JPH07169488A - Fuel cell power plant - Google Patents
Fuel cell power plantInfo
- Publication number
- JPH07169488A JPH07169488A JP5317191A JP31719193A JPH07169488A JP H07169488 A JPH07169488 A JP H07169488A JP 5317191 A JP5317191 A JP 5317191A JP 31719193 A JP31719193 A JP 31719193A JP H07169488 A JPH07169488 A JP H07169488A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- fuel
- electrode
- fuel cell
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 37
- 210000004027 cell Anatomy 0.000 claims abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000001301 oxygen Substances 0.000 claims abstract description 10
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 10
- 239000007789 gas Substances 0.000 claims abstract description 9
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 9
- 210000005056 cell body Anatomy 0.000 claims abstract description 6
- 238000010248 power generation Methods 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、燃料電池発電プラント
に関する。FIELD OF THE INVENTION The present invention relates to a fuel cell power plant.
【0002】[0002]
【従来の技術】燃料電池発電プラントは、自家用発電と
して電力源として利用されるかほに、需用地に近い点を
生かし、排熱を給湯、冷暖房、その他熱利用に使用され
ている。2. Description of the Related Art A fuel cell power plant is used as an electric power source for private power generation, and by taking advantage of its closeness to the place of demand, exhaust heat is used for hot water supply, air conditioning, and other heat utilization.
【0003】燃料電池を使用した発電プラントは、小型
サイズでも高効率であること、燃料の多様化が計れるこ
と、排熱の有効利用が実施しやすいこと、特にオンサイ
ト型はビルの地下等需用地近くに設置できること、等い
くつかのすぐれた特徴を持っている。そのため、各分野
で積極的に導入が計画されており、実証プラントの設置
も盛んである。A power plant using a fuel cell is highly efficient even in a small size, can diversify fuels, and can effectively utilize exhaust heat. It has some excellent features such as being able to be installed near the site. Therefore, the introduction is planned actively in each field, and the installation of demonstration plants is also active.
【0004】排気中のNOX,SOX,ばいじん等も他
発電設備に比較して、極めて低い値であることも、将来
の発電装置として有望である。燃料電池を使用した発電
プラントの電気出力は主に交流出力として取り出し、既
設の系統と接続して消費される場合がほとんどである。
その直交変換のためのインバータ装置が必要となり、か
つ、その直流も電圧がプラント出力に従い大きく変化す
るために、インバータ前段に直流電圧安定装置を付属さ
せるのが通例となっている。It is also promising as a future power generator that NOX, SOX, dust and the like in the exhaust gas have extremely low values as compared with other power generation facilities. In most cases, the electric output of a power plant using a fuel cell is taken out as an AC output and connected to an existing system for consumption.
Since an inverter device for the orthogonal transformation is required and the voltage of the direct current also largely changes according to the plant output, it is customary to attach a direct voltage stabilizer to the front stage of the inverter.
【0005】[0005]
【発明が解決しようとする課題】本来の電気出力が直流
であるため、直流電力として利用できる負荷、電気分解
及計算機電源等、に利用することが検討されているが、
燃料電池の欠点である直流電流の値に従い電圧が変化す
るため、一定直流電圧を必要とする負荷には採用できな
い又は直流電圧安定装置を付加する状況であった。この
発明の目的は、燃料電池の直流電圧を安定化し、全負荷
帯で電圧が一定となる燃料電池発電プラントを提供する
ことにある。Since the original electric output is direct current, it is considered to be used for a load that can be used as direct current power, electrolysis and computer power supply, etc.
Since the voltage changes according to the value of the direct current, which is a drawback of the fuel cell, it cannot be used in a load requiring a constant direct current voltage or a direct current voltage stabilizer is added. An object of the present invention is to provide a fuel cell power generation plant that stabilizes the DC voltage of the fuel cell and has a constant voltage in the entire load band.
【0006】[0006]
【課題を解決するための手段】本発明の燃料電池発電プ
ラントは、電池本体の直流電圧を直流電流の値にかかわ
らず一定電圧に保つようにし、直流電流に比例して電池
燃料極の水素分圧、空気極の酸素分圧を変化させる。ま
た、電池燃料極、空気極に出口ガスを還流させる。In the fuel cell power plant of the present invention, the DC voltage of the cell body is kept constant regardless of the value of the DC current, and the hydrogen content of the fuel electrode of the cell is proportional to the DC current. Change the pressure and oxygen partial pressure of the air electrode. Further, the outlet gas is circulated to the cell fuel electrode and the air electrode.
【0007】[0007]
【作用】燃料極の入口に出口の水素濃度の低い排ガスを
環流する。又空気極へも同様の作用を行なうと、燃料電
池入口の各々の分圧を低下させることが可能となる。[Function] The exhaust gas having a low hydrogen concentration at the outlet is circulated to the inlet of the fuel electrode. If the same action is performed on the air electrode, it is possible to reduce the partial pressure at each of the fuel cell inlets.
【0008】[0008]
【実施例】この発明の実施例を図1に示す。燃料電池本
体の燃料極1と空気極2には通常一定分圧の水素ガス及
び空気中の酸素が流入している。各々の入口、出口間に
出口の水素及び酸素分圧の低い排ガスを環流させる燃料
リサイクルブロワ3と空気リサイクルブロワ4を設置す
る。このリサイクルブロワには、回転数を制御する回転
制御器5が各々付属され、入口へ環流させる排ガス量を
制御する。FIG. 1 shows an embodiment of the present invention. Hydrogen gas having a constant partial pressure and oxygen in the air usually flow into the fuel electrode 1 and the air electrode 2 of the fuel cell body. A fuel recycle blower 3 and an air recycle blower 4 for circulating the exhaust gas having a low hydrogen and oxygen partial pressure at the outlet are installed between the respective inlets and outlets. Rotation controllers 5 for controlling the number of revolutions are attached to the recycle blowers, respectively, and control the amount of exhaust gas recirculated to the inlet.
【0009】排ガス量の制御は図示していないが、燃料
電池本体の直流電圧を一定にする様に、あらかじめ定め
られた流量関数により流量をコントロールする。すなわ
ち、燃料電池の直流電圧は、電池本体の燃料極の水素分
圧、空気極の酸素分圧により大きく変化する。現在の発
電プラントは、燃料には原燃料(メタン、LPG等)を
水蒸気改質を行った水素リッチな燃料を使用しているた
め、常に負荷にかかわらず一定である。又空気極の酸素
分圧は、大気を使用するためこれもやく21%で一定とな
る。Although the control of the amount of exhaust gas is not shown, the flow rate is controlled by a predetermined flow rate function so that the DC voltage of the fuel cell main body is kept constant. That is, the DC voltage of the fuel cell greatly changes depending on the hydrogen partial pressure of the fuel electrode and the oxygen partial pressure of the air electrode of the cell body. Current power plants use hydrogen-rich fuel obtained by steam reforming raw fuel (methane, LPG, etc.) as the fuel, so that it is always constant regardless of the load. Also, the oxygen partial pressure at the air electrode is 21%, which is constant because air is used.
【0010】燃料極の水素分圧を低負荷時に下げて運転
する。又同様に空気極の酸素分圧を下げてやると、負荷
の変化にかかわらず、直流電圧を一定にすることができ
る。また、全負荷帯に渡って、電池本体の直流電圧が一
定となるため、従来の技術で設置されていた、直流電圧
安定装置が不要となり、直接電池直流出力を負荷に接続
可能となった。各々の入口に不活性ガスを注入すること
によっても、全く同じ効果を得ることができる。The hydrogen partial pressure of the fuel electrode is lowered to operate at low load. Similarly, if the oxygen partial pressure of the air electrode is lowered, the DC voltage can be kept constant regardless of the change in load. Further, since the DC voltage of the battery body is constant over the entire load band, the DC voltage stabilizer, which was installed by the conventional technology, is not required, and the battery DC output can be directly connected to the load. The same effect can be obtained by injecting an inert gas into each inlet.
【0011】[0011]
【発明の効果】以上述べたように、本発明によれば、直
流電圧は電池単体の積層枚数により上下できる。この発
明により負荷に適合する電圧に相当する枚数の電池単体
を積層することにより任意の電圧の出力を容易に実現す
ることができ、今まで必要としていた直流安定化装置を
省略することができた。As described above, according to the present invention, the DC voltage can be raised or lowered depending on the number of stacked battery cells. According to the present invention, it is possible to easily realize an output of an arbitrary voltage by stacking a number of cells corresponding to the voltage suitable for the load, and it is possible to omit the DC stabilizing device which has been necessary until now. .
【図1】本発明の一実施例の説明図FIG. 1 is an explanatory diagram of an embodiment of the present invention.
1…燃料極 2…空気極 3…燃料リサイクルブロワ 4…空気リサイクル 5…回転制御器 1 ... Fuel electrode 2 ... Air electrode 3 ... Fuel recycling blower 4 ... Air recycling 5 ... Rotation controller
Claims (3)
体の直流電圧を直流電流の値にかかわらず一定電圧に保
つことを特徴とする燃料電池発電プラント。1. A fuel cell power plant, wherein the DC voltage of the cell body is maintained at a constant voltage regardless of the value of the DC current.
素分圧、空気極の酸素分圧を変化させることを特徴とす
る請求項1に記載の燃料電池発電プラント。2. The fuel cell power plant according to claim 1, wherein the hydrogen partial pressure of the cell fuel electrode and the oxygen partial pressure of the air electrode are changed in proportion to the direct current.
を還流することを特徴とする請求項2に記載の燃料電池
発電プラント。3. The fuel cell power plant according to claim 2, wherein an outlet gas is circulated to the fuel electrode of the cell and the air electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5317191A JPH07169488A (en) | 1993-12-17 | 1993-12-17 | Fuel cell power plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5317191A JPH07169488A (en) | 1993-12-17 | 1993-12-17 | Fuel cell power plant |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07169488A true JPH07169488A (en) | 1995-07-04 |
Family
ID=18085474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5317191A Pending JPH07169488A (en) | 1993-12-17 | 1993-12-17 | Fuel cell power plant |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07169488A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060118128A (en) * | 2005-05-16 | 2006-11-23 | 현대모비스 주식회사 | Air recirculation device of polymer electrolyte fuel cell |
US8211581B2 (en) | 2004-04-13 | 2012-07-03 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for fuel cell |
US8722266B2 (en) | 2007-11-21 | 2014-05-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
US9034495B2 (en) | 2007-02-05 | 2015-05-19 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2016505199A (en) * | 2013-01-30 | 2016-02-18 | アレヴァ・ストッケージ・デネルジー | Method for detecting leakage of reducing fluid across an electrolyte membrane of an electrochemical cell |
-
1993
- 1993-12-17 JP JP5317191A patent/JPH07169488A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8211581B2 (en) | 2004-04-13 | 2012-07-03 | Toyota Jidosha Kabushiki Kaisha | Control apparatus and control method for fuel cell |
KR20060118128A (en) * | 2005-05-16 | 2006-11-23 | 현대모비스 주식회사 | Air recirculation device of polymer electrolyte fuel cell |
US9034495B2 (en) | 2007-02-05 | 2015-05-19 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
US8722266B2 (en) | 2007-11-21 | 2014-05-13 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system |
JP2016505199A (en) * | 2013-01-30 | 2016-02-18 | アレヴァ・ストッケージ・デネルジー | Method for detecting leakage of reducing fluid across an electrolyte membrane of an electrochemical cell |
US11302942B2 (en) | 2013-01-30 | 2022-04-12 | Areva Stockage D'energie | Method for detecting leakage of a reducing fluid throughout an electrolyte membrane of an electrochemical cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Design and implementation of model predictive control for an open-cathode fuel cell thermal management system | |
EA010368B1 (en) | A method and apparatus for operating a solid-oxide fuel cell stack with a mixed ionic/electronic conducting electrolyte | |
WO2011067930A1 (en) | Fuel cell system and maintenance method for fuel cell system | |
KR20230071089A (en) | Electrochemical cell system including system recycle and cathode exhaust cooler | |
Jagaduri et al. | Modeling and control of distributed generation systems including PEM fuel cell and gas turbine | |
Chen | The dynamics analysis and controller design for the PEM fuel cell under gas flowrate constraints | |
JPWO2011013758A1 (en) | Fuel cell device | |
Tomberg et al. | Operation strategies for a flexible megawatt scale electrolysis system for synthesis gas and hydrogen production with direct air capture of carbon dioxide | |
Vu et al. | Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system | |
GB1174973A (en) | Improvements in System and Process for the Indirect Electrochemical Combination of Air and a Reformable Fuel | |
JPH07169488A (en) | Fuel cell power plant | |
JP3664178B2 (en) | Multistage fuel cell | |
JP2585210B2 (en) | Fuel cell power plant | |
JPS58166673A (en) | Temperature-humidity exchanger of fuel cell | |
JPS62198058A (en) | Liquid-cooled fuel cell electric heat supply system | |
CN206022523U (en) | A kind of ship power system and its vehicle equipment based on fuel cell | |
JP3930426B2 (en) | Fuel cell combined power generation system | |
CN104057869A (en) | Motorhome using fuel battery as life power and heat source | |
JPH08124587A (en) | Fuel cell power generating plant | |
JPH04262370A (en) | Fuel cell | |
JPH07169496A (en) | Fuel cell power plant | |
JPH04359871A (en) | fuel cell power generator | |
CN208596751U (en) | Humidifier for fuel cell | |
Tanaka et al. | Numerical simulation of SOFC system performance at 90% fuel utilization with or without anode off-gas recycle for enhancing efficiency | |
US20220118146A1 (en) | Energy-independent water-based pure air cleaning system using water electrolytic-fuel cell |