JPH07161707A - Method of heat-treating silicon wafer - Google Patents
Method of heat-treating silicon waferInfo
- Publication number
- JPH07161707A JPH07161707A JP20928094A JP20928094A JPH07161707A JP H07161707 A JPH07161707 A JP H07161707A JP 20928094 A JP20928094 A JP 20928094A JP 20928094 A JP20928094 A JP 20928094A JP H07161707 A JPH07161707 A JP H07161707A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- silicon wafer
- wafer
- heat treatment
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 34
- 239000010703 silicon Substances 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 230000005855 radiation Effects 0.000 claims abstract description 17
- 239000010453 quartz Substances 0.000 claims abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 7
- 235000012431 wafers Nutrition 0.000 description 61
- 239000007789 gas Substances 0.000 description 17
- 230000015556 catabolic process Effects 0.000 description 11
- 201000006935 Becker muscular dystrophy Diseases 0.000 description 8
- 208000037663 Best vitelliform macular dystrophy Diseases 0.000 description 8
- 208000020938 vitelliform macular dystrophy 2 Diseases 0.000 description 8
- 230000002950 deficient Effects 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000000630 rising effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Landscapes
- Formation Of Insulating Films (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明はシリコンウェーハの熱
処理方法に関し、特にシリコンウェーハの酸化膜耐圧を
簡易に改善することができる熱処理方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a silicon wafer, and more particularly to a heat treatment method for easily improving the oxide film breakdown voltage of the silicon wafer.
【0002】[0002]
【従来の技術】シリコンウェーハの酸化膜耐圧を改善す
るためには、デバイスが組み込まれるウェーハ表層部を
無欠陥層とする必要がある。シリコンウェーハにイント
リンシック・ゲッタリング構造を付与する方法として
は、特公平5−18254号公報に開示されたものがあ
る。この方法は、シリコンウェーハを650〜700℃
において数時間、低温熱処理した後に、H2100%、
H280%・N220%、又はH220%・Ar80%の
雰囲気ガス中において、1150ないし1200℃、4
Hrの熱処理を施すものである(同公報の実施例1〜
7)。2. Description of the Related Art In order to improve the breakdown voltage of an oxide film of a silicon wafer, it is necessary to make a wafer surface layer portion in which a device is incorporated into a defect-free layer. As a method for imparting an intrinsic gettering structure to a silicon wafer, there is a method disclosed in Japanese Patent Publication No. 5-18254. This method uses a silicon wafer at 650 to 700 ° C.
H 2 100% after low temperature heat treatment at
1150 to 1200 ° C. in an atmosphere gas of H 2 80% / N 2 20% or H 2 20% / Ar 80%, 4
Heat treatment of Hr is performed (Examples 1 to 1 of the publication).
7).
【0003】[0003]
【発明が解決しようとする課題】上記従来の熱処理方法
は、少なくとも高温熱処理に1Hr以上を必要としてお
り、酸化膜耐圧に優れたシリコンウェーハの生産性が低
いという問題点がある。また1150ないし1200℃
という高温が用いられているから、ウェーハの汚染やス
リップ等の問題を引き起こすおそれがある。また、この
スリップの発生を防止するため従来の熱処理では昇温速
度を遅くして対応してきたが、この方法では低温からの
ゆっくりとした加熱によりバルクに酸素析出物が高密度
に成長し、ウェーハの結晶強度を低下させる問題が起こ
っている。したがって本発明は、シリコンウェーハの酸
化膜耐圧を簡易に改善することができる熱処理方法を提
供することを目的とする。The above-mentioned conventional heat treatment method requires at least 1 Hr for high temperature heat treatment, and has a problem in that the productivity of silicon wafers excellent in oxide film withstand voltage is low. Also 1150 to 1200 ° C
Since such a high temperature is used, problems such as wafer contamination and slippage may occur. Also, in order to prevent the occurrence of this slip, in the conventional heat treatment, the temperature rising rate has been slowed down, but this method causes oxygen precipitates to grow in high density in the bulk due to slow heating from low temperature, There is a problem of decreasing the crystal strength of. Therefore, an object of the present invention is to provide a heat treatment method capable of easily improving the breakdown voltage of an oxide film on a silicon wafer.
