JPH07163987A - Complete treatment of water - Google Patents
Complete treatment of waterInfo
- Publication number
- JPH07163987A JPH07163987A JP5314716A JP31471693A JPH07163987A JP H07163987 A JPH07163987 A JP H07163987A JP 5314716 A JP5314716 A JP 5314716A JP 31471693 A JP31471693 A JP 31471693A JP H07163987 A JPH07163987 A JP H07163987A
- Authority
- JP
- Japan
- Prior art keywords
- water
- palladium
- manganese dioxide
- electrolytic manganese
- oxidizing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、河川水、井水、下水、
工場廃水など、自然または人為的に汚染された水の高度
処理方法に関するものである。The present invention relates to river water, well water, sewage,
The present invention relates to an advanced treatment method for water that is naturally or artificially polluted such as factory wastewater.
【0002】[0002]
【従来の技術】この種の水の高度処理方法としては、図
7に示すように二酸化マンガンを被覆したマンガン砂を
触媒とし、予め酸化剤を原水に添加した後、触媒と接触
させる方法が知られている。この方法は主として水中の
鉄、マンガン等の色度成分を除去する方法であるため、
水中にフミン酸、フルボ酸といった生物活動によって生
ずる有機性の色度成分が存在するとこれを十分に除去で
きない欠点があり、またBOD 、COD (または過マンガン
酸カリウム消費量)といった有機物についてもほとんど
除去することができなかった。2. Description of the Related Art As an advanced treatment method of this kind of water, there is known a method in which manganese sand coated with manganese dioxide is used as a catalyst as shown in FIG. 7, and an oxidizing agent is added to raw water in advance and then contacted with the catalyst. Has been. Since this method is mainly a method of removing chromaticity components such as iron and manganese in water,
The presence of organic chromaticity components such as humic acid and fulvic acid in water that cannot be sufficiently removed has the drawback that most of the organic substances such as BOD and COD (or potassium permanganate consumption) are also removed. I couldn't.
【0003】[0003]
【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決するためになされたもので、その第1の
目的は、従来法による鉄、マンガン等の色度の除去性能
を維持しつつ、更にフミン酸、フルボ酸等の有機性の色
度も除去することができる水の高度処理方法を提供する
ことである。また第2の目的は、従来法では除去するこ
とができなかったBOD 、COD 等の有機物をも除去するこ
とができる水の高度処理方法を提供することである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and the first object thereof is to maintain the chromaticity removal performance of iron, manganese, etc. by the conventional method. At the same time, it is another object of the present invention to provide an advanced treatment method for water, which can remove organic chromaticity such as humic acid and fulvic acid. A second object is to provide an advanced water treatment method capable of removing organic substances such as BOD and COD which could not be removed by the conventional method.
【0004】[0004]
【課題を解決するための手段】上記の課題を解決するた
めになされた第1の発明は、原水を酸化剤の存在下でパ
ラジウムを含浸させた電解二酸化マンガン粒子と接触さ
せることを特徴とするものである。また第2の発明は、
原水を凝集処理した後、酸化剤の存在下でパラジウムを
含浸させた電解二酸化マンガン粒子と接触させることを
特徴とするものである。The first invention made to solve the above problems is characterized in that raw water is brought into contact with electrolytic manganese dioxide particles impregnated with palladium in the presence of an oxidizing agent. It is a thing. The second invention is
After the raw water is coagulated, it is brought into contact with electrolytic manganese dioxide particles impregnated with palladium in the presence of an oxidizing agent.
【0005】[0005]
【作用】本発明の水の高度処理方法によれば、パラジウ
ム含浸電解二酸化マンガン粒子のパラジウム部分におけ
る酸素吸着→汚濁物質分解、および電解二酸化マンガン
部分の汚濁物質分解→共存酸化剤、塩素系酸化剤または
過マンガン酸塩によるMnO2 への再生の繰り返しによ
って、原水中の色度のみならず、従来法では除去するこ
とができなかったBOD 、COD 等の有機物等をも除去する
ことができ、高度処理水を得ることができる。According to the advanced method for treating water of the present invention, oxygen adsorption on the palladium portion of palladium-impregnated electrolytic manganese dioxide particles → decomposition of pollutants, and decomposition of pollutants on electrolytic manganese dioxide parts → coexisting oxidant, chlorine-based oxidizer By repeating regeneration of MnO 2 with permanganate, not only chromaticity in raw water but also organic substances such as BOD and COD which could not be removed by the conventional method can be removed. Treated water can be obtained.
