[go: up one dir, main page]

JPH07164880A - Door impact beam material made of aluminum alloy - Google Patents

Door impact beam material made of aluminum alloy

Info

Publication number
JPH07164880A
JPH07164880A JP5318485A JP31848593A JPH07164880A JP H07164880 A JPH07164880 A JP H07164880A JP 5318485 A JP5318485 A JP 5318485A JP 31848593 A JP31848593 A JP 31848593A JP H07164880 A JPH07164880 A JP H07164880A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
weight
beam material
impact beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5318485A
Other languages
Japanese (ja)
Other versions
JP3068395B2 (en
Inventor
Akira Miyagami
晃 宮上
Hiroyuki Yamashita
浩之 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5318485A priority Critical patent/JP3068395B2/en
Publication of JPH07164880A publication Critical patent/JPH07164880A/en
Application granted granted Critical
Publication of JP3068395B2 publication Critical patent/JP3068395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PURPOSE:To provide a door impact beam material made of an aluminum alloy which is more light-weighted than a steel pipe beam material while a designated performance as an impact door beam is secured by using an aluminum alloy of a specified composition, setting the surface roughness of a surface where tensile stress is applied to a specified value, and setting the sectional form of the beam material to a specified form. CONSTITUTION:A door impact beam material is formed by a material made by hollow-extruding an aluminum alloy containing 0.1 to 1.6wt.% Mg, 5.95 to 6.55wt.% Zn, 0.2-0.35wt.% Cu, 0.2 or less wt.% Zr, 0.25 or less wt.% Cr, and 0.1 or less wt.% Ti, and the residue of which is Al and inevitable impurities. In the case of applying stress in the direction intersecting perpendicularly to the longitudinal direction, the surface roughness of a face which is subjected to bending deformation, and to which tensile stress is applied is 0.85muRa of less, the sectional form is such that the width of the upper flange is R1, and the width of the lower flange is R2, the upper and lower flanges are connected to each other by a pair of webs having a space W, and they are related to each other through the following inequalities: R1<R2, 0.4XR1 <=W<=0.5XR2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車のドア補強用部材
として使用されるドアインパクトビーム材に関し、特に
軽量で且つ補強材としての性能が優れたアルミニウム合
金製ドアインパクトビーム材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a door impact beam material used as a member for reinforcing a door of an automobile, and particularly to a lightweight aluminum alloy door impact beam material having excellent performance as a reinforcing material.

【0002】[0002]

【従来の技術】自動車の燃費向上及び衝撃時の安全性向
上のために、自動車補強材の高強度化及び軽量化が推進
されている。特に、ドア補強用部材には、従来、引張強
度が100kgf/mm2の鋼板プレス品が主として使
用されている。しかし、近時、鋼板プレス品より設計強
度が高い鋼パイプ品が、同一強度における重量が少ない
ため、軽量化の点で有利なことから、使用されるように
なってきた。このような鋼パイプ品で鋼板プレス品と同
等の吸収エネルギを得るためには、薄鋼板を電縫溶接し
た後、高周波加熱などを施し、その後急冷して強度を高
めたパイプが使用されている。
2. Description of the Related Art In order to improve the fuel efficiency of automobiles and the safety of automobiles at the time of impact, automobile reinforcements have been promoted to have higher strength and lighter weight. In particular, as a member for reinforcing a door, a pressed steel plate having a tensile strength of 100 kgf / mm 2 has been mainly used conventionally. However, recently, a steel pipe product having a higher design strength than a pressed steel plate product has come to be used because it is advantageous in terms of weight reduction because the weight at the same strength is small. In order to obtain the same absorbed energy as a steel plate product with such a steel pipe product, a pipe is used in which thin steel plates are electro-welded, subjected to high frequency heating, and then rapidly cooled to increase strength. .

【0003】[0003]

【発明が解決しようとする課題】しかしながら、最近で
は世界的に地球環境保護が進められるなか、省エネルギ
のための自動車軽量化が更に一層促進されている。この
ため、プレス品をパイプ品に変更する程度の軽量化では
不十分であり、材料自体の開発により、自動車用構造部
材を軽量化する試みがなされている。
However, in recent years, as global environment protection has been advanced worldwide, weight saving of automobiles for energy saving has been further promoted. For this reason, it is not sufficient to reduce the weight to the extent that the pressed product is changed to a pipe product, and attempts have been made to reduce the weight of automobile structural members by developing the material itself.