【0004】[0004]
【課題を解決するための手段】本発明は上記目的を達成
するためになされたものであり、すなわち熱放射によっ
て、900〜1050℃、1sec以上60sec未満
の熱処理をシリコンウェーハに施すシリコンウェーハの
熱処理方法である。その際、熱放射の熱源として波長
0.1〜4μmのランプを用い、石英製の容器中にシリ
コンウェーハを配置し、該容器外より前記ランプによっ
てシリコンウェーハを加熱することができ、また、H2
濃度1〜6%、残部実質的にArからなり、減圧された
雰囲気ガス中にシリコンウェーハを配置して、熱処理を
施すこともできる。また、別には熱放射の熱源に波長
0.1〜4μmのランプを用い、石英製の容器中にシリ
コンウェーハを配置し、該容器外より前記ランプによっ
て950℃〜1200℃、1sec以上60sec未満
の熱処理をH2濃度100%雰囲気下で行なうこともで
きる。The present invention has been made in order to achieve the above object, that is, heat treatment of a silicon wafer by heat radiation at 900 to 1050 ° C. for 1 sec or more and less than 60 sec. Is the way. At that time, a lamp having a wavelength of 0.1 to 4 μm is used as a heat source for heat radiation, a silicon wafer is placed in a quartz container, and the silicon wafer can be heated from outside the container by the lamp. 2
It is also possible to place the silicon wafer in a decompressed atmosphere gas, which has a concentration of 1 to 6% and the balance is substantially Ar, and to perform heat treatment. Separately, a lamp having a wavelength of 0.1 to 4 μm is used as a heat source for heat radiation, a silicon wafer is placed in a quartz container, and the lamp is 950 ° C. to 1200 ° C. for 1 sec or more and less than 60 sec. The heat treatment can also be performed in an atmosphere of H 2 concentration of 100%.
【0005】[0005]
【作用】一般に物体間に温度差があるときには、高温の
物体から低温の物体へ熱が流れて低温の物体が昇温する
が、この熱の流れには熱伝導と熱伝達と熱放射とがあ
る。従来の熱処理方法は主として熱伝達によるものであ
って、熱源の熱を一旦雰囲気ガスに移送した後に、雰囲
気ガスからシリコンウェーハ表面へ熱を再度移送して、
シリコンウェーハの昇温を図ろうとするものである。主
としてとは、熱伝導と熱放射が皆無という訳ではない、
という意味である。すなわち熱伝達は流体(雰囲気ガ
ス)と固体(ウェーハ)表面との間の伝熱作用に過ぎな
いのであって、ウェーハ内部の昇温のためには熱伝導も
行なわれており、また雰囲気ガスの内部からウェーハへ
の熱放射も行なわれている。したがって熱伝導と熱放射
が完全に0という訳ではないが、従来の熱処理方法で
は、熱伝達がウェーハの昇温を支配していた。In general, when there is a temperature difference between objects, heat flows from a high-temperature object to a low-temperature object and the temperature of the low-temperature object rises. This heat flow includes heat conduction, heat transfer, and heat radiation. is there. The conventional heat treatment method is mainly based on heat transfer, and after the heat of the heat source is once transferred to the atmospheric gas, the heat is transferred again from the atmospheric gas to the silicon wafer surface,
It is intended to increase the temperature of the silicon wafer. Mainly does not mean that there is no heat conduction and heat radiation,
It means that. That is, the heat transfer is merely a heat transfer action between the fluid (atmosphere gas) and the surface of the solid (wafer), and heat conduction is also performed to raise the temperature inside the wafer. Heat radiation from the inside to the wafer is also performed. Therefore, although heat conduction and heat radiation are not completely zero, in the conventional heat treatment method, heat transfer dominated the temperature rise of the wafer.
