[go: up one dir, main page]

JPH07166261A - Electrode material for fluorescent lamp - Google Patents

Electrode material for fluorescent lamp

Info

Publication number
JPH07166261A
JPH07166261A JP31215693A JP31215693A JPH07166261A JP H07166261 A JPH07166261 A JP H07166261A JP 31215693 A JP31215693 A JP 31215693A JP 31215693 A JP31215693 A JP 31215693A JP H07166261 A JPH07166261 A JP H07166261A
Authority
JP
Japan
Prior art keywords
electrode material
fluorescent lamp
electrode
electron
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31215693A
Other languages
Japanese (ja)
Inventor
Hiroyuki Seto
啓之 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP31215693A priority Critical patent/JPH07166261A/en
Publication of JPH07166261A publication Critical patent/JPH07166261A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Discharge Lamp (AREA)

Abstract

PURPOSE:To produce an electrode material for a fluorescent lamp in which work function is reduced and a drop of voltage in the vicinity of the electrode part is lowly reduced, free from the occurrence of the local concentration of electron emission, having electron emission properties and free from secular change even by use for a long time to reduce the blackening of the edges of the tube. CONSTITUTION:This electrode material for a fluorescent lamp is a one produced from a sintering material in which a base material constituted of metallic powder and powder constituted of electron radioactive substance are uniformly mixed. The electrode material has theoretical density. The base material is constituted of at least one kind selected from the group of W, Mo, Re, Ta, Nb and the alloys thereamong. Moreover, the electron radioactive substance is constituted of at least one kind selected from the group of alkali metal oxide, alkaline earth oxide, rare earth metal oxide, Y2O3, ThO2, Ir2O3, rare earth metal boride, BaB6 and SrB6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,蛍光ランプ用電極材料
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode material for fluorescent lamps.

【0002】[0002]

【従来の技術】一般に,蛍光ランプには,熱陰極タイプ
と冷陰極タイプの2種類がある。このうちで,熱陰極タ
イプのものは,陰極を加熱して熱電子を放出させる構成
を有する。従って,発光効率は高いが寿命が数千時間と
短い。この従来の熱陰極タイプの電極には,Al(エ
ル)2 3 ,SiO2 ,K2 Oドープドタングステン
(以下,ドープドWと呼ぶ)やThO2 ドープドWが使
用されている。このため,熱電子放出性が上昇し,また
は,W自身の蒸発防止(黒化防止)がなされている。
2. Description of the Related Art Generally, there are two types of fluorescent lamps, a hot cathode type and a cold cathode type. Of these, the hot cathode type has a structure in which the cathode is heated to emit thermoelectrons. Therefore, the luminous efficiency is high, but the service life is short at thousands of hours. For this conventional hot cathode type electrode, Al (ell) 2 O 3 , SiO 2 , K 2 O doped tungsten (hereinafter referred to as doped W) or ThO 2 doped W is used. Therefore, the thermoelectron emission property is increased, or evaporation of W itself is prevented (blackening prevention).

【0003】一方,冷陰極タイプのものは,寿命は数万
時間と長いためメインテナンスフリー化を図ることがで
きるメリットがあるが電極の材質,及び構造などによっ
ては電極部分およびその近傍での電圧降下が大きくな
り,発光効率が低くなる欠点があった。この冷陰極用電
極には,Ni,Ti,及びAl(エル)などの比較的加
工しやすい材料が用いられており,コイル形や円筒形
や,平行平板形に成形し,電子放射特性の低さを補うた
めに,その表面にLaB6 ,BaOなどの電子放射性の
良い物質を塗布,スパッタ,CVDなどの方法によっ
て,コーティングして発光効率を上げる方法が採用され
ていた。
On the other hand, since the cold cathode type has a long life of tens of thousands of hours, it has an advantage of being maintenance-free, but depending on the material and structure of the electrode, the voltage drop at the electrode part and its vicinity. Has a drawback that the luminous efficiency becomes large and the luminous efficiency becomes low. This cold cathode electrode is made of a material that is relatively easy to process, such as Ni, Ti, and Al (el), and is formed into a coil shape, a cylindrical shape, or a parallel plate shape, and has low electron emission characteristics. In order to compensate for this, a method of coating the surface with a substance having a good electron emission property such as LaB 6 , BaO or the like by a method such as sputtering, CVD or the like to increase the luminous efficiency has been adopted.

【0004】ところで,特開平4−272109号公報
(以下従来技術1と呼ぶ)には,上述の冷陰極用蛍光ラ
ンプ用電極材料が示されている。この冷陰極用蛍光ラン
プ用電極材料は,W,Mo,Ta,Nb他各種金属にア
ルカリ土類金属,希土類金属の酸化物,ホウ化物,遷移
金属炭化物,窒化物等をドープし,その材料を粉末冶金
法により押し出し成形し,焼結することにより製造され
ている。また,また,従来技術1では,粉末冶金法によ
り各種仕事関数を下げる金属酸化物,ホウ化物,窒化物
をドープして,焼結のみを行って,所定の電極形状に仕
上げる方法も提案されている。
By the way, Japanese Patent Laid-Open No. 4-272109 (hereinafter referred to as "prior art 1") discloses the above-mentioned electrode material for a cold cathode fluorescent lamp. This cold cathode fluorescent lamp electrode material is formed by doping various metals such as W, Mo, Ta, and Nb with an oxide of an alkaline earth metal, an oxide of a rare earth metal, a boride, a carbide of a transition metal, a nitride, and the like. It is manufactured by extrusion molding by powder metallurgy and sintering. Further, in the prior art 1, a method of doping a metal oxide, boride, or nitride that lowers various work functions by a powder metallurgy method and performing only sintering to finish a predetermined electrode shape is also proposed. There is.