【0004】このような要請に応えるために、鋼材の替
わりにアルミニウム合金を使用する試みがなされている
が、インパクトビームとしての所定の性能、即ち、静的
3点支持曲げ試験における最高荷重及びエネルギ吸収量
を鋼材と同等に保持することができるアルミニウム合金
製ドアインパクトビーム材は得られていない。
In order to meet such demands, attempts have been made to use an aluminum alloy instead of a steel material. However, the predetermined performance as an impact beam, that is, the maximum load and energy in a static three-point support bending test are used. Aluminum alloy door impact beam materials that can retain the same amount of absorption as steel materials have not been obtained.

【0005】本発明はかかる問題点に鑑みてなされたも
のであって、インパクトドアビームとしての所定の性能
(静的3点支持曲げ試験における最高荷重及びエネルギ
吸収量)を確保しつつ、鋼パイプ品より軽量なアルミニ
ウム合金製ドアインパクトビーム材を提供することを目
的とする。
The present invention has been made in view of the above problems, and is a steel pipe product while ensuring a predetermined performance (maximum load and energy absorption amount in a static three-point supporting bending test) as an impact door beam. An object is to provide a lighter weight aluminum alloy door impact beam material.

【0006】[0006]

【課題を解決するための手段】本発明に係るアルミニウ
ム合金製ドアインパクトビーム材は、Mg:1.0乃至
1.6重量%、Zn:5.95乃至6.55重量%、C
u:0.2乃至0.35重量%、Zr:0.2重量%以
下、Cr:0.25重量%以下、Ti:0.1重量%以
下を含有し、残部がAl及び不可避的不純物であるアル
ミニウム合金を中空押出した形材からなるドアインパク
トビーム材であって、長手方向に直交する方向に応力を
印加した場合に、曲変形して引張応力が印加されること
となる面の表面粗さが0.85μRa以下であり、その
断面形状は、上側フランジの幅がR1、下側フランジの
幅がR2であって、この上フランジと下フランジとを、
間隔がWの1対のウェブにより連結したものであり、R
1<R2、0.4×R1≦W≦0.5×R1の関係を満足す
ることを特徴とする。
The aluminum alloy door impact beam material according to the present invention comprises Mg: 1.0 to 1.6% by weight, Zn: 5.95 to 6.55% by weight, C
u: 0.2 to 0.35% by weight, Zr: 0.2% by weight or less, Cr: 0.25% by weight or less, Ti: 0.1% by weight or less, the balance being Al and inevitable impurities. A door impact beam material made of a hollow extruded shape of an aluminum alloy, and when stress is applied in the direction orthogonal to the longitudinal direction, the surface roughness of the surface to which bending stress is applied and tensile stress is applied. Is 0.85 μRa or less, and the cross-sectional shape is such that the upper flange width is R 1 and the lower flange width is R 2 , and the upper flange and the lower flange are
R connected by a pair of webs with an interval W
It is characterized in that the relationship of 1 <R 2 , 0.4 × R 1 ≦ W ≦ 0.5 × R 1 is satisfied.

【0007】[0007]

【作用】本発明においては、応力を受けて曲げ変形した
場合に、引張応力が作用する側の面の表面粗さを0.8
5μRa以下にする。ドアインパクトビームをアルミニ
ウム合金で製造した場合に、このアルミニウム合金製ド
アインパクトビームには、自動車用補強部材として従来
の鋼パイプ品と同等の性能が要求される。即ち、このア
ルミニウム合金製ドアインパクトビームは、静的3点曲
げ試験において、従来の鋼パイプ品の最大荷重及びエネ
ルギ吸収量と同等の最大荷重及びエネルギ吸収量を持つ
ことが必要である。
In the present invention, the surface roughness of the surface on which the tensile stress acts is 0.8 when the bending deformation is caused by the stress.
It should be 5 μRa or less. When the door impact beam is manufactured from an aluminum alloy, the aluminum alloy door impact beam is required to have the same performance as a conventional steel pipe product as a reinforcing member for automobiles. That is, this aluminum alloy door impact beam is required to have a maximum load and energy absorption amount equivalent to the maximum load and energy absorption amount of the conventional steel pipe product in the static three-point bending test.