【0006】[0006]
【実施例】以下に本発明を図面を参照しつつ更に詳細に
説明する。図1において、1は凝集沈殿槽、2は接触処
理槽、3は処理水槽であり、この接触処理槽2にはパラ
ジウムを含浸させた電解二酸化マンガン粒子が充填され
ている。また4は攪拌機、5は凝集処理水移送ポンプ、
6は逆洗ポンプ、7は逆洗ブロワである。The present invention will be described in more detail below with reference to the drawings. In FIG. 1, 1 is a coagulating sedimentation tank, 2 is a contact treatment tank, 3 is a treated water tank, and the contact treatment tank 2 is filled with electrolytic manganese dioxide particles impregnated with palladium. Further, 4 is a stirrer, 5 is a coagulation-treated water transfer pump,
6 is a backwash pump and 7 is a backwash blower.
【0007】接触処理槽2に充填されているパラジウム
を含浸させた電解二酸化マンガン粒子は、粒径が2〜1
0mm程度の球状または円筒状、γ型結晶の粉状二酸化マ
ンガンに金属パラジウムを0.1 〜0.5 g/kgの割で添加
し、アルミナをバインダーとして焼結したものである。
この粒子はろ過に使用する材料としては比較的粗いため
ろ過抵抗が少なく、また、比表面積は50m2/g程度で吸着
力はほとんどないものの粒子内に50%近くの空隙を有し
ており、汚濁物質が粒子内部まで浸透しやすい。The palladium-impregnated electrolytic manganese dioxide particles filled in the contact treatment tank 2 have a particle size of 2-1.
It is obtained by adding metallic palladium at a rate of 0.1 to 0.5 g / kg to powdery manganese dioxide having a spherical or cylindrical shape of about 0 mm and γ-type crystals, and sintering it with alumina as a binder.
These particles have relatively low filtration resistance because they are relatively coarse materials to be used for filtration, and have a specific surface area of about 50 m 2 / g and almost no adsorption power, but they have nearly 50% voids in the particles. Pollutants easily penetrate into the particles.
【0008】処理すべき原水の汚濁物質の濃度が高い場
合、すなわちCOD 5mg/L程度以上(KMnO4消費量20mg/L程
度以上) では図1のフローをそのまま採用して処理を行
う。また、原水の汚濁物質の濃度が上記した値未満の場
合には、図1のフローから凝集沈殿処理を省き、パラジ
ウムを含浸させた電解二酸化マンガン粒子による接触処
理のみを行う。以下に高濃度の場合に適用する図1のフ
ローについて説明する。When the concentration of pollutants in the raw water to be treated is high, that is, when COD is about 5 mg / L or more (KMnO 4 consumption is about 20 mg / L or more), the process shown in FIG. When the concentration of the pollutant in the raw water is less than the above value, the coagulation-sedimentation treatment is omitted from the flow of FIG. 1 and only the contact treatment with the electrolytic manganese dioxide particles impregnated with palladium is performed. The flow of FIG. 1 applied in the case of high concentration will be described below.
