larger than 15A is flowing through the storage battery 5.
When the current flows, the current flowing through the charger 3 has a disadvantage of exceeding 100% of the rated value. Therefore, the charging current to the storage battery 5 is adjusted so that the value does not exceed a predetermined value. For this purpose, a charging current setting device 11 for setting a predetermined charging current command value (15 A in this case) is provided, and a deviation calculator calculates the deviation between the charging current detected by the storage battery current detector 12 and this charging current command value. 13, and the calculation result is input to the current regulator 14. The current regulator 14 sends a control signal for making the input deviation zero to the charger 3
Since the output voltage of the charger 3 is controlled by controlling the charging current to the storage battery 5, the charging current to the storage battery 5 is controlled to always match the charging current command value. Therefore, there is no possibility that the charger 3 will be in an overcurrent state.
【0004】[0004]
【発明が解決しようとする課題】ところで図3の従来例
回路では、インバータ4が軽負荷であって充電器3の電
流に余裕があっても、蓄電池5への充電電流は充電電流
設定器11で設定した指令値のとおりでしか充電できな
い。それ故、蓄電池5が完全に放電してしまっているの
で大きな充電電流を流して急速充電をしたい場合でも、
充電電流が制限されているのでそのようなことができな
い。充電電流設定器11を操作して充電電流指令値を大
きな値に変更すれば前述した要望に対応できるが、変更
した設定値を元に戻すのを忘れていると、インバータ4
の電流が増加したときに充電器3が過電流状態になる恐
れがあるので、充電電流設定器11の設定を変更するこ
とは好ましくない。結局、充電器3の電流に余裕があっ
ても蓄電池5は予め定めた充電電流でゆっくり充電せざ
るを得ないことになる。By the way, in the conventional circuit of FIG. 3, even if the inverter 4 has a light load and the current of the charger 3 has a margin, the charging current to the storage battery 5 is the charging current setting device 11. It can be charged only according to the command value set in. Therefore, even if you want to apply a large charging current to perform quick charging because the storage battery 5 is completely discharged,
This is not possible because the charging current is limited. Although the above-mentioned request can be met by operating the charging current setting device 11 to change the charging current command value to a large value, if the operator forgets to restore the changed setting value, the inverter 4
It is not preferable to change the setting of the charging current setting device 11, because the charging device 3 may be in an overcurrent state when the current of 1 increases. After all, even if the current of the charger 3 has a margin, the storage battery 5 has to be slowly charged with a predetermined charging current.
【0005】そこでこの発明の目的は、無停電電源装置
が負荷へ供給する電流の変動に対応して、充電器の定格
電流の範囲内で蓄電池への充電電流を大きくできるよう
にすることにある。Therefore, an object of the present invention is to make it possible to increase the charging current to the storage battery within the range of the rated current of the charger in response to fluctuations in the current supplied to the load by the uninterruptible power supply. .
【0006】[0006]
【課題を解決するための手段】前記の目的を達成するた
めにこの発明の無停電電源装置の蓄電池充電回路は、交
流を直流に変換する第1電力変換手段と、直流を交流に
変換する第2電力変換手段と、これら第1電力変換手段
の直流側と第2電力変換手段の直流側とを結合している
直流中間回路に接続した蓄電池とで構成している無停電
電源装置において、前記第2電力変換手段を流れる電流
の変動に対応して、この第2電力変換手段通流電流と前
記蓄電池の充電電流との合計値が、前記第1電力変換手
段の定格電流以下となるように前記充電電流を制御する
充電電流制御手段を、当該無停電電源装置に備えるもの
とする。In order to achieve the above object, a storage battery charging circuit of an uninterruptible power supply of the present invention comprises a first power converting means for converting alternating current to direct current and a first power converting means for converting direct current to alternating current. An uninterruptible power supply device comprising two power conversion means and a storage battery connected to a DC intermediate circuit connecting the DC side of the first power conversion means and the DC side of the second power conversion means, Corresponding to the fluctuation of the current flowing through the second power conversion means, the total value of the current flowing through the second power conversion means and the charging current of the storage battery should be equal to or less than the rated current of the first power conversion means. The uninterruptible power supply device is equipped with a charging current control unit that controls the charging current.
【0007】[0007]
【作用】この発明は、インバータを流れる電流と蓄電池
への充電電流とを別個に検出して、両電流の和が充電器
の定格電流を越えないように、当該充電器の出力電圧を
制御する。即ちインバータ電流が少なければ充電器の電
流を増加させるように充電器の出力電圧を上昇させ、イ
ンバータ電流が増加すれば充電器の出力電流を低下させ
て蓄電池への充電電流を減少させることにより、充電器
電流がその定格値を越えない範囲内で蓄電池への電流を
可能な限り大きくする。According to the present invention, the current flowing through the inverter and the charging current to the storage battery are separately detected, and the output voltage of the charger is controlled so that the sum of both currents does not exceed the rated current of the charger. . That is, if the inverter current is small, the output voltage of the charger is increased so as to increase the current of the charger, and if the inverter current is increased, the output current of the charger is decreased to decrease the charging current to the storage battery. Make the current to the storage battery as large as possible within the range where the charger current does not exceed its rated value.
【0008】[0008]
【実施例】図1は本発明の第1実施例を表した回路図で
あるが、これに図示している交流電源2,第1電力変換
手段としての充電器3,第2電力変換手段としてのイン
バータ4,蓄電池5,負荷6,及び蓄電池電流検出器1
2の名称・用途・機能は図3で既述の従来例回路の場合
と同じであるから、これらの説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a circuit diagram showing a first embodiment of the present invention, in which an AC power source 2, a charger as a first power converting means 3 and a second power converting means are shown. Inverter 4, storage battery 5, load 6, and storage battery current detector 1
The name, application, and function of 2 are the same as those of the conventional circuit described above with reference to FIG.
【0009】この図1の第1実施例回路では、インバー
タ電流検出器21が検出するインバータ4の電流と、蓄
電池電流検出器12が検出する蓄電池5への充電電流と
を充電電流制御回路22へ入力し、両電流の和に対応し
て充電器3の出力電圧を変化させている。例えばインバ
ータ4が軽負荷の場合は、このインバータ4を流れる電
流はその定格値よりも少ないから、インバータ電流検出
器21の検出電流と蓄電池電流検出器12の検出電流と
の和は充電器3の定格電流よりも小さい。そこで充電電
流制御回路22は充電器3へその直流出力電圧を上昇さ
せる指令を与える。直流中間回路電圧が上昇すると蓄電
池5の充電電流は増加するが、インバータ4から負荷6
への電流は不変である。従ってインバータ電流検出器2
1の検出電流は殆ど変化しない。即ち、直流中間回路電
圧が上昇すると蓄電池5への充電電流のみが増加して充
電器3の出力電流はその定格値に近づく。即ちインバー
タ4が軽負荷ならば充電器3の出力電流に余力を生じ、
この余力を蓄電池5の充電に振り向けることができ、当
該蓄電池5の急速充電が可能になる。In the first embodiment circuit of FIG. 1, the current of the inverter 4 detected by the inverter current detector 21 and the charging current to the storage battery 5 detected by the storage battery current detector 12 are sent to the charging current control circuit 22. It is input and the output voltage of the charger 3 is changed according to the sum of both currents. For example, when the inverter 4 has a light load, the current flowing through the inverter 4 is smaller than its rated value, and therefore the sum of the detected current of the inverter current detector 21 and the detected current of the storage battery current detector 12 is the sum of the charger 3 Less than the rated current. Therefore, the charging current control circuit 22 gives a command to the charger 3 to increase its DC output voltage. When the DC intermediate circuit voltage rises, the charging current of the storage battery 5 increases, but the inverter 4 loads the load 6
The current to is unchanged. Therefore, the inverter current detector 2
The detected current of 1 hardly changes. That is, when the DC intermediate circuit voltage rises, only the charging current to the storage battery 5 increases and the output current of the charger 3 approaches its rated value. That is, if the inverter 4 has a light load, there is a surplus in the output current of the charger 3,
This spare capacity can be used for charging the storage battery 5, and the storage battery 5 can be rapidly charged.
【0010】図2は本発明の第2実施例を表した回路図
であるが、これに図示している交流電源2,第1電力変
換手段としての充電器3,第2電力変換手段としてのイ
ンバータ4,蓄電池5,負荷6,蓄電池電流検出器1
2,偏差演算器13,及び電流調節器14の名称・用途
・機能は図3で既述の従来例回路の場合と同じであるか
ら、これらの説明は省略する。FIG. 2 is a circuit diagram showing a second embodiment of the present invention, in which the AC power supply 2, the charger as the first power conversion means 3, and the second power conversion means are shown. Inverter 4, storage battery 5, load 6, storage battery current detector 1
2. The names, applications, and functions of the deviation calculator 13 and the current controller 14 are the same as in the case of the conventional example circuit described above with reference to FIG.
【0011】この図2の第2実施例回路では、充電器電
流設定器31は充電器3が出力可能な電流値、例えば定
格電流値を設定する。減算器32は充電器電流設定器3
1が設定した充電器3の定格電流値からインバータ電流
検出器21が検出する電流値を差し引く演算をするの
で、減算器32の演算結果は蓄電池5の充電に振り向け
ることが可能な電流値である。そこで減算器32の演算
結果を充電電流指令値とし、この充電電流指令値と蓄電
池電流検出器12が検出する充電電流検出値との偏差を
偏差演算器13で演算し、この演算結果を電流調節器1
4へ入力させることにより、電流調節器14は入力偏差
を零にする制御信号を充電器3へ出力する。例えば、偏
差演算器13の演算結果が正極性(これは充電電流検出
値よりも充電電流指令値のほうが大、即ち充電器3の出
力電流に余力があることを意味する)のときは充電器3
の出力電圧を、電流調節器14への入力偏差が零になる
時点まで上昇させる。これとは逆に偏差演算器13の演
算結果が負極性の場合は、充電器3の出力電流が定格値
を越えているので、電流調節器14は充電器3の出力電
圧を低下させる制御信号を出力する。その結果直流中間
回路電圧が低下して蓄電池5への充電電流が減少して充
電器3の当初の過電流は解消する。In the second embodiment circuit of FIG. 2, the charger current setting unit 31 sets a current value that the charger 3 can output, for example, a rated current value. The subtractor 32 is the charger current setting device 3
Since the calculation of subtracting the current value detected by the inverter current detector 21 from the rated current value of the charger 3 set by 1 is performed, the calculation result of the subtractor 32 is a current value that can be used for charging the storage battery 5. is there. Therefore, the calculation result of the subtractor 32 is used as the charging current command value, and the deviation between the charging current command value and the charging current detection value detected by the storage battery current detector 12 is calculated by the deviation calculator 13 and this calculation result is adjusted by the current adjustment. Bowl 1
4, the current regulator 14 outputs to the charger 3 a control signal for making the input deviation zero. For example, when the calculation result of the deviation calculator 13 is positive (this means that the charging current command value is larger than the charging current detection value, that is, the output current of the charger 3 has a surplus), the charger Three
The output voltage of is increased until the input deviation to the current regulator 14 becomes zero. On the contrary, when the calculation result of the deviation calculator 13 has a negative polarity, the output current of the charger 3 exceeds the rated value, and therefore the current regulator 14 causes the control signal to decrease the output voltage of the charger 3. Is output. As a result, the DC intermediate circuit voltage decreases, the charging current to the storage battery 5 decreases, and the initial overcurrent of the charger 3 is eliminated.
【0012】前述の図1に図示の第1実施例回路、或い
は図2に図示の第2実施例回路において、インバータ電
流検出器21は説明を簡単にするためにインバータ4の
直流側電流を検出する位置に設置しているが、インバー
タ4の交流側電流を検出する位置に設置しても差し支え
が無いことは勿論である。In the circuit of the first embodiment shown in FIG. 1 or the circuit of the second embodiment shown in FIG. 2, the inverter current detector 21 detects the DC side current of the inverter 4 to simplify the explanation. However, it goes without saying that there is no problem even if it is installed at a position where the AC side current of the inverter 4 is detected.
【0013】[0013]
【発明の効果】従来の無停電電源装置は、第1電力変換
手段(充電器)が過電流にならないように、予め蓄電池
への充電電流の量を決めておいて、この量を越えないよ
うに充電電流を制御していたので、第1電力変換手段の
出力に余力があっても充電電流を増やせない不都合があ
った。これに対して本発明では、蓄電池への充電電流と
第2電力変換手段を流れる電流との和が第1電力変換手
段の定格値よりも少ない場合、即ち第1電力変換手段の
出力電流に余裕がある場合ば、蓄電池への充電電流を増
加させるように当該第1電力変換手段の出力電圧を制御
する。よって従来よりも蓄電池充電電流を大きくできる
機会が増加し、蓄電池の充電時間も短縮される。その結
果電源が停電したときに蓄電池の充電が不十分なために
負荷の運転を継続できなくなる不都合を回避できる効果
が得られる。In the conventional uninterruptible power supply device, the amount of charging current to the storage battery is determined in advance so that the first power conversion means (charger) does not become an overcurrent, and this amount should not be exceeded. Since the charging current is controlled in the above, there is a disadvantage that the charging current cannot be increased even if the output of the first power conversion means has a surplus. On the other hand, in the present invention, when the sum of the charging current to the storage battery and the current flowing through the second power conversion means is smaller than the rated value of the first power conversion means, that is, the output current of the first power conversion means has a margin. If there is, the output voltage of the first power conversion means is controlled so as to increase the charging current to the storage battery. Therefore, the opportunity to increase the storage battery charging current is increased and the charging time of the storage battery is shortened as compared with the conventional case. As a result, it is possible to avoid an inconvenience that the operation of the load cannot be continued due to insufficient charging of the storage battery when the power source fails.
【図1】本発明の第1実施例を表した回路図FIG. 1 is a circuit diagram showing a first embodiment of the present invention.
【図2】本発明の第2実施例を表した回路図FIG. 2 is a circuit diagram showing a second embodiment of the present invention.
【図3】無停電電源装置を構成している蓄電池の充電回
路の従来例を示した回路図FIG. 3 is a circuit diagram showing a conventional example of a charging circuit for a storage battery that constitutes an uninterruptible power supply.
2 交流電源 3 第1電力変換手段としての充電器 4 第2電力変換手段としてのインバータ 5 蓄電池 6 負荷 11 充電電流設定器 12 蓄電池電流検出器 13 偏差演算器 14 電流調節器 21 インバータ電流検出器 22 充電電流制御回路 31 充電器電流設定器 32 減算器 2 AC power supply 3 Charger as first power conversion means 4 Inverter as second power conversion means 5 Storage battery 6 Load 11 Charging current setting device 12 Storage battery current detector 13 Deviation calculator 14 Current regulator 21 Inverter current detector 22 Charge current control circuit 31 Charger current setting device 32 Subtractor
Claims (2)
と、直流を交流に変換する第2電力変換手段と、これら
第1電力変換手段の直流側と第2電力変換手段の直流側
とを結合している直流中間回路に接続した蓄電池とで構
成している無停電電源装置において、 前記第2電力変換手段を流れる電流の変動に対応して、
この第2電力変換手段の通流電流と前記蓄電池の充電電
流との合計値が、前記第1電力変換手段の定格電流以下
となるように前記充電電流を制御する充電電流制御手段
を、当該無停電電源装置に備えていることを特徴とする
無停電電源装置の蓄電池充電回路。1. A first power conversion means for converting alternating current to direct current, a second power conversion means for converting direct current to alternating current, a direct current side of these first power conversion means and a direct current side of the second power conversion means. In the uninterruptible power supply configured by a storage battery connected to a DC intermediate circuit that is coupled with, in response to fluctuations in the current flowing through the second power conversion means,
The charging current control means for controlling the charging current so that the total value of the flowing current of the second power converting means and the charging current of the storage battery is less than or equal to the rated current of the first power converting means is A storage battery charging circuit for an uninterruptible power supply, which is equipped in the uninterruptible power supply.
充電回路において、前記充電電流制御手段は、前記第2
電力変換手段から検出される電流実際値を前記第1電力
変換手段の電流定格値から減算する減算手段と、前記蓄
電池の充電電流実際値を前記減算手段の演算結果に一致
させる充電電流調節手段とで構成し、この充電電流調節
手段の出力信号に従って前記第1電力変換手段を制御す
ることを特徴とする無停電電源装置の蓄電池充電回路。2. The storage battery charging circuit of the uninterruptible power supply according to claim 1, wherein the charging current control means is the second battery.
Subtracting means for subtracting the actual current value detected from the power converting means from the rated current value of the first power converting means, and charging current adjusting means for matching the actual charging current value of the storage battery with the calculation result of the subtracting means. The storage battery charging circuit of the uninterruptible power supply device, characterized in that the first power conversion means is controlled according to the output signal of the charging current adjusting means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5312362A JPH07170677A (en) | 1993-12-14 | 1993-12-14 | Storage battery charging circuit for uninterruptible power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5312362A JPH07170677A (en) | 1993-12-14 | 1993-12-14 | Storage battery charging circuit for uninterruptible power supply |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07170677A true JPH07170677A (en) | 1995-07-04 |
Family
ID=18028344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5312362A Pending JPH07170677A (en) | 1993-12-14 | 1993-12-14 | Storage battery charging circuit for uninterruptible power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07170677A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001050571A1 (en) * | 2000-01-03 | 2001-07-12 | Baichao Yu | Uninterrupted power supply without power loss |
JP2005341708A (en) * | 2004-05-27 | 2005-12-08 | Nec Fielding Ltd | Uninterruptible power system |
JP2006203998A (en) * | 2005-01-19 | 2006-08-03 | Nec Fielding Ltd | Uninterruptible power supply unit |
KR100698231B1 (en) * | 1998-10-12 | 2007-03-21 | 산요 덴키 가부시키가이샤 | Uninterruptible power supply |
JP2015201935A (en) * | 2014-04-07 | 2015-11-12 | 三菱電機株式会社 | Uninterruptible power supply system and uninterruptible power supply |
JP2021040398A (en) * | 2019-09-02 | 2021-03-11 | 東芝三菱電機産業システム株式会社 | Uninterruptible power supply device |
-
1993
- 1993-12-14 JP JP5312362A patent/JPH07170677A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100698231B1 (en) * | 1998-10-12 | 2007-03-21 | 산요 덴키 가부시키가이샤 | Uninterruptible power supply |
WO2001050571A1 (en) * | 2000-01-03 | 2001-07-12 | Baichao Yu | Uninterrupted power supply without power loss |
JP2005341708A (en) * | 2004-05-27 | 2005-12-08 | Nec Fielding Ltd | Uninterruptible power system |
JP2006203998A (en) * | 2005-01-19 | 2006-08-03 | Nec Fielding Ltd | Uninterruptible power supply unit |
JP2015201935A (en) * | 2014-04-07 | 2015-11-12 | 三菱電機株式会社 | Uninterruptible power supply system and uninterruptible power supply |
JP2021040398A (en) * | 2019-09-02 | 2021-03-11 | 東芝三菱電機産業システム株式会社 | Uninterruptible power supply device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040018399A1 (en) | Method and system for controlling fuel-cell power for fuel-cell hybrid electric vehicle | |
JP2003235252A (en) | Power supply circuit | |
US12191706B2 (en) | Method and system to control multiple sources of energy using an uninterruptible power supply | |
JPH07123609A (en) | Fuel cell power supply system | |
JP3428869B2 (en) | Fuel cell output fluctuation compensation method | |
JPH07170677A (en) | Storage battery charging circuit for uninterruptible power supply | |
JP3181423B2 (en) | Photovoltaic power generation equipment with battery | |
JP3795414B2 (en) | AC power supply system | |
JP2002176782A (en) | Uninterruptible power supply unit | |
JPH05168160A (en) | Ac/dc converter system | |
JP2000323365A (en) | DC power supply | |
JP3933537B2 (en) | AC power supply | |
EP3609070B1 (en) | High efficiency flexible converter | |
JP2000245074A (en) | Method for avoiding capacity decrease of battery | |
JP2708246B2 (en) | Control device for self-excited power converter | |
JP2859022B2 (en) | Power control system | |
JP2510285B2 (en) | How to connect the battery | |
JP3656113B2 (en) | Solar power plant | |
JP2894370B2 (en) | Charger control circuit | |
JPH07143688A (en) | Reverse power flow suppression circuit for power storage type emergency power supply | |
JP2000224779A (en) | Uninterruptible power system | |
JPH0636367B2 (en) | Fuel cell power supply | |
JPH11289691A (en) | Uninterruptible power system | |
JPH06245392A (en) | Converter for regulating power system energy | |
JPH076679Y2 (en) | Power supply equipment |