【0008】本願発明者等がこのような性能を有するド
アインパクトビーム材を得るべく、先ず、アルミニウム
合金製の中空押出形材をインパクトビーム材に使用した
結果、性能確認のための静的3点曲げ試験において、引
張応力が印加される側の表面粗さと、前記最大荷重及び
エネルギ吸収量との間には相関関係があり、この表面粗
さが大きすぎると、所定の性能が得られないことを知見
した。その結果、この引張応力が作用する側の面の表面
粗さが0.85μRa以下である場合に、従来の鋼パイ
プと同等の性能が得られた。そこで、本願発明において
は、この引張力が作用する面の表面粗さを0.85μR
a以下とする。
In order to obtain a door impact beam material having such performances, the inventors of the present invention first used a hollow extruded shape member made of an aluminum alloy as the impact beam material. As a result, three static points for performance confirmation were obtained. In the bending test, there is a correlation between the surface roughness on the side where tensile stress is applied and the maximum load and energy absorption amount. If this surface roughness is too large, the prescribed performance cannot be obtained. I found out. As a result, when the surface roughness of the surface on which the tensile stress acts was 0.85 μRa or less, the same performance as that of the conventional steel pipe was obtained. Therefore, in the present invention, the surface roughness of the surface on which the tensile force acts is 0.85 μR.
a or less.

【0009】このように、鋼パイプの場合と同等の最大
荷重及びエネルギ吸収量を得るために、本願発明におい
ては、引張応力が作用する側の面の表面粗さを0.85
μRa以下とする。このような良好な表面粗さの押出材
を得る方法としては、押出前にダイスを研磨する方法が
ある。即ち、押出材の表面を経時的に観察しながら、ダ
イス研磨のタイミングを判断し、押出材の表面粗さが粗
くなりかけたときにダイスを研磨することにより、押出
材としてほぼ所定の表面粗さのものが得られる。また、
確実に、全ての押出製品の表面粗さを0.85μRa以
下に管理するためには、製品を1本押出す毎にダイスを
効果的に研磨する装置をダイスに取り付けることが好ま
しい。更に、押出後に連続して押出材表面を研磨するよ
うにしてもよい。
As described above, in order to obtain the maximum load and the energy absorption amount equivalent to those in the case of the steel pipe, in the present invention, the surface roughness of the side on which the tensile stress acts is 0.85.
μRa or less. As a method of obtaining an extruded material having such a good surface roughness, there is a method of polishing a die before extrusion. That is, while observing the surface of the extruded material over time, the timing of die polishing is determined, and when the surface roughness of the extruded material becomes rough, the die is polished to obtain a substantially predetermined surface roughness as the extruded material. You can get the thing. Also,
In order to reliably control the surface roughness of all extruded products to 0.85 μRa or less, it is preferable to attach a device for effectively polishing the dice to each extruded product. Further, the surface of the extruded material may be continuously polished after the extrusion.

【0010】次に、アルミニウム合金の成分組成及びそ
の限定理由について説明する。Mg(マグネシウム)及びZn(亜鉛) Mg及びZnはアルミニウム合金の押出性と強度に影響
を及ぼす。Mgが1.0重量%未満の場合又はZnが
5.95重量%未満の場合は、押出性は良好であるが高
い強度が得られない。一方、Mgが1.6重量%を超え
て含有される場合又はZnが6.55重量%を超えて含
有される場合は、押出性が劣り、所要の形状の中空押出
形材が得られない。従って、Mg含有量は1.0乃至
1.6重量%、Zn含有量は5.95乃至6.55重量
%とする。
Next, the composition of the aluminum alloy and the reasons for limiting the composition will be described. Mg (magnesium) and Zn (zinc) Mg and Zn affect the extrudability and strength of aluminum alloys. When Mg is less than 1.0% by weight or Zn is less than 5.95% by weight, extrudability is good but high strength cannot be obtained. On the other hand, when Mg is contained in an amount of more than 1.6% by weight or Zn is contained in an amount of more than 6.55% by weight, the extrudability is poor and a hollow extruded profile having a desired shape cannot be obtained. . Therefore, the Mg content is 1.0 to 1.6% by weight and the Zn content is 5.95 to 6.55% by weight.