【0009】まずCOD 5mg/L 以上の高濃度の原水は凝集
剤とともに凝集沈殿槽1に入り、凝集沈殿処理が行われ
る。ここで使用される凝集剤はPAC、塩化第二鉄など
酸性を呈する無機凝集剤がよく、特にpH5程度で有機物
等の除去効果の高い塩化第二鉄が優れている。これは凝
集時のpHが5〜6程度と低い場合には、酸性凝集作用が
あるばかりでなく、後段のパラジウム含浸電解二酸化マ
ンガン粒子との接触処理においても、COD 等の有機物の
除去効果が高まるためである。従って、凝集沈殿処理を
しない低濃度の水でも原水のpHを5〜6に調節すること
が好ましい。ただしpHを4.5 以下にすると接触処理にお
けるCOD 等の除去効果は高まるものの、高度処理水のpH
が水質基準の最低値である8.6 を下回ることがあるので
好ましくない。First, high-concentration raw water having a COD of 5 mg / L or more enters the coagulation-sedimentation tank 1 together with the coagulant and undergoes coagulation-sedimentation treatment. The aggregating agent used here is preferably an inorganic aggregating agent exhibiting acidity such as PAC and ferric chloride, and particularly ferric chloride having a high effect of removing organic substances at a pH of about 5 is excellent. This is because when the pH at the time of coagulation is as low as about 5 to 6, it not only has an acidic coagulation effect, but also enhances the effect of removing organic substances such as COD in the subsequent contact treatment with palladium-impregnated electrolytic manganese dioxide particles. This is because. Therefore, it is preferable to adjust the pH of the raw water to 5 to 6 even with low-concentration water that does not undergo the coagulation-sedimentation treatment. However, if the pH is set to 4.5 or less, the effect of removing COD etc. in the contact treatment will increase, but
May fall below the minimum water quality standard of 8.6.
【0010】図2は凝集pHとCOD 除去率との関係を示し
たグラフであり、上記したようにpHが5〜6程度と低い
場合にCOD 除去率が高いことが示されている。また図3
は接触処理槽2の入口pHとCOD 除去率との関係及び高度
処理水pHとの関係を示したもので、上記したようにpHを
4.5 以下とすると高度処理水pHが水質基準の5.8 〜8.6
を外れるおそれのあることが示されている。FIG. 2 is a graph showing the relationship between the coagulation pH and the COD removal rate, and it is shown that the COD removal rate is high when the pH is as low as about 5 to 6 as described above. See also FIG.
Shows the relationship between the inlet pH of the contact treatment tank 2 and the COD removal rate, and the relationship with the highly treated water pH.
If it is 4.5 or less, the pH of advanced treated water is 5.8 to 8.6 which is the water quality standard.
It has been shown that there is a possibility that it may come off.
【0011】凝集沈殿槽1において凝集沈殿された後の
汚泥は、引抜汚泥として系外に排出され、上澄水は凝集
処理水として酸化剤を添加した後、接触処理槽2におい
てパラジウム含浸電解二酸化マンガン粒子との接触処理
を行う。ここで使用される酸化剤としては、次亜塩素酸
ナトリウム等の塩素系酸化剤および過マンガン酸塩がよ
く、またこれらの酸化剤を純酸素あるいは空気と併用し
てもよい。The sludge that has been coagulated and settled in the coagulation sedimentation tank 1 is discharged outside the system as drawn-out sludge, and the supernatant water is added with an oxidizing agent as coagulation-treated water, and then in the contact treatment tank 2, palladium-impregnated electrolytic manganese dioxide is added. Contact treatment with particles is performed. The oxidizing agent used here is preferably a chlorine-based oxidizing agent such as sodium hypochlorite and permanganate, and these oxidizing agents may be used in combination with pure oxygen or air.
【0012】接触処理槽2内のパラジウム含浸電解二酸
化マンガン粒子による色度、有機物などの酸化反応およ
び粒子の再生反応は次のように行われる。The chromaticity of the manganese dioxide particles impregnated with palladium in the contact treatment tank 2, the oxidation reaction of organic substances and the regeneration reaction of the particles are carried out as follows.