【0006】この熱伝達は、物質移動を伴うから熱の移
送速度が遅い。すなわち雰囲気ガス自体は熱源ではな
く、熱源によって加熱されて熱を搬送する担体に過ぎな
いから、ウェーハに接する雰囲気ガスが対流によって置
き換わるまでは、ウェーハに接する雰囲気ガスはウェー
ハに熱を伝えて自身の温度が低下する。したがってウェ
ーハ表面と雰囲気ガスとの温度差が小さくなり、熱伝達
が行なわれにくくなる。また熱伝達のもとでは、ウェー
ハ表面の熱が熱伝導によって内部に移送されるまでは、
ウェーハ表面のみが昇温するから、ウェーハ表面と雰囲
気ガスとの温度差が小さくなり、この面からも熱伝達が
行なわれにくくなる。この結果従来の熱処理方法では、
1150ないし1200℃という高温のもとで、4時間
程度もの長時間を要することとなっていた。Since this heat transfer involves mass transfer, the heat transfer rate is slow. That is, since the atmospheric gas itself is not a heat source, but only a carrier that is heated by the heat source and conveys heat, until the atmospheric gas in contact with the wafer is replaced by convection, the atmospheric gas in contact with the wafer transfers heat to the wafer to transfer itself. The temperature drops. Therefore, the temperature difference between the wafer surface and the atmospheric gas becomes small, and heat transfer becomes difficult. Also, under heat transfer, until the heat on the wafer surface is transferred inside by heat conduction,
Since only the surface of the wafer is heated, the temperature difference between the surface of the wafer and the atmospheric gas becomes small, and heat transfer from this surface becomes difficult. As a result, in the conventional heat treatment method,
Under the high temperature of 1150 to 1200 ° C., it takes a long time of about 4 hours.
【0007】しかるに本発明方法は、熱源の熱を熱放射
によって直接シリコンウェーハに移送するものである。
したがって定温の熱源を用いる限り、熱源の熱がウェー
ハに移送された結果として熱源の温度が低下するという
ことは生じない。また固体の表面が放射熱をすべて吸収
してしまうことは実在物質ではありえないから、熱源と
ウェーハの内部との間でも熱放射が行なわれ、したがっ
てウェーハの内部も直接昇温させることができる。但し
ウェーハの表面と内部とで放射熱の吸収が等しいという
ことはあり得ないから、熱伝導も生じ、これによってウ
ェーハの温度は均一化される。従ってスリップの発生が
少ない。また完全な真空もあり得ず、したがって雰囲気
ガスも熱放射を受けて昇温するが、その熱は熱伝達によ
ってウェーハ表面に移送される。但しこれらの熱伝導と
熱伝達とは、熱放射が行なわれた結果として付随する現
象であって、本発明方法では熱放射がウェーハの昇温を
支配するから、著しい短時間にてウェーハを昇温させる
ことができる。より具体的な熱処理条件は、以下に述べ
る実験結果より得たものである。However, the method of the present invention transfers the heat of the heat source directly to the silicon wafer by thermal radiation.
Therefore, as long as a constant temperature heat source is used, the temperature of the heat source does not decrease as a result of the heat of the heat source being transferred to the wafer. Further, since it is not a real substance that the surface of a solid absorbs all the radiant heat, heat radiation is also performed between the heat source and the inside of the wafer, so that the inside of the wafer can be directly heated. However, since it is not possible that the radiant heat is absorbed equally between the surface and the inside of the wafer, heat conduction also occurs, and thereby the temperature of the wafer is made uniform. Therefore, the occurrence of slip is small. Also, there cannot be a complete vacuum, and therefore the atmospheric gas also receives heat radiation and rises in temperature, but the heat is transferred to the wafer surface by heat transfer. However, these heat conduction and heat transfer are phenomena that accompany as a result of heat radiation, and in the method of the present invention, since the heat radiation controls the temperature rise of the wafer, the wafer is raised in a significantly short time. Can be warmed. More specific heat treatment conditions are obtained from the experimental results described below.
【0008】[0008]
【実施例1】以下に本発明の実施例を説明する。チョク
ラルスキー法によって単結晶シリコンインゴットを製造
し、これにスライス・ラップ・面取り・化学研磨等の処
理を施して鏡面ウェーハ1を作成し、この鏡面ウェーハ
1を図1に示す枚葉式のランプ加熱器2内に配置した。
ランプ加熱器2は、石英製の容器3とハロゲンランプ4
とからなり、容器3内に支持脚3aを非直線状に3本以
上立設し、この支持脚3a上に鏡面ウェーハ1を載置し
ている。またハロゲンランプ4は、棒状のランプを複数
本平行に用いて容器の上側と下側とから鏡面ウェーハ1
の上下面を照射するように配置している。Example 1 An example of the present invention will be described below. A single crystal silicon ingot is manufactured by the Czochralski method, and then processed by slicing, lapping, chamfering, chemical polishing, etc. to prepare a mirror-finished wafer 1, and the mirror-finished wafer 1 is a single wafer type lamp shown in FIG. It was placed in the heater 2.
The lamp heater 2 includes a quartz container 3 and a halogen lamp 4.
And three or more support legs 3a are erected in a non-linear manner in the container 3, and the mirror-finished wafer 1 is placed on the support legs 3a. Further, the halogen lamp 4 uses a plurality of rod-shaped lamps in parallel, and the mirror-finished wafer 1 is formed from the upper side and the lower side of the container.
It is arranged so that the upper and lower surfaces are illuminated.
【0009】容器3の材質である石英は、ハロゲンラン
プ4から照射される光を殆ど吸収せずに透過させるのに
対して、シリコンの鏡面ウェーハ1はこれを吸収するか
ら、容器3外から鏡面ウェーハ1を直接加熱することが
できる。なお本実施例では下側の複数本のハロゲンラン
プ4は、上側の複数本のランプと井桁状に直交するよう
に配置しているが、上下の複数本のランプをすべて平行
に配置することもできるし、例えば上方のみから鏡面ウ
ェーハ1の上面のみを照射するように配置することもで
きる。また点光源を用いることもできるし、波長0.1
〜4μmであればハロゲンランプ以外の熱源、例えばア
ークランプを用いることもできる。次いでH2を4%混
入したArガスを圧力0.4Torrで容器3に封入し
て、各種の熱処理温度で各種の熱処理時間だけ熱処理を
施した。熱処理温度は、赤外線温度計によってウェーハ
1の温度を測定した。しかる後容器3より鏡面ウェーハ
1を取り出し、デバイスを組み込んでその酸化膜耐圧を
測定した。Quartz, which is the material of the container 3, allows the light emitted from the halogen lamp 4 to pass therethrough with almost no absorption, whereas the silicon mirror-like wafer 1 absorbs the light, so that the mirror surface from the outside of the container 3 is absorbed. The wafer 1 can be heated directly. In this embodiment, the lower halogen lamps 4 are arranged so as to cross the upper lamps in a cross pattern, but the upper and lower lamps may be arranged in parallel. It is possible to arrange it so that, for example, only the upper surface of the mirror-finished wafer 1 is irradiated from only the upper side. A point light source can also be used, and a wavelength of 0.1
A heat source other than a halogen lamp, for example, an arc lamp, can be used as long as it has a thickness of 4 μm. Then, Ar gas containing 4% of H 2 was sealed in the container 3 at a pressure of 0.4 Torr and heat-treated at various heat-treatment temperatures for various heat-treatment times. As the heat treatment temperature, the temperature of the wafer 1 was measured with an infrared thermometer. Thereafter, the mirror-finished wafer 1 was taken out from the container 3, the device was incorporated, and the oxide film breakdown voltage was measured.
【0010】図2は、以上のようにして得た酸化膜耐圧
が8MV/cm以上であるCモード良品率を示す。同図
より、1000℃、30secの熱処理を施した場合に
最良のCモード良品率が得られ、熱処理温度が1100
℃の場合、あるいは熱処理時間が60sec以上の場合
には、Cモード良品率が芳しくないことが解る。したが
って900〜1050℃、1sec以上60sec未満
の熱処理を施すことにより、酸化膜耐圧が十分に良好な
シリコンウェーハが得られることが解る。また雰囲気ガ
スとしてArガス100%を用いたときには、Cモード
良品率は芳しくなかった。したがって雰囲気ガスとして
H2・Ar混合ガスを用いるときには、H2濃度は1〜6
%とすることが好ましい。FIG. 2 shows the C-mode non-defective rate with an oxide film breakdown voltage of 8 MV / cm or more obtained as described above. From the figure, the best C-mode yield is obtained when the heat treatment is performed at 1000 ° C. for 30 seconds, and the heat treatment temperature is 1100.
It can be seen that the C-mode non-defective rate is not good when the temperature is ° C or when the heat treatment time is 60 seconds or more. Therefore, it is understood that by performing the heat treatment at 900 to 1050 ° C. for 1 second or more and less than 60 seconds, a silicon wafer having sufficiently good oxide film withstand voltage can be obtained. When Ar gas of 100% was used as the atmosphere gas, the C-mode non-defective rate was not good. Therefore, when a mixed gas of H 2 and Ar is used as the atmosphere gas, the H 2 concentration is 1 to 6
% Is preferable.
【0011】[0011]
【実施例2】実施例1と同様にしてH2濃度100%、
常圧下でH2ガスを容器3に封入してシリコンウェーハ
を各種時間、各種温度で熱処理した。熱処理温度の測
定、デバイス組み込み後の酸化膜耐圧の測定等は実施例
1と同様に行なった。図3は以上のようにして得た酸化
膜耐圧が8MV/cm以上であるCモード良品率を示
す。同図より950℃以上の温度では、時間とともに耐
圧が著しく向上しており、60sec以上の処理では効
果はさほど変化がない。したがって温度の下限として9
50℃、上限として1200℃であれば、また時間につ
いては1sec以上60sec未満であれば、酸化膜耐
圧が充分に良好なシリコンウェーハが得られることが解
る。Example 2 As in Example 1, H 2 concentration 100%,
H 2 gas was sealed in the container 3 under normal pressure, and the silicon wafer was heat-treated for various times at various temperatures. The measurement of the heat treatment temperature and the measurement of the oxide film withstand voltage after the device was incorporated were performed in the same manner as in Example 1. FIG. 3 shows the C-mode non-defective rate with an oxide film breakdown voltage of 8 MV / cm or more obtained as described above. From the figure, at a temperature of 950 ° C. or higher, the breakdown voltage is remarkably improved with time, and the effect is not significantly changed by the treatment for 60 seconds or longer. Therefore, the lower limit of the temperature is 9
It is understood that if the temperature is 50 ° C. and the upper limit is 1200 ° C., and the time is 1 sec or more and less than 60 sec, a silicon wafer having sufficiently high oxide film breakdown voltage can be obtained.
【0012】また図4は上記実施例による熱処理を施し
た代表的なシリコンウェーハに、更にBMD(バルク・
マイクロ・ディフェクト)を析出させる熱処理を施した
結果を示す。同図にはまた、従来例によるスロー昇温法
の熱処理を施したウェーハと、熱処理を施さないウェー
ハに、BMD析出熱処理を施した結果も併せて示した。
いずれのウェーハも、初期酸素濃度は15.5〜16.
5×1017a/ccであり、またBMD析出の熱処理条
件は、650℃×2時間+800℃×4時間+1000
℃×16時間である。同図より明らかなように、本発明
の0.1〜4μmのランプ加熱を採用したものでは、そ
の後に酸素析出処理を行なっても、BMDが著しく低く
抑えられていることが解る(図4中□で示すデータ)。Further, FIG. 4 shows a typical silicon wafer which has been subjected to the heat treatment according to the above-mentioned embodiment, further having a BMD (bulk.
The results of heat treatment for precipitating micro defects are shown. The figure also shows the results of performing the BMD precipitation heat treatment on the wafer that has been subjected to the heat treatment of the slow heating method according to the conventional example and the wafer that has not been subjected to the heat treatment.
The initial oxygen concentration of each wafer was 15.5 to 16.
5 × 10 17 a / cc, and the heat treatment conditions for BMD precipitation are 650 ° C. × 2 hours + 800 ° C. × 4 hours + 1000
℃ × 16 hours. As is clear from the figure, in the case of adopting the lamp heating of 0.1 to 4 μm of the present invention, the BMD is remarkably suppressed even after the oxygen precipitation treatment (in FIG. 4). (Data indicated by □).
【0013】すなわち先にも述べたように、従来の熱処
理ではスリップの発生を防止するために昇温速度を遅く
しており、これが低温からの昇温時にウェーハのバルク
中に多数のBMDを生じさせる。「ジャーナル オブ
アプライド フィジックス」(Journal of Applied Phy
sics, Vol.46 No.5 May 1975, P.1869〜1874)でS.
M.Huらが述べているように、ウェーハ強度を示すロ
ゼットの広がり(indentation dislocation rosettes)
と、BMD密度との関係は図5に示すように、BMD密
度が増加すると結晶強度は弱くなる。すなわち従来のス
ロー昇温法では、欠陥の増加にともない、ウェーハ強度
が低下してデバイスプロセスでの問題を惹起させてい
た。しかるに本発明の熱処理方法によれば欠陥の発生が
抑制されるから、当然ウェーハの結晶強度は図5に示す
ように高いものになる。したがって先に述べたような耐
圧向上によるデバイス特性への寄与のみならず、製造プ
ロセス途中における不具合解消にも貢献する。That is, as described above, in the conventional heat treatment, the temperature rising rate is slowed in order to prevent the occurrence of slip, which causes a large number of BMDs in the bulk of the wafer when the temperature is raised from a low temperature. Let "Journal of
Applied Physics "(Journal of Applied Phy
sics, Vol.46 No.5 May 1975, P.1869-1874).
M. As described by Hu et al., Indentation dislocation rosettes indicating wafer strength
As shown in FIG. 5, the crystal strength becomes weaker as the BMD density increases. That is, in the conventional slow temperature rising method, as the number of defects increases, the wafer strength decreases, causing problems in the device process. However, according to the heat treatment method of the present invention, the generation of defects is suppressed, so that the crystal strength of the wafer naturally becomes high as shown in FIG. Therefore, not only contributes to the device characteristics by improving the breakdown voltage as described above, but also contributes to the elimination of defects during the manufacturing process.
【0014】[0014]
【発明の効果】本発明は熱放射によってシリコンウェー
ハを直接加熱するものであるから、高温且つ長時間の熱
処理をシリコンウェーハに与える必要がなくなり、した
がってウェーハに生じ得る汚染やスリップなどを招くこ
となくその酸化膜耐圧を改善することができ、しかも高
度の生産性を得ることができる。また本発明の熱処理方
法によれば、酸化膜耐圧の向上によるデバイス特性への
寄与が図られるほか、結晶強度の強化が図られるから、
製造プロセス途中における不具合解消にも貢献する。Since the present invention directly heats a silicon wafer by heat radiation, it is not necessary to subject the silicon wafer to a high temperature and long time heat treatment, and therefore, the contamination and slips that may occur on the wafer are not caused. The breakdown voltage of the oxide film can be improved and high productivity can be obtained. Further, according to the heat treatment method of the present invention, in addition to contributing to device characteristics by improving the oxide film breakdown voltage, it is possible to enhance the crystal strength,
It also contributes to eliminating defects during the manufacturing process.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例に用いるランプ加熱器を示す
概略縦断面図FIG. 1 is a schematic vertical sectional view showing a lamp heater used in an embodiment of the present invention.
【図2】該実施例による熱処理条件とCモード良品率と
の関係を示す図FIG. 2 is a diagram showing a relationship between heat treatment conditions and a C-mode non-defective rate according to the example.
【図3】別の実施例による熱処理条件とCモード良品率
との関係を示す図FIG. 3 is a diagram showing a relationship between heat treatment conditions and a C-mode non-defective rate according to another embodiment.
【図4】該実施例のBMD密度を示す図FIG. 4 is a diagram showing the BMD density of the example.
【図5】BMD密度とロゼットの広がり(結晶強度)と
の関係を示す図FIG. 5 is a graph showing the relationship between BMD density and rosette spread (crystal strength).
1…鏡面ウェーハ 2…ランプ加熱器 3
…容器 3a…支持脚 4…ハロゲンランプ1 ... Mirror surface wafer 2 ... Lamp heater 3
... Container 3a ... Support legs 4 ... Halogen lamp
Claims (4)
sec以上60sec未満の熱処理をシリコンウェーハ
に施すシリコンウェーハの熱処理方法。1. By heat radiation, 900 to 1050 ° C., 1
A heat treatment method for a silicon wafer, wherein the heat treatment for at least sec but less than 60 sec is performed on the silicon wafer.
mのランプを用い、石英製の容器中に前記シリコンウェ
ーハを配置し、該容器外より前記ランプによって前記シ
リコンウェーハを加熱する請求項1記載のシリコンウェ
ーハの熱処理方法。2. A wavelength of 0.1 to 4 μm as a heat source for the heat radiation.
2. The method for heat treating a silicon wafer according to claim 1, wherein the silicon wafer is placed in a quartz container and the lamp is heated from outside the container by using the lamp.
なり、減圧された雰囲気ガス中に前記シリコンウェーハ
を配置して、前記熱処理を施す請求項1又は2記載のシ
リコンウェーハの熱処理方法。3. The silicon wafer according to claim 1 or 2, wherein the H 2 concentration is 1 to 6% and the balance is substantially Ar, and the heat treatment is performed by placing the silicon wafer in a depressurized atmosphere gas. Heat treatment method.
プを用い、石英製の容器中にシリコンウェーハを配置
し、該容器外より前記ランプによって950℃〜120
0℃、1sec以上60sec未満の熱処理をH2濃度
100%雰囲気下で行なうことを特徴とするシリコンウ
ェーハの熱処理方法。4. A lamp having a wavelength of 0.1 to 4 μm is used as a heat source for heat radiation, a silicon wafer is placed in a quartz container, and the lamp is 950 ° C. to 120 ° C. from outside the container.
A heat treatment method for a silicon wafer, which comprises performing heat treatment at 0 ° C. for 1 second or more and less than 60 seconds in an atmosphere of H 2 concentration of 100%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20928094A JP3410828B2 (en) | 1993-10-15 | 1994-08-09 | Silicon wafer manufacturing method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-281971 | 1993-10-15 | ||
JP28197193 | 1993-10-15 | ||
JP20928094A JP3410828B2 (en) | 1993-10-15 | 1994-08-09 | Silicon wafer manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07161707A true JPH07161707A (en) | 1995-06-23 |
JP3410828B2 JP3410828B2 (en) | 2003-05-26 |
Family
ID=26517337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20928094A Expired - Fee Related JP3410828B2 (en) | 1993-10-15 | 1994-08-09 | Silicon wafer manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3410828B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0867928A2 (en) * | 1997-03-27 | 1998-09-30 | Shin-Etsu Handotai Company Limited | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method |
EP0973190A2 (en) * | 1998-07-13 | 2000-01-19 | Shin-Etsu Handotai Company Limited | Silicon wafer and method for producing it |
US6245311B1 (en) | 1998-06-09 | 2001-06-12 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafer and silicon wafer |
JP2002246318A (en) * | 2001-02-16 | 2002-08-30 | Tokyo Electron Ltd | Heat treating method and heat treating device |
US6531416B1 (en) | 1997-10-30 | 2003-03-11 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method |
US6573159B1 (en) * | 1998-12-28 | 2003-06-03 | Shin-Etsu Handotai Co., Ltd. | Method for thermally annealing silicon wafer and silicon wafer |
EP0917188A3 (en) * | 1997-11-05 | 2004-02-11 | Shin-Etsu Handotai Company Limited | Method for heat treatment of SOI wafer and SOI wafer heat-treated by the method |
US7374955B2 (en) | 2005-09-12 | 2008-05-20 | Covalent Materials Corporation | Method of manufacturing silicon wafer |
DE10047345B4 (en) * | 2000-09-22 | 2008-11-13 | Mitsubishi Materials Silicon Corp. | Heat treatment process of a silicon wafer and treated silicon wafers |
JP2014111545A (en) * | 2014-03-18 | 2014-06-19 | Sumco Corp | Manufacturing method of silicon wafer |
US9243345B2 (en) | 2009-03-25 | 2016-01-26 | Sumco Corporation | Silicon wafer and manufacturing method thereof |
-
1994
- 1994-08-09 JP JP20928094A patent/JP3410828B2/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0867928A2 (en) * | 1997-03-27 | 1998-09-30 | Shin-Etsu Handotai Company Limited | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method |
EP0867928A3 (en) * | 1997-03-27 | 1999-11-03 | Shin-Etsu Handotai Company Limited | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method |
US6403502B1 (en) * | 1997-03-27 | 2002-06-11 | Shin-Etsu Handotai Co., Ltd. | Heat treatment method for a silicon wafer and a silicon wafer heat-treated by the method |
US6531416B1 (en) | 1997-10-30 | 2003-03-11 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method |
EP0917188A3 (en) * | 1997-11-05 | 2004-02-11 | Shin-Etsu Handotai Company Limited | Method for heat treatment of SOI wafer and SOI wafer heat-treated by the method |
US6245311B1 (en) | 1998-06-09 | 2001-06-12 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafer and silicon wafer |
EP0973190A2 (en) * | 1998-07-13 | 2000-01-19 | Shin-Etsu Handotai Company Limited | Silicon wafer and method for producing it |
EP0973190A3 (en) * | 1998-07-13 | 2000-03-22 | Shin-Etsu Handotai Company Limited | Silicon wafer and method for producing it |
US6573159B1 (en) * | 1998-12-28 | 2003-06-03 | Shin-Etsu Handotai Co., Ltd. | Method for thermally annealing silicon wafer and silicon wafer |
US6809015B2 (en) | 1998-12-28 | 2004-10-26 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafers and silicon wafer |
US7011717B2 (en) | 1998-12-28 | 2006-03-14 | Shin-Etsu Handotai Co., Ltd. | Method for heat treatment of silicon wafers and silicon wafer |
DE10047345B4 (en) * | 2000-09-22 | 2008-11-13 | Mitsubishi Materials Silicon Corp. | Heat treatment process of a silicon wafer and treated silicon wafers |
JP2002246318A (en) * | 2001-02-16 | 2002-08-30 | Tokyo Electron Ltd | Heat treating method and heat treating device |
US7374955B2 (en) | 2005-09-12 | 2008-05-20 | Covalent Materials Corporation | Method of manufacturing silicon wafer |
US9243345B2 (en) | 2009-03-25 | 2016-01-26 | Sumco Corporation | Silicon wafer and manufacturing method thereof |
JP2014111545A (en) * | 2014-03-18 | 2014-06-19 | Sumco Corp | Manufacturing method of silicon wafer |
Also Published As
Publication number | Publication date |
---|---|
JP3410828B2 (en) | 2003-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3207851B2 (en) | Substituted carbon in silicon | |
US3737282A (en) | Method for reducing crystallographic defects in semiconductor structures | |
JP3410828B2 (en) | Silicon wafer manufacturing method | |
KR940006183A (en) | Semiconductor substrate and processing method | |
TW563174B (en) | Method for heat treatment of silicon wafer and silicon wafer heat-treated by the method | |
JPH11354529A (en) | Heat treatment method of silicon wafer and silicon wafer | |
JPH0232535A (en) | Manufacture of silicon substrate for semiconductor device | |
US6599815B1 (en) | Method and apparatus for forming a silicon wafer with a denuded zone | |
JP2652110B2 (en) | Irradiation defect removal method for neutron irradiated FZ silicon single crystal | |
US6333279B1 (en) | Method for producing silicon wafer and silicon wafer | |
JPS59202640A (en) | Treatment for semiconductor wafer | |
JP3811582B2 (en) | Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate | |
WO2022181391A1 (en) | Method for producing silicon wafer, and silicon wafer | |
JP2010141061A (en) | Tool used for method of manufacturing epitaxial silicon wafer | |
JPH05144827A (en) | Processing method of silicon wafer | |
JPH0480880B2 (en) | ||
JP2004172564A (en) | Annealed wafer and its manufacturing method | |
JPH10326754A (en) | Heating apparatus | |
JPH02151035A (en) | Buried-in diffusion process in bipolar ic manufacture | |
JP7590839B2 (en) | Silicon wafer manufacturing method | |
JPS60732A (en) | Annealing method | |
JPS60176241A (en) | Manufacture of semiconductor substrate | |
JPH03166733A (en) | Manufacture of semiconductor device | |
JP2017157812A (en) | Method of heat treatment of wafer | |
JPS6115335A (en) | Gettering method for silicon wafer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20080320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 6 Free format text: PAYMENT UNTIL: 20090320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100320 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20100320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 8 Free format text: PAYMENT UNTIL: 20110320 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20120320 |
|
LAPS | Cancellation because of no payment of annual fees |