【0011】Cu(銅) Cuはアルミニウム合金の強度及び耐応力腐食性を向上
させる。しかし、Cu含有量が0.2重量%以下ではそ
の効果が不十分であり、Cuが0.35重量%を超えて
含有されると、耐食性が劣化する。従って、Cuは0.
2乃至0.35重量%とする。
Cu (Copper) Cu improves the strength and stress corrosion resistance of aluminum alloys. However, if the Cu content is 0.2% by weight or less, the effect is insufficient, and if the Cu content exceeds 0.35% by weight, the corrosion resistance deteriorates. Therefore, Cu is 0.
2 to 0.35% by weight.

【0012】Zr Zrは結晶粒微細化に寄与する元素である。しかし、Z
rが0.2重量%を超えて含有されると、鋳造時に巨大
化合物が生成し、靱性を低下させる。従って、Zr含有
量は0.2重量%以下とする。
Zr Zr is an element that contributes to grain refinement. But Z
If r is contained in excess of 0.2% by weight, a huge compound is formed during casting and the toughness is reduced. Therefore, the Zr content is 0.2% by weight or less.

【0013】Cr Crは結晶粒微細化に寄与する元素である。しかし、C
rが0.25重量%を超えて含有されると、鋳造時に巨
大化合物を生成し、靱性を低下させる。従ってCr含有
量は0.25重量%以下とする。
Cr Cr is an element that contributes to grain refinement. But C
If r is contained in an amount of more than 0.25% by weight, a huge compound is formed during casting and the toughness is reduced. Therefore, the Cr content is 0.25% by weight or less.

【0014】Ti Tiは鋳造組織の微細化に寄与する元素である。Tiが
0.1重量%を超えて含有されると、鋳造時に巨大化合
物が生成し、靱性を低下させる。従って、Tiは0.1
重量%以下とする。
Ti Ti is an element that contributes to the refinement of the cast structure. If Ti is contained in an amount of more than 0.1% by weight, a huge compound is formed during casting and the toughness is reduced. Therefore, Ti is 0.1
It should be less than or equal to weight%.

【0015】次に、中空押出材の断面形状について説明
する。静的3点曲げ試験において、従来の鋼パイプ品の
最大荷重及びエネルギ吸収量と同等の性能を有する軽量
高強度アルミニウム合金ビーム材を得るための中空押出
形材の断面形状については、図1に示す形状にすること
が好ましい。この図1に示す押出形材の断面形状は、上
部フランジの幅をR1、下部フランジの幅をR2とし、
この上部フランジと下部フランジとを間隔がWの1対の
ウェブで連結したようなH字形をなす。
Next, the sectional shape of the hollow extruded material will be described. In the static three-point bending test, the cross-sectional shape of the hollow extruded profile for obtaining a lightweight high-strength aluminum alloy beam having performance equivalent to the maximum load and energy absorption of conventional steel pipe products is shown in Fig. 1. The shape shown is preferred. The cross-sectional shape of the extruded profile shown in FIG. 1 has an upper flange width R1 and a lower flange width R2,
The upper flange and the lower flange are H-shaped as if they were connected by a pair of webs having a distance W.