【化1】 酸化反応(パラジウム触媒、電解二酸化マンガン) パラジウム触媒: Pd+O→Pd・O 〔酸素吸着〕 Pd・O+有機物→Pd+分解物〔酸化〕 電解二酸化マンガン:MnO2 +NaClO→MnO+NaCl## STR00001 ## Oxidation reaction (palladium catalyst, electrolytic manganese dioxide) Palladium catalyst: Pd + O → Pd.O [oxygen adsorption] Pd.O + organic matter → Pd + decomposed product [oxidation] electrolytic manganese dioxide: MnO 2 + NaClO → MnO + NaCl
【0013】電解二酸化マンガンの再生反応には塩素系
酸化剤あるいは過マンガン酸塩が必須要件であるが、パ
ラジウムの酸素吸着は必ずしもこれら酸化剤に起因する
活性酸素でなくてもよく、従って純酸素または空気も併
用することができる。なお、酸化剤の1種である過酸化
水素はパラジウム含浸電解二酸化マンガン粒子と接触す
ると発泡が激しく、またオゾンは二酸化マンガンを過マ
ンガン酸にまで酸化し、パラジウム含浸電解二酸化マン
ガン粒子の目減りが激しいのでいずれも使用は好ましく
ない。A chlorine-based oxidizing agent or a permanganate is an essential requirement for the regeneration reaction of electrolytic manganese dioxide, but oxygen adsorption of palladium does not necessarily have to be active oxygen derived from these oxidizing agents, and therefore pure oxygen is necessary. Alternatively, air can be used together. It should be noted that hydrogen peroxide, which is one of the oxidizers, foams violently when it comes into contact with palladium-impregnated electrolytic manganese dioxide particles, and ozone oxidizes manganese dioxide to permanganic acid, resulting in severe loss of palladium-impregnated electrolytic manganese dioxide particles. Therefore, it is not preferable to use either of them.
【0014】次に酸化剤の必要量は、有機物などの処理
性能と残留酸化剤濃度とを勘案すると、塩素系酸化剤ま
たは過マンガン酸塩の場合は、COD 基準の理論必要酸化
剤量の20〜50% (過マンガン酸カリウム消費量の場合は
その1/3.95がCOD値) が好ましい。この関係を図4に示
す。また純酸素や空気を併用する場合は、添加する溶存
酸素の濃度に見合うだけ塩素系酸化剤または過マンガン
酸塩を削減できる。更に、パラジウム含浸電解二酸化マ
ンガン粒子との接触処理では、塩素系酸化剤または過マ
ンガン酸塩の添加比率が一定でも、予め純酸素または空
気で曝気し溶存酸素濃度を高めることによって、一段と
処理性能を向上させることができる。これは図5に示す
ように、パラジウムを含浸しない電解二酸化マンガンに
はない特長である。Next, the required amount of the oxidant is 20% of the theoretical required oxidant amount based on the COD standard in the case of a chlorine-based oxidant or permanganate in consideration of the treatment performance of organic substances and the concentration of the residual oxidant. -50% (1 / 3.95 of the consumption amount of potassium permanganate is the COD value) is preferable. This relationship is shown in FIG. When pure oxygen or air is also used, the chlorine-based oxidizing agent or permanganate can be reduced in proportion to the concentration of dissolved oxygen to be added. Further, in the contact treatment with the palladium-impregnated electrolytic manganese dioxide particles, even if the addition ratio of the chlorine-based oxidant or permanganate is constant, aeration with pure oxygen or air in advance to increase the dissolved oxygen concentration will further improve the treatment performance. Can be improved. This is a feature not found in electrolytic manganese dioxide that is not impregnated with palladium, as shown in FIG.
【0015】この接触処理における処理条件は、LV=
300 m/日以下、SV=1〜6/Hr が望ましく、またパラ
ジウム含浸電解二酸化マンガン粒子の層が目詰まりを起
こしたときには通常の濾過と同様に空気逆洗→同時逆洗
→水逆洗が必要である。The processing condition in this contact processing is LV =
300 m / day or less, SV = 1 to 6 / Hr is desirable, and when the layer of palladium-impregnated electrolytic manganese dioxide particles is clogged, air backwashing → simultaneous backwashing → water backwashing is performed as in normal filtration. is necessary.
【0016】上記したように、色度、有機物等の除去は
パラジウム含浸電解二酸化マンガン粒子のパラジウム部
分における酸素吸着→汚濁物質分解と、電解二酸化マン
ガン部分の汚濁物質分解→共存酸化剤、塩素系酸化剤、
過マンガン酸塩によるMnO2 への再生の繰り返しとに
よって進行する。しかし処理を継続すると粒子層の目詰
まりが生ずる。また添加する塩素系酸化剤または過マン
ガン酸塩の量が不足すると、電解二酸化マンガン部分の
汚濁物質分解によって生じたMnO 2 の一部が再生され
ず、粒子の表面に付着して除々に処理性能が低下してく
る。As described above, removal of chromaticity, organic matter, etc.
Palladium part of palladium-impregnated electrolytic manganese dioxide particles
Oxygen adsorption in water → Decomposition of pollutants and electrolytic manganese dioxide
Decomposition of pollutants in the cancer part → Coexisting oxidizer, chlorine-based oxidizer,
MnO with permanganate2Repeated playback to
Therefore, it progresses. However, if the treatment is continued, the particle layer becomes clogged.
Marriage occurs. In addition, chlorine-based oxidizer or excess
When the amount of ganate is insufficient, the electrolytic manganese dioxide part
MnO produced by decomposition of pollutants 2Part of is played
Instead, it adheres to the surface of the particles and the processing performance gradually deteriorates.
It
【0017】粒子層の目詰まりは通常のろ過と同様に粒
子層を洗浄すればよいが、処理性能の低下については粒
子層の洗浄に引き続いて賦活操作が必要となる。この操
作は次亜塩素酸ナトリウム等の塩素系酸化剤または過マ
ンガン酸塩の溶液に、パラジウム含浸電解二酸化マンガ
ン粒子を一定時間浸漬することによって行う。浸漬時間
は酸化剤の種類によって異なるが、賦活用の酸化剤とし
て有効塩素0.5 〜2%の次亜塩素酸ナトリウムを使用し
た場合、5〜20分が必要となる。この賦活の際の反応式
は処理時の再生反応と同じであり、MnO+NaClO
→MnO2 +NaClである。The particle layer may be clogged by washing the particle layer in the same manner as in ordinary filtration, but in order to reduce the treatment performance, an activation operation is required following the washing of the particle layer. This operation is performed by immersing the palladium-impregnated electrolytic manganese dioxide particles in a solution of a chlorine-based oxidizing agent such as sodium hypochlorite or a permanganate for a certain period of time. The immersion time varies depending on the type of oxidizing agent, but when sodium hypochlorite with an effective chlorine of 0.5 to 2% is used as an oxidizing agent for utilization, 5 to 20 minutes are required. The reaction formula at the time of activation is the same as the regeneration reaction at the time of treatment, and MnO + NaClO
→ MnO 2 + NaCl.
【0018】賦活の間隔は原水のCOD 等の水質と、添加
する酸化剤の量のバランスにより異なるが、通常は二日
に1回程度で十分である。パラジウム含浸電解二酸化マ
ンガン粒子では、塩素系酸化剤または過マンガン酸塩の
ほかに純酸素または空気に起因する溶存酸素を添加する
ことにより、賦活の間隔を延ばすことができる。これは
電解二酸化マンガン粒子にはない特長である。これらの
賦活のタイミングとCOD 除去率の回復との関係を、図6
に示す。The activation interval depends on the water quality such as COD of the raw water and the balance of the amount of the oxidizing agent to be added, but usually once every two days is sufficient. In the palladium-impregnated electrolytic manganese dioxide particles, the activation interval can be extended by adding pure oxygen or dissolved oxygen derived from air in addition to the chlorine-based oxidizing agent or permanganate. This is a feature not found in electrolytic manganese dioxide particles. Figure 6 shows the relationship between the activation timing and the recovery of COD removal rate.
Shown in.
【0019】このようにして凝集沈殿処理→接触処理が
行われ、高度処理水が得られる。原水のCOD が5mg/L 程
度以下(過マンガン酸カリウム消費量20mg/L以下) の場
合には、凝集沈殿処理を省いてもパラジウム含浸電解二
酸化マンガン粒子による接触処理には何等の支障もない
が、この場合でも原水中にSSが数十mg/L程度以上あると
きには、凝集沈殿処理を行う方が好ましい。In this way, the coagulation-sedimentation treatment → contact treatment is carried out to obtain highly treated water. When the COD of raw water is about 5 mg / L or less (potassium permanganate consumption 20 mg / L or less), there is no problem with the contact treatment with palladium-impregnated electrolytic manganese dioxide particles even if the coagulation-sedimentation treatment is omitted. Even in this case, when the SS in the raw water is about several tens mg / L or more, it is preferable to perform the coagulation sedimentation treatment.
【0020】以上のように、パラジウム含浸電解二酸化
マンガン粒子による接触処理は、従来法のマンガン砂は
勿論のこと、電解二酸化マンガン粒子による処理と比較
すると、色度、有機物の除去性に優れ、原水のCOD 等有
機物濃度の広い範囲に対して凝集沈殿(酸性凝集沈殿)
を併用することによって安定した処理を行うことができ
る。また、この方法は塩素系酸化剤または過マンガン酸
塩のほかに純酸素あるいは空気による曝気によって、溶
存酸素を添加すれば処理性能が向上するたけでなく、賦
活の間隔も延ばすことができる。As described above, the contact treatment with the palladium-impregnated electrolytic manganese dioxide particles is superior in chromaticity and removability of organic matter to the raw water as compared with the conventional method of using manganese sand. Precipitation over a wide range of COD and other organic matter concentrations (acidic precipitation)
Stable treatment can be performed by using in combination. In addition, this method not only improves the treatment performance by adding dissolved oxygen by aeration with pure oxygen or air in addition to the chlorine-based oxidizing agent or permanganate, but also can extend the activation interval.
【0021】次に、本発明方法と従来法により処理を行
ったデータを示す。表1に示すのは低濃度原水である井
水を処理したデータであり、表2に示すのは高濃度原水
である下水二次処理水を処理したデータである。Next, the data processed by the method of the present invention and the conventional method are shown. Table 1 shows data obtained by treating well water which is low concentration raw water, and Table 2 shows data obtained by treating secondary treated water which is high concentration raw water.
【0022】[0022]
【表1】 [Table 1]
【0023】[0023]
【表2】 [Table 2]
【0024】[0024]
【発明の効果】上記した実施例のデータからも明らかな
ように、本発明によればパラジウムを含浸させた電解二
酸化マンガン粒子による接触処理を行うので、従来法で
は処理性能の悪かった色度や、従来法ではほとんど除去
できなかったCOD、KMnO4 消費量、BOD 等の有機物の処
理性能を大幅に向上させることができる。またそれと同
時に、前段の凝集沈殿 (酸性無機凝集剤による酸性凝
集) を併用することによって、広い範囲の原水濃度に対
して安定した処理性能を発揮させることができる。As is apparent from the data of the above-described examples, according to the present invention, the contact treatment is carried out with the electrolytic manganese dioxide particles impregnated with palladium, so that the chromaticity and the treatment performance which are poor in the conventional method are The COD, KMnO 4 consumption, BOD, and other organic substances that could hardly be removed by the conventional method can be significantly improved. At the same time, by using the coagulation / precipitation (acid coagulation by an acidic inorganic coagulant) in the previous stage together, stable treatment performance can be exhibited for a wide range of raw water concentrations.
【図1】本発明のフローシートである。FIG. 1 is a flow sheet of the present invention.
【図2】凝集pHとCOD 除去率との関係を示すグラフであ
る。FIG. 2 is a graph showing the relationship between aggregation pH and COD removal rate.
【図3】接触処理槽入口pHとCOD 除去率及び高度処理水
pHの関係を示すグラフである。[Figure 3] Contact treatment tank inlet pH, COD removal rate, and highly treated water
It is a graph which shows the relationship of pH.
【図4】酸化剤添加率とCOD 除去率との関係を示すグラ
フである。FIG. 4 is a graph showing the relationship between the oxidant addition rate and the COD removal rate.
【図5】添加溶存酸素濃度とCOD 除去率との関係を示す
グラフである。FIG. 5 is a graph showing the relationship between the concentration of added dissolved oxygen and the COD removal rate.
【図6】COD 除去率の時間変化と賦活のタイミングを示
すグラフである。FIG. 6 is a graph showing the time change of the COD removal rate and the activation timing.
【図7】従来法のフローシートである。FIG. 7 is a flow sheet of a conventional method.
1 凝集沈殿槽、2 接触処理槽、3 処理水槽、4
攪拌機、5 凝集処理水移送ポンプ、6 逆洗ポンプ、
7 逆洗ブロワ1 coagulation sedimentation tank, 2 contact treatment tank, 3 treated water tank, 4
Stirrer, 5 flocculation water transfer pump, 6 backwash pump,
7 Backwash blower
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 9/00 504 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location C02F 9/00 504 B
Claims (2)
浸させた電解二酸化マンガン粒子と接触させることを特
徴とする水の高度処理方法。1. A method for advanced treatment of water, characterized in that raw water is contacted with electrolytic manganese dioxide particles impregnated with palladium in the presence of an oxidizing agent.
でパラジウムを含浸させた電解二酸化マンガン粒子と接
触させることを特徴とする水の高度処理方法。2. A method for advanced treatment of water, which comprises subjecting raw water to coagulation treatment and then contacting with electrolytic manganese dioxide particles impregnated with palladium in the presence of an oxidizing agent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5314716A JP2749256B2 (en) | 1993-12-15 | 1993-12-15 | Advanced water treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5314716A JP2749256B2 (en) | 1993-12-15 | 1993-12-15 | Advanced water treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07163987A true JPH07163987A (en) | 1995-06-27 |
JP2749256B2 JP2749256B2 (en) | 1998-05-13 |
Family
ID=18056709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5314716A Expired - Lifetime JP2749256B2 (en) | 1993-12-15 | 1993-12-15 | Advanced water treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2749256B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003220394A (en) * | 2002-01-30 | 2003-08-05 | Jfe Engineering Kk | Manganese removal method and apparatus |
JP2007144307A (en) * | 2005-11-28 | 2007-06-14 | Ishi No Kanzaemon:Kk | Method and apparatus for treating water |
JP2007160259A (en) * | 2005-12-15 | 2007-06-28 | Kawamoto Pump Mfg Co Ltd | Water purifying apparatus |
JP2008043919A (en) * | 2006-08-21 | 2008-02-28 | Kurita Water Ind Ltd | Decolorization method of colored beverage drain |
-
1993
- 1993-12-15 JP JP5314716A patent/JP2749256B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003220394A (en) * | 2002-01-30 | 2003-08-05 | Jfe Engineering Kk | Manganese removal method and apparatus |
JP2007144307A (en) * | 2005-11-28 | 2007-06-14 | Ishi No Kanzaemon:Kk | Method and apparatus for treating water |
JP2007160259A (en) * | 2005-12-15 | 2007-06-28 | Kawamoto Pump Mfg Co Ltd | Water purifying apparatus |
JP2008043919A (en) * | 2006-08-21 | 2008-02-28 | Kurita Water Ind Ltd | Decolorization method of colored beverage drain |
Also Published As
Publication number | Publication date |
---|---|
JP2749256B2 (en) | 1998-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4662059B2 (en) | Purification process for steel manufacturing wastewater | |
JPH04349997A (en) | Treatment of organic waste water | |
JPH10277568A (en) | Treatment of wastewater containing organic matter | |
JP2749256B2 (en) | Advanced water treatment method | |
JP3516327B2 (en) | Method and apparatus for treating organic wastewater containing dioxins | |
JP4831799B2 (en) | Method for removing manganese ions in waste water | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JPS62241596A (en) | Treatment of waste water containing organic matter | |
JP3403348B2 (en) | Treatment method for nitrogen-containing wastewater | |
JP2740623B2 (en) | Advanced sewage treatment method | |
JP3461514B2 (en) | Advanced water treatment system and method of starting advanced water treatment system | |
JP2695104B2 (en) | Advanced treatment method for treated water of activated sludge | |
JPH09174091A (en) | Method for treating organic waste water and apparatus therefor | |
JP3358388B2 (en) | Treatment method for selenium-containing water | |
JP3526143B2 (en) | Advanced wastewater treatment method | |
JP3178975B2 (en) | Water treatment method | |
JPH11319889A (en) | Treatment of selenium-containing waste water and device therefor | |
JP4382167B2 (en) | Thermal power plant wastewater treatment method | |
JP3373138B2 (en) | Organic wastewater treatment method and apparatus | |
JP3495420B2 (en) | Treatment of colored wastewater | |
JPH09253695A (en) | Method for treating waste water containing hardly decomposable organic matter | |
JP2001062490A (en) | Device for treating water containing sparingly decomposable organic matter | |
JPS61230785A (en) | Removal of mercury in waste water | |
JP2022054063A (en) | Manganese and iron-containing water treatment method and device | |
JPH09314185A (en) | Method and apparatus for treating organic sewage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19980130 |