【0005】[0005]

【発明が解決しようとする課題】しかし,前述した方法
はいずれも欠点を有している。つまり熱陰極用電極材料
では,仕事関数が高く短寿命になってしまう。
However, all the above-mentioned methods have drawbacks. In other words, the work function of the hot cathode electrode material is high and the life is short.

【0006】一方,冷陰極電極材に,コーティング法を
用いた場合に,コーティングされた物質は使用中に蒸
発,消失して長時間使用後には,電極ベースの材料の特
性に戻ってしまう。さらに蒸発した物質がバルブ内壁に
付着して管端黒化を引き起こし照度を低下させる問題が
あった。
On the other hand, when the coating method is used for the cold cathode electrode material, the coated substance evaporates and disappears during use and returns to the characteristics of the electrode base material after long-term use. Further, there is a problem that the evaporated substance adheres to the inner wall of the bulb to cause blackening of the tube end and reduce the illuminance.

【0007】更に,従来例1に示された焼結材電極を使
用すると,その電極は焼結材であり各金属合金の理論密
度には達していない為多くの空孔を有しており,しか
も,固相焼結体であるため,焼結端子同志の粒界強度が
弱く,電子を飛ばすと,固相焼結されたW等の金属粒子
(比表面積が大きくなり,しかも鍛造材と比べて粒界強
度が弱いため)が弱く,熱電子放出の衝撃でその合金金
属がバルブ内壁に蒸発し管端黒化を引き起こし照度を低
下される問題があった。
Furthermore, when the sintered material electrode shown in Conventional Example 1 is used, the electrode is a sintered material and does not reach the theoretical density of each metal alloy, and therefore has many pores. Moreover, since it is a solid-phase sintered body, the grain boundary strength between the sintering terminals is weak, and when electrons are blown, the solid-phase sintered metal particles such as W (the specific surface area becomes large, and moreover, compared with the forged material). Since the grain boundary strength is weak), the alloy metal evaporates on the inner wall of the bulb due to the impact of thermionic emission, causing blackening of the tube end and lowering the illuminance.

【0008】そこで,本発明の技術的課題は,仕事関数
を下げ,電極部分付近での電圧降下を低く押え,電子放
射の局部集中が起こらず効率の良い電子放射特性を有し
長時間の使用によっても,経時変化がなく管端黒化を低
減させる蛍光ランプ用電極材料を提供することにある。
Therefore, the technical problems of the present invention are to lower the work function, suppress the voltage drop in the vicinity of the electrode portion, to prevent local concentration of electron emission, and to have efficient electron emission characteristics, and to use for a long time. It is also to provide an electrode material for fluorescent lamps that does not change over time and reduces blackening at the tube end.

【0009】[0009]

【課題を解決するための手段】本発明者等は,上記技術
的課題を解決するために,金属粉末からなるベース材と
電子放射性材質からなる粉末とが均一に混合された合金
粉を焼結し,その後鍛造,圧延,転打,熱処理線引き等
による塑性加工を加え理論密度に仕上げた材料を電極に
適用することで,この発明をなすに至ったものである。
In order to solve the above technical problems, the present inventors sinter alloy powder in which a base material made of metal powder and a powder made of electron-emitting material are uniformly mixed. Then, the present invention was achieved by applying to the electrode a material that has been subjected to plastic working such as forging, rolling, rolling, heat treatment wire drawing, etc., and finished to a theoretical density.

【0010】即ち,本発明の蛍光ランプ用電極材料は金
属からなるベース材と電子放射性物質からなる微細な粒
子とが均一に混合された焼結材からなる電極材料であっ
て,前記電極材料は理論密度を有することを特徴とする
ものである。
That is, the electrode material for a fluorescent lamp of the present invention is an electrode material made of a sintered material in which a metal base material and fine particles of an electron emitting substance are uniformly mixed, and the electrode material is It is characterized by having a theoretical density.

【0011】また,本発明の蛍光ランプ用電極は金属粉
末からなるベース材と電子放射性物質からなる粉末とが
均一に混合された混合物を成形,焼結し,一般的な粉末
冶金法の塑性加工工程つまり,鍛造,圧延,転打,熱処
理線引き等の塑性加工により得られたものであることを
特徴とするものである。
Further, the fluorescent lamp electrode of the present invention is formed by sintering a mixture in which a base material made of metal powder and a powder made of an electron emissive material are uniformly mixed and sintered, and plastic working by a general powder metallurgy method. The process is characterized by being obtained by plastic working such as forging, rolling, rolling, heat treatment drawing and the like.

【0012】本発明に於て用いられるベース材として
は,電極を構成する主成分をなすもので難融金属で導電
性の金属材料が用いられる。具体的には,W,Mo,R
e,Ta,Nbおよびこれらの合金からなる群から選ば
れた少なくとも1種の金属を用いる。
The base material used in the present invention is made of a refractory metal or a conductive metal material which is a main component of an electrode. Specifically, W, Mo, R
At least one metal selected from the group consisting of e, Ta, Nb and alloys thereof is used.

【0013】ここで,本発明において,難融金属を用い
る理由は,この難融金属は蒸気圧が低く,バルブ内での
蒸発が少なくなる為である。
Here, the reason why the refractory metal is used in the present invention is that the refractory metal has a low vapor pressure and the evaporation in the valve is small.

【0014】次に,本発明において,電子放射性物質
は,ベース金属に比べより低温低電圧で多量の電子を放
出可能な作用をなす物質である。この電子放射性物質と
しては,仕事関数が小さく,かつ蒸気圧の低い金属化合
物が好ましい。ここで仕事関数とは,ある物質の表面か
ら真空中へ電子が遊離されるために必要とするエネルギ
ー量のことである。従ってこの仕事関数が小さい物質ほ
ど,電子放射性が高く好ましい。また蒸気圧の低い物質
ほど使用中に蒸発消失して経時変化しにくいので好まし
い。このような電子放射性物質として,具体的にはアル
カリ金属酸化物Li2 O,Na2 O,K2 O,Rb
2 O,Cs2 Oなど,アルカリ土類金属酸化物として
は,BeO,MgO,CaO,SrO,BaOなど,希
土類金属酸化物としては,La2 3 ,CeO2 ,Pr
2 3 ,Nd2 3 ,Y2 3 ,Sc2 3 ,Pm2
3 ,Sm2 3 ,Eu2 3 ,Gd2 3 ,Tb
2 3 ,Dy2 3 ,Ho2 3 ,Er2 3 ,Tm2
3 Yb2 3 ,Lu2 3 など,希土類金属ホウ化物
としてはLaB6 ,CeB6 ,PrB6 ,NdB6 ,Y
6 など希土類窒化物としては,LaN,CeN,Pr
N,NdN,YN,ScN,SmN,EuN,GdN,
DyNなどを挙げることが出来る。これ等のうちでBa
O,CaO,La2 3 ,LaB6 ,CeO2 ,Y2
3 ,LaB6 ,CeB6 ,YB6 ,Li2 Oが好まし
い。
Next, in the present invention, the electron emissive substance is a substance which has a function of emitting a large amount of electrons at a lower temperature and a lower voltage than the base metal. As the electron emitting substance, a metal compound having a low work function and a low vapor pressure is preferable. Here, the work function is the amount of energy required to release electrons from the surface of a substance into a vacuum. Therefore, a substance having a smaller work function has a higher electron emission property, which is preferable. Further, a substance having a lower vapor pressure is preferable because it disappears during use and is less likely to change over time. Specific examples of such an electron emitting substance include alkali metal oxides Li 2 O, Na 2 O, K 2 O and Rb.
Alkaline earth metal oxides such as 2 O and Cs 2 O include BeO, MgO, CaO, SrO, and BaO, and rare earth metal oxides include La 2 O 3 , CeO 2 , and Pr.
2 O 3 , Nd 2 O 3 , Y 2 O 3 , Sc 2 O 3 , Pm 2 O
3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb
2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2
LaB 6 , CeB 6 , PrB 6 , NdB 6 , Y as rare earth metal borides such as O 3 Yb 2 O 3 and Lu 2 O 3.
As rare earth nitrides such as B 6 , LaN, CeN, Pr
N, NdN, YN, ScN, SmN, EuN, GdN,
DyN etc. can be mentioned. Of these, Ba
O, CaO, La 2 O 3 , LaB 6 , CeO 2 , Y 2 O
3 , LaB 6 , CeB 6 , YB 6 and Li 2 O are preferable.

【0015】また,本発明において,電子放射性物質に
2種以上の金属化合物を用いる場合には,上記の化合物
を任意に組み合せることが出来るが,好ましくはアルカ
リ土類金属酸化物,アルカリ金属酸化物および希土類酸
化物から選ばれる少なくとも1種の酸化物と,電子放射
性物質の全量に対して1〜60重量%のThO2 および
Ir2 3 から選ばれる少なくとも1種の酸化物と混合
物を用いることが出来る。更に,希土類金属ホウ化物の
1以上と,電子放射性物質の全量に対して,たとえば1
〜60重量%のBaB6 ,SrB6 ,BeB6 から選ば
れる1種以上のホウ化物との混合物を用いることが出来
る。
Further, in the present invention, when two or more kinds of metal compounds are used for the electron emitting substance, the above compounds can be arbitrarily combined, but alkaline earth metal oxides and alkali metal oxides are preferable. And at least one oxide selected from rare earth oxides, and a mixture of at least one oxide selected from ThO 2 and Ir 2 O 3 in an amount of 1 to 60% by weight based on the total amount of electron-emitting substances. You can Furthermore, for one or more rare earth metal borides and the total amount of electron emissive material, for example, 1
60 wt% of BaB 6, SrB 6, BeB with one or more borides selected from 6 mixture can be used.

【0016】この電子放射性の金属化合物の粒子の大き
さ(粒度)は1.0μm未満の範囲である。この電子放
射性物質の添加量は電極材料を基準として0.05〜5
重量%好ましくは0.5〜2重量%である。その理由
は,添加量(ドープ量)が0.05未満では電子放射性
の効果が得られず,しかも,ドープ剤の粒子の大きさ
が,1.0μm以上であると熱電子が異常放電を起こし
ランプの寿命が著しく短くなる。一方5重量%を越える
と焼結されたインゴットの鍛造,圧延,転打,線引き加
工に於て,割れが発生し加工が困難となり,加工歩留が
著しく低下するという不都合があるからである。
The particle size (particle size) of this electron-emitting metal compound is in the range of less than 1.0 μm. The amount of the electron emitting substance added is 0.05 to 5 based on the electrode material.
% By weight, preferably 0.5 to 2% by weight. The reason is that if the addition amount (doping amount) is less than 0.05, the effect of electron emission cannot be obtained, and if the particle size of the doping agent is 1.0 μm or more, thermionic electrons cause abnormal discharge. Lamp life is significantly reduced. On the other hand, if it exceeds 5% by weight, cracking occurs in the forging, rolling, rolling, and wire drawing of the sintered ingot, making the processing difficult, resulting in a disadvantage that the processing yield is significantly reduced.

【0017】本発明の電極材料は,上記金属からなるベ
ース材と電子放射性物質からなる粉末が均一に混合,分
散され成形,焼結,転打等の塑性加工を施かされインゴ
ットよりの加工率(断面減少率)を80%以上行なわれ
ることにより,理論密度(理論比重)に仕上げた線,
棒,板材を得る。本発明の電極材料を使用した電極は,
使用中に経時変化がなく,安定した発光が得られるとと
もに,電子放射性物質の蒸発やスパッタが抑制されて管
端黒化も抑えることができる。
In the electrode material of the present invention, the base material made of the above-mentioned metal and the powder made of the electron emitting substance are uniformly mixed and dispersed and subjected to plastic working such as molding, sintering, rolling, etc. (Cross-section reduction rate) is 80% or more, so that lines finished to theoretical density (theoretical specific gravity),
Obtain rods and plates. An electrode using the electrode material of the present invention is
There is no change over time during use, stable light emission is obtained, and evaporation and spatter of the electron emissive material are suppressed, and blackening of the tube end can also be suppressed.

【0018】[0018]

【実施例】以下に,本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0019】図1は本発明の実施例に係る蛍光ランプ用
電極を示す図である。図1に示される蛍光ランプ用電極
は,ダブルコイル電極と呼ばれる焼結体線材からなり,
線径D1 のコイルを密巻きとして芯線径D2 の一次コイ
ルを得,この一次コイルを,所定のピッチPにて,予め
定められた巻数Nで,芯線径d,所定のコイル長さC.
Lとなるように形成したものである。一例を挙げれば,
1 =0.03mm,D2 =0.10mm,P=1.0
mm,N=6ターン,d=1.2mm,C.L.=6m
mである。
FIG. 1 is a diagram showing an electrode for a fluorescent lamp according to an embodiment of the present invention. The electrode for the fluorescent lamp shown in FIG. 1 is made of a sintered wire rod called a double coil electrode,
A coil having a wire diameter D 1 is tightly wound to obtain a primary coil of a core wire diameter D 2 , and the primary coil is wound at a predetermined pitch P with a predetermined number of turns N, a core wire diameter d, and a predetermined coil length C. .
It is formed so as to be L. For example,
D 1 = 0.03 mm, D 2 = 0.10 mm, P = 1.0
mm, N = 6 turns, d = 1.2 mm, C.I. L. = 6m
m.

【0020】また,図示しない蛍光ランプ用電極には,
シングルコイル電極と呼ばれるものがある。このシング
ルコイル電極は,図1で示す一次コイルを単線としたも
のである。
Further, the fluorescent lamp electrode (not shown) is
There is a so-called single coil electrode. This single coil electrode is a single wire of the primary coil shown in FIG.

【0021】図2は図1の蛍光ランプ用電極が取り付け
られた蛍光ランプの要部を示す一部切欠断面図図であ
る。図2で示すように,蛍光ランプ10は,ガラスバル
ブ11とこのガラスバルブ11の両端に設けられたステ
ム13と,ステム13に埋設され,ガラスバルブ11の
外部に突出した口金ピン15と,口金ピン15に接続さ
れたウェルズ(導体)16と,このウェルズ16,16
間に設けられたWコイルからなる蛍光ランプ用電極20
(図1参照)と,この蛍光ランプ用電極20の端からn
字状に曲折して設けられた補助電極22を備えている。
ガラス管11の内面には,濾波長域発光蛍光体を色温度
が7500Kとなるように調合コーティングしてある蛍
光物質層17が設けられ,数mgの水銀(Hg)19が
付着され,20Torrのアルゴン(Ar)ガスが封入
されている。Wコイル20には,酸化バリウム被覆等が
設けられている。
FIG. 2 is a partially cutaway sectional view showing a main part of a fluorescent lamp to which the fluorescent lamp electrode of FIG. 1 is attached. As shown in FIG. 2, the fluorescent lamp 10 includes a glass bulb 11, stems 13 provided at both ends of the glass bulb 11, a base pin 15 embedded in the stem 13 and protruding to the outside of the glass bulb 11, and a base. Wells (conductor) 16 connected to the pin 15 and the wells 16, 16
Electrode 20 for fluorescent lamp, which is composed of W coil provided between
(See FIG. 1) and n from the end of the fluorescent lamp electrode 20.
The auxiliary electrode 22 is provided in a bent shape.
On the inner surface of the glass tube 11, there is provided a fluorescent material layer 17 which is prepared by coating a phosphor in the filtered wavelength region so as to have a color temperature of 7500K, and a few mg of mercury (Hg) 19 is deposited on the inner surface of the glass tube 11 at 20 Torr. Argon (Ar) gas is enclosed. The W coil 20 is provided with barium oxide coating or the like.

【0022】この蛍光ランプを点灯回路(高周波点灯,
40kHz)により点灯すると,電極間で放電しHg1
9より放射される254nmの紫外線により蛍光体が発
光する。
A lighting circuit (high frequency lighting,
When it is lit at 40 kHz), discharge occurs between the electrodes and Hg1
The fluorescent substance emits light by the ultraviolet ray of 254 nm emitted from 9.

【0023】次に,蛍光ランプ用電極20の製造方法に
ついて説明する。
Next, a method of manufacturing the fluorescent lamp electrode 20 will be described.

【0024】金属(W,Mo,Re,Ta,Nb)の粉
末を用意する。この粉末の平均粒径はF.s.s.s.値(フィ
ッシャー,サブ,シーブ,サイザー器による測定した
値)で,1〜10μmであるが,好ましくは3〜5μm
にすると焼結後のインゴットの比重が高くなり,後の塑
性加工の割れ等の欠陥が少なくなる。
Powders of metal (W, Mo, Re, Ta, Nb) are prepared. The average particle size of this powder is 1 to 10 μm in Fsss value (value measured by Fischer, sub, sieve, sizer), but preferably 3 to 5 μm
If this is done, the specific gravity of the ingot after sintering will increase, and defects such as cracks during plastic working afterwards will decrease.

【0025】一方,電子放射性金属粉F.S.S.S 0.01
〜1.0μmの平均粒径のものを用意する。均一分散さ
せる為に粒径は小さければ小さい程好ましい。次に上記
金属粉末と電子放射性金属粉末をV型ミキサーダブルコ
ーンミキサーボールミル,振動ミル,アトライター,擂
潰器などで混合する。その後,静水圧プレス,金型プレ
ス等で成形を行う。板用には角形,棒用には四角棒形,
丸棒形が次の塑性加工がやり易い為に形状を変える方が
望ましい。次に,W,Mo,Reは還元性ガス中にて,
材料によって異なるが1800〜3000℃程度,T
a,Nbは真空中で2000℃〜2600℃程度で,焼
結時間は0.5〜10時間で焼結を行う。焼結して出来
たインゴットの比重(密度)は,論理密度の90%以上
が次工程の塑性加工の為に望ましい値である。次に,板
の場合は加熱して鍛造又は圧延を行い,線棒の場合は加
熱して鍛造又は圧延又は転打を行い途中熱処理を1〜3
回行い,その後必要な径に応じて,線引き加工を行い,
理論密度を得る。出来上った板,線棒材料は材料の表面
を電解研磨,化学研磨等でクリーニングし,所定の電極
形状,例えば,図1で示すダブルコイル電極又は図示し
ないシングルコイル電極に仕上げる。なお,電子放射性
のドープ剤を更に均一にしかも細かく分散させる方法と
して,この金属(W,Mo,Re)の酸化物粉末にドー
プ材を水溶性塩化物にして,ドープし,混合,脱水,乾
燥後に還元炉にて還元し,金属ドープド粉末を作る方法
がもっとも好ましい。
On the other hand, electron emitting metal powder FSSS 0.01
A material having an average particle size of ˜1.0 μm is prepared. The smaller the particle size is, the more preferable for uniform dispersion. Next, the metal powder and the electron-emitting metal powder are mixed with a V-type mixer double cone mixer ball mill, vibrating mill, attritor, grinder or the like. After that, molding is performed by a hydrostatic press, a die press, or the like. Square for plate, square bar for bar,
It is desirable to change the shape because the round bar shape facilitates the next plastic working. Next, W, Mo, and Re are in reducing gas,
It depends on the material, but it is about 1800-3000 ℃, T
Sintering is performed for a and Nb in vacuum at about 2000 to 2600 ° C. and for a sintering time of 0.5 to 10 hours. As for the specific gravity (density) of the ingot formed by sintering, 90% or more of the logical density is a desirable value for plastic working in the next process. Next, in the case of a plate, heating and forging or rolling are performed, and in the case of a wire rod, heating and forging or rolling or rolling are performed, and intermediate heat treatment is performed for 1 to 3.
And then wire drawing according to the required diameter,
Get the theoretical density. The material of the finished plate or wire rod is cleaned by electrolytic polishing, chemical polishing or the like on the surface of the material to finish it into a predetermined electrode shape, for example, a double coil electrode shown in FIG. 1 or a single coil electrode not shown. As a method for more evenly and finely dispersing the electron-emissive doping agent, this metal (W, Mo, Re) oxide powder is doped with a water-soluble chloride to dope, mix, dehydrate, and dry. The most preferable method is to make a metal-doped powder by subsequent reduction in a reduction furnace.

【0026】次に,本発明の実施例に係る蛍光ランプ用
電極材料の製造の具体例を示す。
Next, a concrete example of manufacturing the electrode material for a fluorescent lamp according to the embodiment of the present invention will be described.

【0027】Wのブルーオキサイド(Blue Oxide) 粉末
を用意し,塩化セリウムの溶液をドープして,脱水,乾
燥し,その後水素還元炉にて還元し,セリウムオキサイ
ドをドープしたW粉末F.S.S.S.3.5μmを作る。次
に,金型プレスにて棒状に成形し,仮焼結を行い,H2
雰囲気の直接通電焼結炉にて焼結を行った。焼結温度は
約3000℃で時間は0.5Hrで行い比重17.8で
セリウム(Ce)は1重量%残っていた。インゴット寸
法は25nm×25mmの断面の棒状形状とした。次に
加熱温度1500℃〜1100℃で棒を加熱しながら転
打を行い約外径3mmに仕上げ,その途中,径9.0m
mと径5.0mmのときに,再結晶熱処理を行った。そ
の後,1000℃〜500℃の温度にて加熱し,しかも
歪取り熱処理を数回加えながら径0.04の線に仕上
げ,表面についた潤滑剤の黒鉛を取る目的で電解研磨を
行い,直径0.03の理論密度を有する線材に仕上げ,
図1で示すダブルコイル電極を作った。
A W blue oxide powder was prepared, doped with a solution of cerium chloride, dehydrated and dried, and then reduced in a hydrogen reduction furnace to obtain cerium oxide-doped W powder FSSS of 3.5 μm. create. Next, it is formed into a rod shape by a die press, pre-sintered, and H 2
Sintering was carried out in a direct current sintering furnace in an atmosphere. The sintering temperature was about 3000 ° C., the time was 0.5 Hr, the specific gravity was 17.8, and 1% by weight of cerium (Ce) remained. The ingot had a rod-like shape with a cross section of 25 nm × 25 mm. Next, while heating the rod at a heating temperature of 1500 ° C to 1100 ° C, rolling is performed to finish the outer diameter to about 3 mm, and on the way, the diameter is 9.0 m.
Recrystallization heat treatment was performed when m and the diameter were 5.0 mm. Then, it is heated at a temperature of 1000 ° C to 500 ° C, and while being subjected to strain relief heat treatment several times, it is finished into a wire with a diameter of 0.04, and electrolytic polishing is performed to remove the graphite of the lubricant on the surface. Finish into wire with theoretical density of 0.03,
The double coil electrode shown in FIG. 1 was made.

【0028】又,従来技術1で示されるように,円筒形
状に作製するには転打加工で直径5.0mmにおいて,
再結晶熱処理を行わない工程の材料で切削加工し寸法を
径4mm,肉厚0.4mm,長さ7mmに仕上げる事も
容易に出来その効果はコイル同様良結果が得られた。
Further, as shown in the prior art 1, in order to produce a cylindrical shape, by rolling, at a diameter of 5.0 mm,
It was easy to cut the material with a material that was not subjected to recrystallization heat treatment to a size of 4 mm in diameter, 0.4 mm in wall thickness, and 7 mm in length, and the effect was as good as the coil.

【0029】本発明の実施例に係る電極材料に,ウエル
ズ16をスポット溶接して電極とし,直径6mm×20
0mm(電極間170mm)のガラスバルブ11内に,
図2に示すように封入した。
The wells 16 were spot-welded to the electrode material according to the embodiment of the present invention to form an electrode, and the diameter was 6 mm × 20.
In the glass bulb 11 of 0 mm (170 mm between electrodes),
Encapsulation was performed as shown in FIG.

【0030】上記製造した板を丸目加工溶接して図1の
円筒電極の製作も可能であり,その効果は同じであった
比較例としてAl(エル)2 O,K2 O,SiO2 スタ
ンダードドープド管球用Wダブルコイルフィラメント
(参考例1)とそのコイルにCeO2 をCVDコーティ
ングしたもの(比較例1)を用意した。
It is also possible to manufacture the cylindrical electrode of FIG. 1 by rounding and welding the above-prepared plate, and the same effect was obtained. As a comparative example, Al (ell) 2 O, K 2 O, SiO 2 standard dope was prepared. A W double coil filament for a bulb (Reference Example 1) and a coil thereof coated with CeO 2 by CVD (Comparative Example 1) were prepared.

【0031】陰極電圧降下は印加電圧のうち電極近傍で
低下する電圧で発光に寄与しないので,この電圧が低い
ほど発光効率が高く好ましい。以下表1に電極の種類を
変え降下電圧を調べた。
Since the cathode voltage drop is a voltage of the applied voltage which is decreased near the electrodes and does not contribute to light emission, the lower this voltage is, the higher the light emission efficiency is, which is preferable. The voltage drop was investigated by changing the electrode type in Table 1 below.

【0032】[0032]

【表1】 上記表1から明らかなようにNiをドープドWに変える
ことにより15V,WにCeO2 を添加する事により3
5V低域することが出来る。従来のNiにCeO2 をコ
ーティングした電極を使用したものに比べてもWにCe
2 を添加したものは25V低くなっている。
[Table 1] As is clear from Table 1 above, by changing Ni into doped W, 15 V, and by adding CeO 2 to W, 3
It can be 5V low range. Even when compared with the conventional Ni-based electrode coated with CeO 2 ,
The voltage with O 2 added is 25V lower.

【0033】図4は管端黒化度を示すグラフである。図
4において,AはCeO2 1重量%添加コイル,BはC
eO2 コーティングNiコイル比較例1の電極,CはC
eO2 1重量%のバインダー入りW粉を線状に押し出し
たものをコイル状に成型し焼結してコイルを作った電極
を使用している。ここで,グラフに於ける縦軸の黒化度
とは,電極黒化程度を目視により評価したものであり,
“0”は黒化なし,“1”は注意して確認すると確認
可,“2”は少し黒化,“3”は2と4の中間,“4”
は管端の周上に渡り黒化を示している。図4に示したよ
うに,Aは2000HR点灯後の黒化の度合いはAは黒
化ゼロ,B,C,共に黒化は時間と共に進行しており,
金属及び放射性物質が蒸発している事が分かる。
FIG. 4 is a graph showing the degree of blackening at the tube end. In FIG. 4, A is a coil containing CeO 2 at 1% by weight, and B is C.
eO 2 Coated Ni Coil Electrode of Comparative Example 1, C is C
An electrode is used in which a W powder containing 1% by weight of eO 2 in a binder is extruded into a linear shape, molded into a coil, and sintered to form a coil. Here, the degree of blackening on the vertical axis in the graph is a visual evaluation of the degree of electrode blackening,
"0" is not blackened, "1" can be confirmed by checking carefully, "2" is slightly blackened, "3" is between 2 and 4, "4"
Indicates blackening over the circumference of the pipe end. As shown in FIG. 4, A is the degree of blackening after 2000HR lighting, A is zero blackening, and B and C are both blackening progressing with time,
It can be seen that the metal and radioactive substances are evaporating.

【0034】特にAとCを比較すると,焼結したままの
比重17.8(理論比重に対して92.7%)の材料も
黒化が激しい事が分かる,これは空孔が多く,結晶粒子
の強度がないためと考えられ,熱電子衝撃に耐えられな
い為と推定される。
In particular, by comparing A and C, it can be seen that the material having a specific gravity of 17.8 as sintered (92.7% of the theoretical specific gravity) is also highly blackened. It is thought that this is due to the lack of particle strength and that it cannot withstand thermionic impact.

【0035】下記表2に線材中のドープ剤の粒径と蛍光
ランプの寿命との関係について示す。
Table 2 below shows the relationship between the particle diameter of the dopant in the wire and the life of the fluorescent lamp.

【0036】下記表2で示すテストはドープ剤の粒度を
測定するために特別に製造した。WにCeO2 を1重量
%一定として得た直径0.03mmのW線を研磨し走査
電子顕微鏡にてドープ剤CeO2 の分布と粒径を測定し
た。試料として,ドープ剤の粒度が異なるように,F.S.
S.S 3.5μmのW粉末にCeO2 の粉末の粒度の違っ
たものをドープド粉末を成形,中焼,焼結後,塑性加工
を行い直径0.39mmの線にして検鏡を行った。尚,
直径0.03mmでは,線が細すぎて,測定が困難であ
るため,直径0.39mmのものを用いた。その後,そ
れらのドープドW線を直径0.04mmまで加工し,電
解研磨し,直径0.03mmに仕上げ,図1で示すよう
なダブルコイルを作り,図2で示す蛍光ランプにセット
し,黒化度4になる迄の時間を測定し,寿命とした。
The test set forth in Table 2 below was specifically prepared to determine the particle size of the dopant. A W wire having a diameter of 0.03 mm obtained by keeping CeO 2 at 1% by weight as W was polished and the distribution and particle diameter of the doping agent CeO 2 were measured by a scanning electron microscope. As a sample, FS
SS 3.5 μm W powder having CeO 2 powder of different grain size was molded into a doped powder, and after intermediate firing and sintering, plastic working was performed to make a line with a diameter of 0.39 mm, and microscopic examination was performed. still,
With a diameter of 0.03 mm, the wire is too thin and measurement is difficult, so a diameter of 0.39 mm was used. After that, the doped W wires are processed to a diameter of 0.04 mm, electropolished, finished to a diameter of 0.03 mm, a double coil as shown in FIG. 1 is made, set in the fluorescent lamp shown in FIG. 2, and blackened. The time to reach 4 degrees was measured and taken as the life.

【0037】[0037]

【表2】 上記表2から,ドープ剤の粒度は,1.0μmを越える
と著しく低下することが判明した。
[Table 2] From Table 2 above, it has been found that the particle size of the doping agent is remarkably reduced when the particle size exceeds 1.0 μm.

【0038】[0038]

【発明の効果】以上,説明したように,本発明によれ
ば,仕事関数を下げ,電極部分付近での電圧降下を低く
押え,電子放射の局部集中が起こらず効率の良い電子放
射特性を有し長時間の使用によっても,経時変化がなく
管端黒化を低減させる蛍光ランプ用電極材料を提供する
ことにができる。
As described above, according to the present invention, the work function is lowered, the voltage drop in the vicinity of the electrode portion is kept low, the local concentration of electron emission does not occur, and the electron emission characteristic is efficient. However, it is possible to provide an electrode material for fluorescent lamps that does not change over time and reduces blackening at the tube end even after long-term use.

【0039】また,本発明によれば,塑性加工性に優れ
た蛍光ランプ用電極材料を提供することができる。
Further, according to the present invention, it is possible to provide an electrode material for a fluorescent lamp which is excellent in plastic workability.

【0040】更に,本発明によれば,粉末冶金法を使用
することができ,工業化が容易である。
Furthermore, according to the present invention, the powder metallurgy method can be used, and industrialization is easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る蛍光ランプ用電極を示す
図である。
FIG. 1 is a diagram showing an electrode for a fluorescent lamp according to an embodiment of the present invention.

【図2】本発明の実施例に係る蛍光ランプ用電極を組み
込んだ蛍光ランプをの要部を示す一部切欠断面図であ
る。
FIG. 2 is a partially cutaway sectional view showing a main part of a fluorescent lamp incorporating an electrode for a fluorescent lamp according to an embodiment of the present invention.

【図3】各種コイルの加工率と比重(密度)との関係を
示す図である。
FIG. 3 is a diagram showing the relationship between the processing rate and the specific gravity (density) of various coils.

【図4】管端黒化度を示す図である。FIG. 4 is a diagram showing the degree of blackening at the tube end.

【符号の説明】[Explanation of symbols]

10 蛍光ランプ 11 ガラスバルブ 13 ステム 15 口金ピン 16 ウェルズ(導体) 17 蛍光物質層 19 水銀 20 Wコイル電極 22 補助電極 10 Fluorescent Lamp 11 Glass Bulb 13 Stem 15 Base Pin 16 Wells (Conductor) 17 Fluorescent Material Layer 19 Mercury 20 W Coil Electrode 22 Auxiliary Electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 金属粉末からなるベース材と電子放射性
物質からなる粉末とが均一に混合された焼結材からなる
電極材料であって,前記電極材料は理論密度を有するこ
とを特徴とする蛍光ランプ用電極材料。
1. A fluorescent material, characterized in that the electrode material is made of a sintered material in which a base material made of a metal powder and a powder made of an electron emitting substance are uniformly mixed, and the electrode material has a theoretical density. Lamp electrode material.
【請求項2】 請求項1記載の蛍光ランプ用電極材料に
おいて,前記ベース材はW,Mo,Re,Ta,Nbお
よびこれらの合金からなる群から選ばれた少なくとも1
種からなることを特徴とする蛍光ランプ用電極材料。
2. The fluorescent lamp electrode material according to claim 1, wherein the base material is at least one selected from the group consisting of W, Mo, Re, Ta, Nb and alloys thereof.
An electrode material for a fluorescent lamp, characterized by comprising a seed.
【請求項3】 請求項1記載の蛍光ランプ用電極材料に
おいて,前記電子放射性物質は,アルカリ金属酸化物,
アルカリ土類酸化物,希土類金属酸化物,Y2 3 ,T
hO2 ,Ir2 3 ,希土類金属ホウ化物,BaB6
SrB6 からなる群から選ばれた少なくとも一種である
ことを特徴とする蛍光ランプ用電極材料。
3. The fluorescent lamp electrode material according to claim 1, wherein the electron emitting substance is an alkali metal oxide,
Alkaline earth oxide, rare earth metal oxide, Y 2 O 3 , T
hO 2 , Ir 2 O 3 , rare earth metal boride, BaB 6 ,
An electrode material for a fluorescent lamp, which is at least one selected from the group consisting of SrB 6 .
【請求項4】 請求項1記載の蛍光ランプ用電極材料に
おいて,前記電子放射性物質の含有量は,電極材料を基
準として0.05〜5重量%であることを特徴とする蛍
光ランプ用電極材料。
4. The electrode material for a fluorescent lamp according to claim 1, wherein the content of the electron emitting substance is 0.05 to 5% by weight based on the electrode material. .
【請求項5】 請求項1記載の蛍光ランプ用電極材料に
おいて,前記理論密度は塑性加工により達成されている
ことを特徴とする蛍光ランプ用電極材料。
5. The electrode material for a fluorescent lamp according to claim 1, wherein the theoretical density is achieved by plastic working.
【請求項6】 請求項1記載の蛍光ランプ用電極材料に
おいて,前記電子放射性物質は前記金属ベース材に均一
に分散した1.0μm未満の粒度を有する粒子であるこ
とを特徴とする蛍光ランプ用電極材料。
6. The fluorescent lamp electrode material according to claim 1, wherein the electron emissive substance is particles having a particle size of less than 1.0 μm uniformly dispersed in the metal base material. Electrode material.
JP31215693A 1993-12-13 1993-12-13 Electrode material for fluorescent lamp Withdrawn JPH07166261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31215693A JPH07166261A (en) 1993-12-13 1993-12-13 Electrode material for fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31215693A JPH07166261A (en) 1993-12-13 1993-12-13 Electrode material for fluorescent lamp

Publications (1)

Publication Number Publication Date
JPH07166261A true JPH07166261A (en) 1995-06-27

Family

ID=18025920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31215693A Withdrawn JPH07166261A (en) 1993-12-13 1993-12-13 Electrode material for fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH07166261A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156091A (en) * 2004-11-29 2006-06-15 Rokusan O Electrode of cold-cathode tube and its manufacturing method
WO2009034820A1 (en) * 2007-09-13 2009-03-19 Nec Lighting, Ltd. Cold cathode fluorescent lamp
WO2009157270A1 (en) * 2008-06-25 2009-12-30 Necライティング株式会社 Fluorescent lamp electrode, method for producing same, and a fluorescent lamp

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156091A (en) * 2004-11-29 2006-06-15 Rokusan O Electrode of cold-cathode tube and its manufacturing method
WO2009034820A1 (en) * 2007-09-13 2009-03-19 Nec Lighting, Ltd. Cold cathode fluorescent lamp
JP2010062151A (en) * 2007-09-13 2010-03-18 Nec Lighting Ltd Cold cathode fluorescent lamp
JP4452937B2 (en) * 2007-09-13 2010-04-21 Necライティング株式会社 Cold cathode fluorescent lamp
JP4452934B2 (en) * 2007-09-13 2010-04-21 Necライティング株式会社 Cold cathode fluorescent lamp
JPWO2009034820A1 (en) * 2007-09-13 2010-12-24 Necライティング株式会社 Cold cathode fluorescent lamp
WO2009157270A1 (en) * 2008-06-25 2009-12-30 Necライティング株式会社 Fluorescent lamp electrode, method for producing same, and a fluorescent lamp
JP2010009826A (en) * 2008-06-25 2010-01-14 Nec Lighting Ltd Electrode for fluorescent lamp, its manufacturing method, and fluorescent lamp
US8446086B2 (en) 2008-06-25 2013-05-21 Nec Lighting, Ltd. Fluorescent lamp electrode, method for producing same, and a fluorescent lamp

Similar Documents

Publication Publication Date Title
CN103975414B (en) Tungsten alloy part and the discharge lamp using this tungsten alloy part, transmitting tube and magnetron
CN103987864B (en) Tungsten alloy and the tungsten alloy part using this tungsten alloy, discharge lamp, transmitting tube and magnetron
WO2013094695A1 (en) Tungsten alloy, and tungsten alloy part, discharge lamp, transmitting tube and magnetron using tungsten alloy
EP0489463B1 (en) Low pressure discharge lamp
JPH04272109A (en) Electrode material for cold cathode fluorescent lamp and electrode constituted of the above
US6046544A (en) High-pressure metal halide discharge lamp
WO2013179519A1 (en) Tungsten alloy part, and discharge lamp, transmitting tube, and magnetron using same
EP0348943A1 (en) Fluorescent lamp
US2686274A (en) Thermionic cathode
JPH07166261A (en) Electrode material for fluorescent lamp
JP2773174B2 (en) Electrode material
JP4011208B2 (en) Tungsten material used for discharge lamp electrodes, discharge lamp electrodes, and discharge lamps using the same
JP2011103240A (en) Tungsten electrode and discharge lamp using the same
JP2922485B2 (en) Low pressure discharge lamp
JP3078287B1 (en) Manufacturing method of electron emission material
US6674240B1 (en) Gas discharge lamp comprising an oxide emitter electrode
EP0298558B1 (en) Method of manufacturing a scandat cathode
JP2000090876A (en) Low pressure discharge lamp
JP4181385B2 (en) Method for manufacturing mercury-emitting structure
JP3137960B2 (en) Electron emission material
JPH11273618A (en) Discharge electrode material and its manufacture
JP3462818B2 (en) Electron emitting material, method of manufacturing the same, electrode, and discharge lamp
JP3611984B2 (en) Discharge tube and method for manufacturing cathode for discharge tube
JP2001167687A (en) Electron-emitting material, electrode and discharge lamp
WO2012053383A1 (en) Electrode for fluorescent lamp and fluorescent lamp

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306