【0016】中空押出形材が得られるアルミニウム合金
は材料自体は鋼より強度が低いため、鋼パイプ品と同じ
断面形状ではこれと同等の性能は得られない。そこで、
断面形状の適正化により性能を向上すべく、上述した組
成のアルミニウム合金において、種々の断面形状につい
てその性能を比較した。その結果、図1に示す断面形状
において、R1<R2、0.4×R1≦W≦0.5×R1
することにより、鋼パイプ品と同等の性能が得られた。
そこで、本発明においては、押出形材の断面形状をH字
形にすると共に、その断面寸法をR1<R2、0.4×R
1≦W≦0.5×R1を満足するものとする。
The aluminum alloy from which the hollow extruded profile is obtained has a lower strength than steel itself, so that the same performance cannot be obtained with the same cross-sectional shape as a steel pipe product. Therefore,
In order to improve the performance by optimizing the cross-sectional shape, the performance was compared for various cross-sectional shapes in the aluminum alloy having the above composition. As a result, in the cross-sectional shape shown in FIG. 1, by setting R 1 <R 2 and 0.4 × R 1 ≦ W ≦ 0.5 × R 1 , the same performance as the steel pipe product was obtained.
Therefore, in the present invention, the cross-sectional shape of the extruded profile is H-shaped, and the cross-sectional dimension is R 1 <R 2 , 0.4 × R.
It is assumed that 1 ≦ W ≦ 0.5 × R 1 is satisfied.

【0017】[0017]

【実施例】以下、本発明の実施例について説明する。先
ず、表面粗さの影響について調べた実施例について説明
する。実施例1 下記表1に示す成分のアルミニウム合金を常法により溶
製し、直径200mmの鋳塊に鋳造した。そして、47
0℃に24時間加熱して均質化処理した後、図1に示す
断面形状の形材に450℃で熱間押し出し、その後直ち
に室温まで急冷した後、120℃に24時間加熱して人
工時効処理した。そして、更に、粒度が異なるエメリー
研磨紙にて研磨を行い、下記表2に示す表面粗さを得
た。
EXAMPLES Examples of the present invention will be described below. First, an example in which the influence of surface roughness was investigated will be described. Example 1 An aluminum alloy having the components shown in Table 1 below was melted by a conventional method and cast into an ingot having a diameter of 200 mm. And 47
After heating at 0 ° C for 24 hours for homogenization, hot extruding at 450 ° C into the cross-sectional shape profile, then immediately quenching to room temperature, then heating at 120 ° C for 24 hours for artificial aging treatment. did. Then, polishing was further performed with emery polishing papers having different particle sizes to obtain the surface roughness shown in Table 2 below.

【0018】この押出材を、図2に示すように、その両
端部で支持し、その中央部に半径が150mmの押さえ
治具で荷重を加えて曲げ試験を行い、最高荷重と変位3
00mmまでのエネルギ吸収量を測定し、その性能を評
価した。その結果を下記表2に併せて示す。但し、表2
において、各性能は試験材No13の鋼パイプの場合に対
する比である。また、表2において、軽量化率は100
×(各試験材の単重−試験材No13の鋼パイプの単重)
/(試験材No13の鋼パイプの単重)として定義され
る。試験材No14はアルミニウム製パイプである。
As shown in FIG. 2, this extruded material was supported at both ends thereof, and a bending test was conducted by applying a load to the central portion of the extruded material with a holding jig having a radius of 150 mm.
The amount of energy absorbed up to 00 mm was measured and its performance was evaluated. The results are also shown in Table 2 below. However, Table 2
In, each performance is a ratio with respect to the case of the steel pipe of the test material No13. In Table 2, the weight reduction rate is 100.
× (Unit weight of each test material-Unit weight of steel pipe of test material No13)
/ (Single weight of steel pipe of test material No. 13) Test material No. 14 is an aluminum pipe.

【0019】エネルギ吸収量は以下のようにして求め
た。図3は横軸に変位をとり、縦軸に荷重比をとって、
曲げ荷重−変位曲線の一例を示すグラフ図である。但
し、荷重比は鋼パイプの最大荷重に対する比である。例
えば、図3(イ)のエネルギ吸収量はこの(イ)の曲線
の破断するまでの部分と横軸とにより囲まれた領域の面
積で示される。断面形状の違いによって、最大荷重の大
きさ及びエネルギ吸収量が異なり、この両方の値が大き
いほど優れた性能をもつといえるが、自動車補強部材と
して必要な性能が得られた場合には、より軽量化率が大
きい材料の方が優れた材料であるということがいえる。
The energy absorption amount was obtained as follows. In Fig. 3, the horizontal axis is the displacement and the vertical axis is the load ratio.
It is a graph which shows an example of a bending load-displacement curve. However, the load ratio is the ratio to the maximum load of the steel pipe. For example, the energy absorption amount in FIG. 3A is indicated by the area of the region surrounded by the portion of the curve of FIG. The maximum load magnitude and energy absorption amount differ depending on the cross-sectional shape, and it can be said that the larger the value of both, the better the performance. It can be said that a material having a large weight reduction rate is a superior material.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】この表1に示すように、表面粗さが0.8
5μRaを超える試験材No3,4はエネルギ吸収量が鋼
パイプの場合(試験材No11)よりも低く、性能が低
い。これに対し、試験材No1,2はエネルギ吸収量が鋼
パイプの場合よりも高いのに加え、軽量化率が25%と
優れた軽量化を示している。
As shown in Table 1, the surface roughness is 0.8
The test materials Nos. 3 and 4 having an amount of more than 5 μRa have a lower energy absorption amount than that of the steel pipe (test material No. 11), and the performance is low. On the other hand, the test materials Nos. 1 and 2 have a higher energy absorption amount than that of the steel pipe, and the weight reduction rate is 25%, which shows excellent weight reduction.

【0023】実施例2 次に、化学成分組成の影響を調べた実施例について説明
する。各試験材の製造方法及び試験方法は実施例1の場
合と同様である。各試験材の組成及び試験結果を夫々下
記表3及び表4に示す。
Example 2 Next, an example in which the influence of the chemical composition was investigated will be described. The manufacturing method and test method of each test material are the same as in the case of Example 1. The compositions and test results of each test material are shown in Tables 3 and 4 below.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【表4】 [Table 4]

【0026】この表3に示すように試験材No6,7はC
uの含有量が請求項2にて規定した範囲から外れるの
で、最大荷重及びエネルギ吸収量が鋼パイプの場合(試
験材No11)よりも小さく、性能が低い。一方、試験材
No5は、請求項2にて規定した範囲にはいるので、鋼パ
イプと同等以上の性能を有すると共に、軽量化率が25
%と著しい軽量化を示している。
As shown in Table 3, the test materials No. 6 and 7 are C
Since the content of u deviates from the range specified in claim 2, the maximum load and the energy absorption amount are smaller than those of the steel pipe (test material No. 11) and the performance is low. On the other hand, test material
Since No. 5 falls within the range specified in claim 2, it has a performance equal to or higher than that of steel pipes and a weight reduction rate of 25.
%, Showing a significant weight reduction.

【0027】実施例3 次に、フランジ長及びウェブ長の影響について説明す
る。下記表5はその成分組成を示し、下記表6は得られ
た試験結果を示す。試験材の製造方法及び試験方法は実
施例1の場合と同様である。
Example 3 Next, the influence of the flange length and the web length will be described. Table 5 below shows the component composition, and Table 6 below shows the test results obtained. The test material manufacturing method and test method are the same as in the case of Example 1.

【0028】[0028]

【表5】 [Table 5]

【0029】[0029]

【表6】 [Table 6]

【0030】この表6において、試験材No10〜12は
断面形状が本発明の請求項3の規定から外れるので、エ
ネルギ吸収量が低く、性能が低い。これに対し、試験材
No8,9は請求項3にて規定した範囲に入るので、鋼パ
イプと同等以上の性能を有すると共に、その軽量化率は
25%と高い。
In Table 6, the test materials No. 10 to 12 have a cross-sectional shape out of the range defined in claim 3 of the present invention, so that the energy absorption amount is low and the performance is low. In contrast, the test material
Since Nos. 8 and 9 fall within the range specified in claim 3, they have the performance equal to or higher than that of the steel pipe, and the weight reduction rate is as high as 25%.

【0031】[0031]

【発明の効果】以上詳細に説明したように、本発明によ
れば、所定の組成のアルミニウム合金を使用し、引張応
力が作用する面の表面粗さを0.85μRa以下とし、
その断面形状を所定のものにしたので、従来の鋼パイプ
製のビームと同等以上の性能を有すると共に、従来より
も著しく軽量化された自動車ドアインパクトビームを得
ることができ、本発明は自動車の軽量化に著しく貢献す
る。
As described in detail above, according to the present invention, an aluminum alloy having a predetermined composition is used, and the surface on which tensile stress acts has a surface roughness of 0.85 μRa or less,
Since the cross-sectional shape is predetermined, it is possible to obtain an automobile door impact beam which has performance equal to or higher than that of a conventional steel pipe beam and which is significantly lighter than a conventional beam. Significantly contributes to weight reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】ドアインパクトビームの断面形状を示す斜視図
である。
FIG. 1 is a perspective view showing a cross-sectional shape of a door impact beam.

【図2】ドアインパクトビームの試験方法を示す斜視図
である。
FIG. 2 is a perspective view showing a method of testing a door impact beam.

【図3】エネルギ吸収量の測定方法を説明する荷重−変
位曲線を示すグラフ図である。
FIG. 3 is a graph showing a load-displacement curve for explaining a method of measuring an energy absorption amount.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Mg:1.0乃至1.6重量%、Zn:
5.95乃至6.55重量%、Cu:0.2乃至0.3
5重量%、Zr:0.2重量%以下、Cr:0.25重
量%以下、Ti:0.1重量%以下を含有し、残部がA
l及び不可避的不純物であるアルミニウム合金を中空押
出した形材からなるドアインパクトビーム材であって、
長手方向に直交する方向に応力を印加した場合に、曲変
形して引張応力が印加されることとなる面の表面粗さが
0.85μRa以下であり、その断面形状は、上側フラ
ンジの幅がR1、下側フランジの幅がR2であって、この
上フランジと下フランジとを、間隔がWの1対のウェブ
により連結したものであり、R1<R2、0.4×R1
W≦0.5×R1の関係を満足することを特徴とするア
ルミニウム合金製ドアインパクトビーム材。
1. Mg: 1.0 to 1.6% by weight, Zn:
5.95 to 6.55% by weight, Cu: 0.2 to 0.3
5 wt%, Zr: 0.2 wt% or less, Cr: 0.25 wt% or less, Ti: 0.1 wt% or less, the balance is A
1 and a door impact beam material made of a hollow extruded aluminum alloy which is an unavoidable impurity,
When stress is applied in the direction orthogonal to the longitudinal direction, the surface roughness of the surface to which bending deformation and tensile stress is applied is 0.85 μRa or less, and the cross-sectional shape is such that the width of the upper flange is R 1 , the width of the lower flange is R 2 , and the upper flange and the lower flange are connected by a pair of webs with a spacing of W, R 1 <R 2 , 0.4 × R 1
A door impact beam material made of an aluminum alloy, which satisfies the relationship of W ≦ 0.5 × R 1 .
JP5318485A 1993-12-17 1993-12-17 Aluminum alloy door impact beam material Expired - Fee Related JP3068395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5318485A JP3068395B2 (en) 1993-12-17 1993-12-17 Aluminum alloy door impact beam material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5318485A JP3068395B2 (en) 1993-12-17 1993-12-17 Aluminum alloy door impact beam material

Publications (2)

Publication Number Publication Date
JPH07164880A true JPH07164880A (en) 1995-06-27
JP3068395B2 JP3068395B2 (en) 2000-07-24

Family

ID=18099649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5318485A Expired - Fee Related JP3068395B2 (en) 1993-12-17 1993-12-17 Aluminum alloy door impact beam material

Country Status (1)

Country Link
JP (1) JP3068395B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278054A (en) * 1998-03-27 1999-10-12 Kobe Steel Ltd Aluminum alloy-made door beam
US6231995B1 (en) 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
WO2008005852A2 (en) * 2006-06-30 2008-01-10 Alcan Rolled Products-Ravenswood, Llc, High strength, heat treatable al-zn-mg aluminium alloy
JP2011144396A (en) * 2010-01-12 2011-07-28 Kobe Steel Ltd High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP2013100604A (en) * 2012-12-27 2013-05-23 Kobe Steel Ltd High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance
US20130146183A1 (en) * 2011-12-12 2013-06-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669346A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture
JPH05246242A (en) * 1992-03-06 1993-09-24 Kobe Steel Ltd Reinforcing member made of aluminum alloy for vehicle
JPH05247575A (en) * 1992-03-04 1993-09-24 Kobe Steel Ltd Automobile shock absorbing member made of aluminum alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669346A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for working and its manufacture
JPH05247575A (en) * 1992-03-04 1993-09-24 Kobe Steel Ltd Automobile shock absorbing member made of aluminum alloy
JPH05246242A (en) * 1992-03-06 1993-09-24 Kobe Steel Ltd Reinforcing member made of aluminum alloy for vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231995B1 (en) 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
EP0882610A3 (en) * 1997-06-07 2001-07-11 Kabushiki Kaisha Kobe Seiko Sho Aluminium extruded door beam material
US6338817B2 (en) 1997-06-07 2002-01-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
JPH11278054A (en) * 1998-03-27 1999-10-12 Kobe Steel Ltd Aluminum alloy-made door beam
US6408591B1 (en) 1998-03-27 2002-06-25 Kabushiki Kaisha Kobe Seiko Sho Door beam of aluminum alloy
WO2008005852A2 (en) * 2006-06-30 2008-01-10 Alcan Rolled Products-Ravenswood, Llc, High strength, heat treatable al-zn-mg aluminium alloy
WO2008005852A3 (en) * 2006-06-30 2008-04-17 Alcan Rolled Products Ravenswood Llc High strength, heat treatable al-zn-mg aluminium alloy
US8357249B2 (en) 2006-06-30 2013-01-22 Constellium Rolled Products Ravenswood, Llc High strength, heat treatable aluminum alloy
JP2011144396A (en) * 2010-01-12 2011-07-28 Kobe Steel Ltd High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
US20130146183A1 (en) * 2011-12-12 2013-06-13 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance
US10697047B2 (en) 2011-12-12 2020-06-30 Kobe Steel, Ltd. High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance
JP2013100604A (en) * 2012-12-27 2013-05-23 Kobe Steel Ltd High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance

Also Published As

Publication number Publication date
JP3068395B2 (en) 2000-07-24

Similar Documents

Publication Publication Date Title
EP1990430B1 (en) High-strength hot rolled steel plate and manufacturing method thereof
US20020056493A1 (en) Aluminum-based alloy and procedure for its heat treatment
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JPH07164880A (en) Door impact beam material made of aluminum alloy
EP1041165A1 (en) Shock absorbing material
JP2000319742A (en) Aluminum alloy extruded material with excellent crushing characteristic in axial direction
KR20010087232A (en) Aℓ-Mg-Si BASED ALUMINUM ALLOY EXTRUSION FOR DOOR BEAM AND DOOR BEAM
JPH0794698B2 (en) High strength aluminum alloy with excellent resistance to stress corrosion cracking
JP3454755B2 (en) Shock absorbing member with excellent pressure-resistant cracking resistance
EP1685267B1 (en) Heat resistant magnesium die casting alloys
JP3297011B2 (en) High strength titanium alloy with excellent cold rollability
JP5288671B2 (en) Al-Mg-Si-based aluminum alloy extruded material with excellent press workability
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP3253244B2 (en) Extruded Al-Mg-Si aluminum alloy material for shock absorbing members with excellent axial crushing performance.
JPS621839A (en) Wear resistant rolled aluminum alloy plate
JP3073197B1 (en) Shock absorbing member in automobile frame structure
JPH05311309A (en) Impact beam made of aluminum alloy for automobile side door
JPH09241785A (en) High toughness aluminum alloy
RU2133295C1 (en) Aluminium-based alloy and method of thermal treatment thereof
RU2126456C1 (en) Aluminum-base alloy and method of its heat treatment
JP2003183757A (en) Shock-absorbing member showing excellent crush resistance
JP3964772B2 (en) Low yield ratio steel with excellent uniform elongation
JP3539996B2 (en) Manufacturing method of high strength aluminum alloy sheet for forming

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080519

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees