JPH07167696A - Phase difference measuring method for flowing velocity in tube using ultrasonic current meter - Google Patents
Phase difference measuring method for flowing velocity in tube using ultrasonic current meterInfo
- Publication number
- JPH07167696A JPH07167696A JP5315689A JP31568993A JPH07167696A JP H07167696 A JPH07167696 A JP H07167696A JP 5315689 A JP5315689 A JP 5315689A JP 31568993 A JP31568993 A JP 31568993A JP H07167696 A JPH07167696 A JP H07167696A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- phase difference
- flow
- wave
- received
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 10
- 239000012530 fluid Substances 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、超音波流速計を用いた
管内流速の位相差測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a phase difference of a flow velocity in a pipe using an ultrasonic velocity meter.
【0002】[0002]
【従来の技術】管内を流れる流体、たとえば上水の流速
を測定するために、超音波流量計を用いることが知られ
ている。この超音波流量計は、超音波が流体中を伝搬す
るときに、その伝搬速度は、静止流体中の音速と流体の
流速とのベクトル和になることを利用している。2. Description of the Related Art It is known to use an ultrasonic flow meter to measure the flow velocity of a fluid, such as clean water, flowing in a pipe. This ultrasonic flowmeter utilizes that, when an ultrasonic wave propagates in a fluid, its propagation velocity is a vector sum of a sound velocity in a stationary fluid and a fluid flow velocity.
【0003】図3は、その測定原理を示す。図示のよう
に、管内の上流側の管内面に第1の超音波送信器11を
設置するとともに、これより管軸方向に距離Lをおいた
下流側の管内面には、第1の超音波受信器12を設置し
て、送信器11から送信された超音波13が、径方向の
反対側の管内面で反射して、受信器12で受信されるよ
うに構成されている。一方、第1の超音波送信器11に
対応する位置には第2の超音波受信器14が設置され、
また第1の超音波受信器12に対応する位置には第2の
超音波送信器15が設置されて、反対方向すなわち下流
側から上流側に向けて超音波を送ることができるように
されている。換言すると、2対の超音波センサにより同
時に送受信を行うように構成されている。FIG. 3 shows the measuring principle. As shown in the figure, the first ultrasonic transmitter 11 is installed on the inner surface of the upstream pipe, and the first ultrasonic wave is installed on the inner surface of the downstream pipe at a distance L in the pipe axial direction. The receiver 12 is installed so that the ultrasonic waves 13 transmitted from the transmitter 11 are reflected by the inner surface of the tube on the opposite side in the radial direction and are received by the receiver 12. On the other hand, the second ultrasonic receiver 14 is installed at a position corresponding to the first ultrasonic transmitter 11.
A second ultrasonic transmitter 15 is installed at a position corresponding to the first ultrasonic receiver 12 so that ultrasonic waves can be sent in the opposite direction, that is, from the downstream side to the upstream side. There is. In other words, the two pairs of ultrasonic sensors are configured to simultaneously transmit and receive.
【0004】このようにすれば、流れの方向での伝搬時
間と逆方向での伝搬時間との差から、管内流体の流速を
求めることができる(複流法、時間差法)。連続波を送
受信する場合には、伝搬時間の差を位相差に置き換える
ことで、流速が求められる(位相差法)。In this way, the flow velocity of the fluid in the pipe can be obtained from the difference between the propagation time in the flow direction and the propagation time in the opposite direction (double flow method, time difference method). When transmitting and receiving continuous waves, the flow velocity can be obtained by replacing the difference in propagation time with the phase difference (phase difference method).
【0005】以下、この位相差法の原理について説明す
る。まず、図3において、上流側から下流側への超音波
の伝搬を考える。すると、伝搬ベクトルは、The principle of the phase difference method will be described below. First, in FIG. 3, consider the propagation of ultrasonic waves from the upstream side to the downstream side. Then the propagation vector is
【0006】[0006]
【数2】 [Equation 2]
【0007】となる。これをスカラ一量で表わすと、角
度θ,βを用いて、[0007] If this is expressed as a scalar quantity, using angles θ and β,
【0008】[0008]
【数3】 [Equation 3]
【0009】となる。ここで、asin θ=vsin βであ
るから、[0009] Here, since asin θ = vsin β,
【0010】[0010]
【数4】 [Equation 4]
【0011】となる。(3)式を(2)式に代入する
と、[0011] Substituting equation (3) into equation (2),
【0012】[0012]
【数5】 [Equation 5]
【0013】となる。ここで、具体的にはa=1450
〜1500m/s,v=0〜3m/sであり、よってa
≫vであるから、[0013] Here, specifically, a = 1450
˜1500 m / s, v = 0 to 3 m / s, therefore a
>> Because it is v,
【0014】[0014]
【数6】 [Equation 6]
【0015】となり、したがって(4)式は、Therefore, the equation (4) is
【0016】[0016]
【数7】 [Equation 7]
【0017】となる。伝搬距離ACBはL/cos βとな
るため、伝搬時間tは、[0017] Since the propagation distance ACB is L / cos β, the propagation time t is
【0018】[0018]
【数8】 [Equation 8]
【0019】となる。次に、流れとは逆方向、すなわち
下流側から上流側への超音波の伝搬について考える。こ
のとき、伝搬速度をV′、伝搬時間をt′とすると、It becomes Next, let us consider the propagation of ultrasonic waves in the direction opposite to the flow direction, that is, from the downstream side to the upstream side. At this time, if the propagation velocity is V'and the propagation time is t ',
【0020】[0020]
【数9】 [Equation 9]
【0021】となる。(7)(9)式より、伝搬時間の
差Δtは、[0021] From equations (7) and (9), the difference in propagation time Δt is
【0022】[0022]
【数10】 [Equation 10]
【0023】しかし、a2 ≫v2 であるから、結局、However, since a 2 >> v 2 , after all,
【0024】[0024]
【数11】 [Equation 11]
【0025】となる。これを位相差:Δφで表すと、超
音波の周波数をfとして、[0025] If this is represented by a phase difference: Δφ, the frequency of the ultrasonic wave is f,
【0026】[0026]
【数12】 [Equation 12]
【0027】となり、結局(11)式より、From the equation (11),
【0028】[0028]
【数13】 [Equation 13]
【0029】となる。It becomes
【0030】[0030]
【発明が解決しようとする課題】しかし、従来において
は、上述の位相差を適当に測定して数量化する手だてが
無く、上記(12)式を用いて管内流体の流速を測定す
ることが困難であるという問題点が存在する。However, in the prior art, there is no way to properly measure and quantify the above-mentioned phase difference, and it is difficult to measure the flow velocity of the fluid in the pipe using the above equation (12). There is a problem that
【0031】そこで本発明はこのような問題点を解決
し、流れの方向とその逆の方向での超音波の伝搬時間の
差を表わす位相差を容易に求め得るようにすることを目
的とする。Therefore, an object of the present invention is to solve such a problem and to make it possible to easily obtain a phase difference representing a difference in propagation time of ultrasonic waves in the flow direction and the opposite direction. .
【0032】[0032]
【課題を解決するための手段】上記目的を達成するため
本発明は、超音波として矩形状の連続波を使用し、流れ
の方向の受信波と流れとは逆の方向の受信波との排他的
論理和を求め、この排他的論理和を平滑化し、その平滑
化した結果の大きさから位相差の大きさを求めるもので
ある。In order to achieve the above object, the present invention uses a rectangular continuous wave as an ultrasonic wave, and excludes a received wave in the direction of flow and a received wave in the direction opposite to the flow. The logical OR is calculated, the exclusive OR is smoothed, and the magnitude of the phase difference is calculated from the magnitude of the smoothed result.
【0033】[0033]
【作用】このようにすれば、流れの方向の受信波と流れ
とは逆の方向の受信波との排他的論理和には、両受信波
の位相差に関する情報が含まれる。したがって、この排
他的論理和を平滑化することで位相差の大きさが求ま
り、その結果、上述の(12)式を用いて管内流体の流
速が求められる。In this way, the exclusive OR of the received wave in the flow direction and the received wave in the opposite direction to the flow includes information on the phase difference between the two received waves. Therefore, the magnitude of the phase difference is obtained by smoothing this exclusive OR, and as a result, the flow velocity of the fluid in the pipe is obtained by using the above equation (12).
【0034】[0034]
【実施例】図1は、本発明にもとづいて位相差を求める
ための具体的な手法の一例を示す。流れの方向の受信波
W1と流れとは逆の方向の受信波W2とは、ともに同一
周波数fの矩形波で、いずれもデューティー比は50で
あって、πラジアンごとに所定の出力Vo(ボルト)が
生じたり、生じずに0になったりする。上述の説明の通
り、受信波W1と受信波W2との間には、管内流体の流
速にもとづく位相差Δφが存在する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of a concrete method for obtaining a phase difference according to the present invention. The received wave W1 in the direction of flow and the received wave W2 in the direction opposite to the flow are both rectangular waves having the same frequency f, and have a duty ratio of 50, and a predetermined output Vo (volt ) Occurs or it does not occur and becomes 0. As described above, the phase difference Δφ based on the flow velocity of the fluid in the pipe exists between the received wave W1 and the received wave W2.
【0035】両受信波W1,W2の排他的論理和W1
XOR W2は、図示のようになる。そこで、この排他的
論理和についての信号を公知の手段によって平滑化する
と、その値は(Δφ/π)・Voとなり、位相差を電圧
に変換することができて、その大きさを求めることがで
きる。Exclusive OR W1 of both received waves W1 and W2
XOR W2 is as shown. Therefore, when the signal for the exclusive OR is smoothed by a known means, its value becomes (Δφ / π) · Vo, and the phase difference can be converted into a voltage, and the magnitude thereof can be obtained. it can.
【0036】この位相差Δφと、W1 XOR W2を平
滑化した電圧との関係を、図2に示す。図示のように、
位相差Δφが0〜πラジアンの範囲では電圧が単純増加
的に変化する。このため、伝搬時間の差Δtが1/2f
以内(−1/2f〜1/2f)であれば、位相差Δφか
ら流速vを求めることができる。したがって、伝搬時間
の差Δtがこの範囲となるように、測定対象に応じて適
宜に距離Lと周波数fとを選定すればよい。ただし、流
れの向きは判定できないので、流れ方向が既知である場
合での適用となる。FIG. 2 shows the relationship between this phase difference Δφ and the voltage obtained by smoothing W1 XOR W2. As shown,
When the phase difference Δφ is in the range of 0 to π radians, the voltage changes simply and incrementally. Therefore, the difference Δt in propagation time is 1 / 2f
Within the range (-1 / 2f to 1 / 2f), the flow velocity v can be obtained from the phase difference Δφ. Therefore, the distance L and the frequency f may be appropriately selected according to the measurement target so that the propagation time difference Δt falls within this range. However, since the flow direction cannot be determined, it is applied when the flow direction is known.
【0037】次に、測定可能な流速の範囲の具体例につ
いて説明する。距離L=0.15m、流体中の音速a=
1450m/s、超音波の周波数f=1×106 Hzと
して、最大の位相差Δφ=πラジアンを(12)式に代
入すると、Next, a specific example of the measurable flow velocity range will be described. Distance L = 0.15 m, sound velocity in fluid a =
Substituting the maximum phase difference Δφ = π radian into the equation (12) with 1450 m / s and the ultrasonic frequency f = 1 × 10 6 Hz,
【0038】[0038]
【数14】 [Numerical equation 14]
【0039】となる。このように、位相差Δφを0〜π
ラジアンの範囲内に収めることで、排他的論理和につい
ての信号の値から一義的に流速vを求めることができ、
そのための信号処理回路が簡単になる。It becomes Thus, the phase difference Δφ is 0 to π
By keeping it within the range of radians, the flow velocity v can be uniquely obtained from the value of the signal regarding the exclusive OR,
The signal processing circuit for that purpose becomes simple.
【0040】[0040]
【発明の効果】以上述べたように本発明によると、超音
波を用いて管内流速を測定するに際し、流れの方向の受
信波と流れとは逆の方向の受信波との排他的論理和を平
滑化して両波の位相差を測定するため、この位相差の大
きさを簡単に求めることができて、管内流体の流速を容
易に測定することができる。As described above, according to the present invention, when the flow velocity in a pipe is measured using ultrasonic waves, the exclusive OR of the received wave in the flow direction and the received wave in the opposite direction to the flow is obtained. Since the smoothed phase difference between the two waves is measured, the magnitude of this phase difference can be easily obtained, and the flow velocity of the fluid in the pipe can be easily measured.
【図1】本発明の一実施例の管内流速の位相差測定方法
における位相差の大きさを求める手法を説明する図であ
る。FIG. 1 is a diagram illustrating a method of obtaining a magnitude of a phase difference in a method of measuring a phase difference of a flow velocity in a pipe according to an embodiment of the present invention.
【図2】位相差と、両受信波の排他的論理和を平滑化し
た電圧との関係を示す図である。FIG. 2 is a diagram showing a relationship between a phase difference and a voltage obtained by smoothing an exclusive OR of both received waves.
【図3】従来の超音波流速計の原理図である。FIG. 3 is a principle diagram of a conventional ultrasonic velocity meter.
W1 流れの方向の受信波 W2 逆の方向の受信波 W1 Received wave in the flow direction W2 Received wave in the opposite direction
Claims (1)
2の超音波受信器とを設置するとともに、管内の下流側
に第2の超音波送信器と第1の超音波受信器とを設置し
て、第1および第2の超音波送信器からそれぞれ送信さ
れる超音波を第1および第2の超音波受信器にてそれぞ
れ受信し、両受信器で受信された流れの方向の受信波と
流れとは逆の方向の受信波との位相差から下記(i)式
にもとづいて管内流体の流速を測定するに際し、 【数1】 超音波として矩形状の連続波を使用し、 流れの方向の受信波と流れとは逆の方向の受信波との排
他的論理和を求め、 この排他的論理和を平滑化し、 その平滑化した結果の大きさから位相差の大きさを求め
ることを特徴とする超音波流速計を用いた管内流速の位
相差測定方法。1. A first ultrasonic transmitter and a second ultrasonic receiver are installed on the upstream side in the pipe, and a second ultrasonic transmitter and a first ultrasonic receiver are installed on the downstream side in the pipe. And the ultrasonic waves transmitted from the first and second ultrasonic transmitters are respectively received by the first and second ultrasonic receivers, and the flow of the flow received by both receivers is received. When measuring the flow velocity of the fluid in the pipe based on the following equation (i) from the phase difference between the received wave in the direction and the received wave in the opposite direction, A rectangular continuous wave is used as the ultrasonic wave, the exclusive OR of the received wave in the direction of the flow and the received wave in the direction opposite to the flow is obtained, and this exclusive OR is smoothed and smoothed. A method for measuring the phase difference of the flow velocity in a pipe using an ultrasonic velocity meter, which is characterized in that the magnitude of the phase difference is obtained from the size of the result.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5315689A JPH07167696A (en) | 1993-12-16 | 1993-12-16 | Phase difference measuring method for flowing velocity in tube using ultrasonic current meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5315689A JPH07167696A (en) | 1993-12-16 | 1993-12-16 | Phase difference measuring method for flowing velocity in tube using ultrasonic current meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07167696A true JPH07167696A (en) | 1995-07-04 |
Family
ID=18068378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5315689A Pending JPH07167696A (en) | 1993-12-16 | 1993-12-16 | Phase difference measuring method for flowing velocity in tube using ultrasonic current meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07167696A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232659A (en) * | 2006-03-03 | 2007-09-13 | Ricoh Elemex Corp | Ultrasonic flowmeter |
US11536599B2 (en) | 2018-03-20 | 2022-12-27 | The University Of Warwick | Ultrasonic fluid flow measuring method and apparatus for inferring flow speed relative to the phase shift between signals from the transducers |
-
1993
- 1993-12-16 JP JP5315689A patent/JPH07167696A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007232659A (en) * | 2006-03-03 | 2007-09-13 | Ricoh Elemex Corp | Ultrasonic flowmeter |
US11536599B2 (en) | 2018-03-20 | 2022-12-27 | The University Of Warwick | Ultrasonic fluid flow measuring method and apparatus for inferring flow speed relative to the phase shift between signals from the transducers |
EP3769049B1 (en) * | 2018-03-20 | 2023-08-09 | The University Of Warwick | Fluid flow speed method and apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4391149A (en) | Doppler-type ultrasonic flowmeter | |
JPH10122923A (en) | Ultrasonic flow meter | |
JPH0532734Y2 (en) | ||
JPH109914A (en) | Ultrasonic flowmeter | |
JP2006078362A (en) | Coaxial-type doppler ultrasonic current meter | |
JPH07167696A (en) | Phase difference measuring method for flowing velocity in tube using ultrasonic current meter | |
DK0762086T3 (en) | Method for ultrasound measurement of flow rates of flowing fluids | |
JP2910815B2 (en) | Measuring method of flow velocity in pipe using ultrasonic current meter | |
EP0843160A1 (en) | Method and device for determining the flow velocity and/or throughput of a flowing fluid | |
JP4239106B2 (en) | Phase difference type ultrasonic flowmeter | |
JP2723291B2 (en) | Ultrasonic sensor | |
JP3752340B2 (en) | Ultrasonic Doppler flow velocity / flow meter | |
JPS6191509A (en) | Method for measuring pipe scale thickness | |
JPS59173715A (en) | Correlation type flow velocity meter | |
JP3116189B2 (en) | Ultrasonic vortex flowmeter | |
JPH0791996A (en) | Ultrasonic flowmeter | |
JPH0324607B2 (en) | ||
JP3248021B2 (en) | Vortex flow meter | |
JPS5914731Y2 (en) | Flow velocity flow measuring device | |
JP3021671B2 (en) | Vortex flow meter | |
JPS60202310A (en) | Ultrasonic-wave type flow-rate measuring device | |
JP2001330485A (en) | Ultrasonic flow meter | |
JPH081455Y2 (en) | Vortex flowmeter | |
JPS6135310A (en) | Vortex flowmeter | |
JPS5852486Y2 (en) | Flow velocity flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |