[go: up one dir, main page]

JPH0716164Y2 - Vehicle position / speed detector - Google Patents

Vehicle position / speed detector

Info

Publication number
JPH0716164Y2
JPH0716164Y2 JP8392288U JP8392288U JPH0716164Y2 JP H0716164 Y2 JPH0716164 Y2 JP H0716164Y2 JP 8392288 U JP8392288 U JP 8392288U JP 8392288 U JP8392288 U JP 8392288U JP H0716164 Y2 JPH0716164 Y2 JP H0716164Y2
Authority
JP
Japan
Prior art keywords
unmanned vehicle
position detector
planned
trajectory
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8392288U
Other languages
Japanese (ja)
Other versions
JPH026310U (en
Inventor
充孝 堀
潤一 下村
昌克 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP8392288U priority Critical patent/JPH0716164Y2/en
Publication of JPH026310U publication Critical patent/JPH026310U/ja
Application granted granted Critical
Publication of JPH0716164Y2 publication Critical patent/JPH0716164Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【考案の詳細な説明】 A.産業上の利用分野 本考案は無人車の位置や速度等を検出できる装置に関す
る。
[Detailed Description of the Invention] A. Field of Industrial Application The present invention relates to a device capable of detecting the position, speed, etc. of an unmanned vehicle.

B.考案の概要 本考案では、無人車の前面に取り付けた光位置検出器上
へ、ある仰角をもって照射されたレーザの受光点の軌跡
から、幾何学的条件に従って予定軌道からのずれを簡単
かつ正確に求めることができる。このため予定軌道に復
帰するための運転制御も容易となる。
B. Outline of the Invention In the present invention, it is possible to easily and easily deviate from the planned orbit according to geometric conditions from the trajectory of the light receiving point of the laser irradiated at a certain elevation angle onto the optical position detector mounted on the front of the unmanned vehicle. Can be accurately determined. For this reason, operation control for returning to the planned orbit becomes easy.

C.従来の技術 無人車の誘導方式としては、例えば、床面に誘導線を張
り、これに電流を流して、ピックアップコイルで磁力線
を検出し、誘導線に沿わせて無人車を走行させる電磁誘
導方式がある。他にも、光反射テープを床面に張り、投
光器で照らして光センサで検出し、光反射テープに沿っ
て無人車を走行させる光学方式がある。
C. Conventional technology As an induction system for an unmanned vehicle, for example, an induction wire is placed on the floor surface, an electric current is passed through this, an electromagnetic field is detected by a pickup coil, and the unmanned vehicle is driven along the induction wire. There is a guidance system. In addition, there is an optical system in which a light reflection tape is attached to the floor surface, illuminated by a floodlight, detected by an optical sensor, and an unmanned vehicle is run along the light reflection tape.

しかし、誘導線、光反射テープ等を路面に敷設した場
合、汚れ等により検出が不確実なものとなるため、定規
的なメンテナンスが必要である。又、進路変更ごとに敷
設作業が必要である欠点がある。
However, when a guide wire, a light reflecting tape, or the like is laid on the road surface, detection becomes uncertain due to dirt and the like, and therefore regular maintenance is required. In addition, there is a drawback that laying work is required for each course change.

これらの欠点を解決する方式として自律走行可能なジャ
イロ方式、空間フィルタ方式が用いられている。
As a method for solving these drawbacks, a gyro system capable of autonomous traveling and a spatial filter method are used.

ジャイロ方式は、車輪の回転数をエンコーダで検出し、
移動距離を算出すると同時にジャイロにより進行方向の
変化を計測するものであり、誘導線,光反射テープが不
要である。ところが、車輪のスリップ,ジャイロの蓄積
誤差が生じる。一方空間フィルタ方式は、非接触で速
度,移動距離を検出することができるが、演算誤差が生
じる。
The gyro system detects the rotation speed of the wheel with an encoder,
The change of the traveling direction is measured by the gyro at the same time as the moving distance is calculated, and the guide wire and the light reflection tape are not necessary. However, wheel slips and gyro accumulation errors occur. On the other hand, the spatial filter method can detect the speed and the moving distance in a non-contact manner, but a calculation error occurs.

このため、精密な走行を実現するため、速度,位置の極
めて精度の良い定点補正,速度補正が必要となる。
Therefore, in order to realize precise traveling, it is necessary to perform fixed point correction and speed correction with extremely high speed and position.

D.考案が解決しようとする課題 従来、定点補正,速度補正において、光,超音波,電磁
波,レーザ等が用いられている。しかし、発振器,受信
器の位置関係にも必要なため、設置に長時間を要し、装
置も複雑である。又、演算も複雑で、演算誤差を有し、
補正装置のコストも高かった。
D. Problems to be Solved by the Invention Conventionally, light, ultrasonic waves, electromagnetic waves, lasers, etc. have been used in fixed point correction and speed correction. However, since it is necessary for the positional relationship between the oscillator and the receiver, it takes a long time to install and the device is complicated. Moreover, the calculation is complicated, and there is a calculation error.
The cost of the correction device was also high.

また、指向性の良いレーザを用いるいわゆるレーザ燈台
方式では従来次のような条件を満足するものはなかっ
た。
Further, in the so-called laser lighthouse system using a laser having a good directivity, conventionally, there has been no one satisfying the following conditions.

(1)ミラー等の回転を回避してレーザ光を振らせない
ようにする。
(1) The rotation of the mirror or the like is avoided so that the laser light is not shaken.

(2)車体に関する位置,速度等の情報は無人搬送車自
体で検出する。
(2) Information about the vehicle body such as position and speed is detected by the automated guided vehicle itself.

(3)光学系が簡単である。(3) The optical system is simple.

(4)安全のためレーザ光線の到達する範囲を限定す
る。
(4) For safety, the range that the laser beam reaches is limited.

本考案は、無人車の位置,速度等を簡単な演算で精度よ
く求めることのできる車体位置・速度検出装置を提供す
ることを目的とするものである。
It is an object of the present invention to provide a vehicle body position / speed detection device capable of accurately obtaining the position, speed, etc. of an unmanned vehicle by a simple calculation.

E.課題を解決するための手段 路面に設置されたレーザ発振器からある仰角をもって照
射されたレーザは、無人車の前面に取り付けられた光位
置検出器に入射し、無人車の進行するに従って、受光点
がある軌跡を描く。この軌跡は、無人車の進行する位置
方向等に固有するものである。このため、この軌跡を幾
何学的条件によって分析すると予定軌道からのずれが正
確かつ簡単に求められる。
E. Means for solving the problem A laser emitted from a laser oscillator installed on the road surface at a certain elevation angle enters an optical position detector mounted on the front surface of the unmanned vehicle and receives light as the unmanned vehicle advances. Draw a locus with dots. This locus is peculiar to the traveling direction of the unmanned vehicle and the like. Therefore, if this trajectory is analyzed under geometric conditions, the deviation from the planned trajectory can be accurately and easily obtained.

F.実施例 以下、本考案の一実施例について図面を参照して詳細に
説明する。
F. Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図〜第5図に本考案の一実施例を示す。同図に示す
ように路面1上を走行する無人車2の前面には、光位置
検出器として半導体位置検出器(以下PSDと略す)3が
取り付けられている。無人車2はジャイロ等による速度
・位置情報に基づいて走行する自律走行型であるが、蓄
積誤差等を除去する必要があり、このPSD3を利用して定
点補正を行うものである。PSD3は、第3図及び第4図に
示すように、平板状シリコンの表面にP層,裏面にN
層,そして中間にI層の3層を形成してなるものであ
り、各辺には電極4,5,6,7が付属している。入射した光
は、光電変換され、その一次元的様子を示す第4図のよ
うに、光電流として各電極4,5から分割出力され、その
値の比ら入射した点(受光点)の2次元的位置が求めら
れる。
1 to 5 show one embodiment of the present invention. As shown in the figure, a semiconductor position detector (hereinafter abbreviated as PSD) 3 is attached as an optical position detector to the front surface of the unmanned vehicle 2 traveling on the road surface 1. Although the unmanned vehicle 2 is an autonomous traveling type that travels based on speed / position information from a gyro or the like, it is necessary to remove accumulated errors and the like, and this PSD3 is used to perform fixed point correction. As shown in FIGS. 3 and 4, PSD3 has a P layer on the front surface of the flat silicon and an N layer on the back surface.
It is formed by forming three layers, i.e., an I layer in the middle, and electrodes 4, 5, 6, 7 are attached to each side. The incident light is photoelectrically converted and, as shown in FIG. 4 showing a one-dimensional state thereof, is divided and output from each of the electrodes 4 and 5 as a photocurrent, and 2 of the incident points (light receiving points) depending on the ratio of the values. Dimensional position is required.

一方、定点補正を行うため、路面1の定点には半導体レ
ーザ8が設置されている。この半導体レーザの出射方向
は、垂直面内では水平方向から角θをなすと共に水平面
内では予め無人車に対して設定される予定軌道に沿う方
向となっている。半導体レーザ8からの出射光は、走行
する無人車2のPSD3に入射し、その受光点は、無人車2
の走行に従ってある軌跡を描く。この軌跡は無人車2の
走行する位置、方向に固有のものであり、これを分析す
るため、第5図に示すようにPSD3により検出された2次
元的位置信号はそれぞれA/D変換器9,10、バッファ11,12
を経て中央処理回路(以下CPUと略す)13へ入力され
る。CPU13は、入力された位置信号を幾何学的条件に従
い次のように演算処理する。
On the other hand, in order to perform fixed point correction, a semiconductor laser 8 is installed at a fixed point on the road surface 1. The emission direction of this semiconductor laser is an angle θ with respect to the horizontal direction in the vertical plane, and is in the horizontal plane along a predetermined track set for the unmanned vehicle in advance. The light emitted from the semiconductor laser 8 is incident on the PSD 3 of the traveling unmanned vehicle 2 and the light receiving point thereof is the unmanned vehicle 2
Draw a trajectory as you run. This locus is peculiar to the traveling position and direction of the unmanned vehicle 2, and in order to analyze this, the two-dimensional position signals detected by the PSD3 are analyzed by the A / D converter 9 as shown in FIG. , 10, buffer 11,12
It is input to the central processing circuit (hereinafter abbreviated as CPU) 13 via. The CPU 13 processes the input position signal according to geometric conditions as follows.

即ち、無人車2が予定軌道通りに走行する場合のPSD3上
の受光点軌跡は鉛直となり、その時刻t0の受光点aと時
刻t1の受光点bは第6図に示す通りである。ここで、PS
D3上におけるxy座標軸は、PSD3の中央を原点とし、水平
方向をx軸、鉛直方向をy軸とした。第6図に示すよう
に、予定軌道上を正常に走行する場合の軌跡がy軸に重
なるように調整すると、受光点a,bのx軸座標値はいず
れも零である。
That is, the light receiving point locus on the PSD 3 when the unmanned vehicle 2 travels along the planned track is vertical, and the light receiving point a at time t 0 and the light receiving point b at time t 1 are as shown in FIG. Where PS
The xy coordinate axis on D3 has the origin at the center of PSD3, the horizontal direction is the x-axis, and the vertical direction is the y-axis. As shown in FIG. 6, when the locus when normally traveling on the planned trajectory is adjusted so as to overlap the y-axis, the x-axis coordinate values of the light receiving points a and b are both zero.

これに対し、無人車2が予定軌道から平行にずれて走行
する場合のPSD3上の受光点の軌跡は第7図に示すように
y軸と平行となる。ここで、この軌跡の時刻t0,t1にお
ける受光点c,dのx座標値x10(=xt1)が無人車2と予
定軌道との水平距離を示すことになる。
On the other hand, when the unmanned vehicle 2 runs parallel to the planned track, the locus of the light receiving point on the PSD 3 becomes parallel to the y axis as shown in FIG. Here, the x coordinate value x 10 (= x t1 ) of the light receiving points c and d at the times t 0 and t 1 of this locus indicates the horizontal distance between the unmanned vehicle 2 and the planned track.

更に、第8図に示すように無人車2が予定軌道に対し偏
差角1もって走行する場合には、PSD3上の受光点の軌
跡は第9図に示すように傾斜した線となる。尚、第8図
に示す平面図では予定軌道とレーザ光が重なるため、予
定軌道を省略してレーザ光のみを示した。
Further, as shown in FIG. 8, when the unmanned vehicle 2 travels with the deviation angle 1 with respect to the planned track, the locus of the light receiving point on the PSD 3 becomes an inclined line as shown in FIG. In the plan view shown in FIG. 8, the planned orbit and the laser light overlap, so the planned orbit is omitted and only the laser light is shown.

第8図及び第9図に示すように時刻t0,t1の間に、無人
車2が走行した距離をX,予定軌道を沿った長さをmとす
ると下式が成立つ。
As shown in FIGS. 8 and 9, when the distance traveled by the unmanned vehicle 2 between time t 0 and t 1 is X and the length along the planned track is m, the following formula is established.

X=m/cos …(1) m=Δx/sin …(2) 但し、時刻t0,t1における受光点e,fの座標値の間には
次の関係があるものとした。
X = m / cos (1) m = Δx / sin (2) However, it is assumed that the following relationships exist between the coordinate values of the light receiving points e and f at the times t 0 and t 1 .

yt0−yt1=2ya …(3) xt0−xt1=Δx …(4) 従って、(1)(2)式より下式が導かれる。y t0 −y t1 = 2 y a (3) x t0 −x t1 = Δx (4) Therefore, the following formulas are derived from the formulas (1) and (2).

次に半導体レーザ8と、時刻t0におけるPSD3との水平距
離をmt0,時刻t1におけるPSD3との水平距離をmt1とする
と第10図に示すように下式の関係が成り立つ。
Next, assuming that the horizontal distance between the semiconductor laser 8 and the PSD3 at the time t 0 is m t0 and the horizontal distance between the PSD 3 at the time t 1 is m t1 , the following equation is established as shown in FIG.

但し、路面1からPSD3の中央の原点までの垂直距離をh
とした。。
However, the vertical distance from the road surface 1 to the center of PSD3 is h
And .

mt0=(h+ya)/tanθ …(6) mt1(h−ya)/tanθ …(7) ここで、水平距離mt0,mt1と上述した予定軌道に沿った
長さmとの間には下式の関係があり、このため偏差角
との関係は第12図に示すものとなる。
m t0 = (h + y a ) / tanθ ... (6) m t1 (h-y a) / tanθ ... (7) where the horizontal distance m t0, m t1 length m along the planned trajectory the above Since there is a relation of the following equation between them, the relation with the deviation angle is as shown in FIG.

m=mt0−mt1 …(8) 従って、第12図に示す関係より無人車2の走行した距離
Xは下式で示され、これに上式(6)(7)を代入する
と次の様に導びかれる。
m = m t0 −m t1 (8) Therefore, from the relationship shown in FIG. 12, the distance X traveled by the unmanned vehicle 2 is expressed by the following equation, and by substituting the equations (6) and (7) into the following equation, To be guided.

そして、(5)(9)式より次のように偏差角が求め
られる。
Then, the deviation angle is obtained from the equations (5) and (9) as follows.

2ya・sin=Δx・tanθ sin=Δx・tanθ/2ya =sin-1(Δx・tan/2ya) …(11) 一方、無人車2の移動速度Vは下式で示される。但しT
=t1−t0である。
2y a · sin = Δx · tan θ sin = Δx · tan θ / 2y a = sin −1 (Δx · tan / 2y a ) ... (11) On the other hand, the moving speed V of the unmanned vehicle 2 is expressed by the following equation. However, T
= T 1 −t 0 .

指令速度をV0とすれば移動速度Vとの偏差Eは下式で示
される。
If the command speed is V 0 , the deviation E from the moving speed V is expressed by the following equation.

このように、本実施例によれば予定軌道からの水平距
離,偏差角及び移動速度を幾何学的条件に基づいて簡単
に演算することができるので、これらの値により運転制
御を修正してやれば予定軌道に容易に復帰させることが
できる。
As described above, according to the present embodiment, the horizontal distance from the planned trajectory, the deviation angle, and the moving speed can be easily calculated based on the geometrical conditions. It can be easily returned to the orbit.

G.考案の効果 以上、実施例に基づいて具体的に説明したように、本考
案は無人車に取り付けて光位置検出器上に照射されたレ
ーザの受光点の軌跡から幾何学的条件に従って、予定軌
道に対する無人車のずれを簡単かつ正確に求めることが
できる。このため予定軌道に復帰させるための制御も容
易となる。更に、レーザの照射される範囲が限定され安
全性が高く。また光位置検出器は回転等させる必要がな
いので構造が簡素となる利点もある。
G. Effect of the Invention As described above in detail based on the embodiments, the invention is based on the geometric condition from the locus of the light receiving point of the laser which is attached to the unmanned vehicle and is irradiated on the optical position detector. It is possible to easily and accurately find the deviation of the unmanned vehicle from the planned track. Therefore, the control for returning to the planned orbit becomes easy. Furthermore, the range of laser irradiation is limited, and safety is high. Further, since the optical position detector does not need to be rotated, there is an advantage that the structure is simple.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図はそれぞれ本考案の一実施例を示す側面
図,前面図、第3図,第4図はそれぞれPSDの断面図,
斜視図、第5図は演算処理回路の構成図、第6図,第7
図,第9図はそれぞれPSD上の軌跡の説明図、第8図は
幾何学的条件を示す平面図、第10図は幾何学的条件を示
す側面図、第11図は無人車の正面図、第12図は偏差角と
水平距離mt0,mt1との関係を示す説明図である。 図面中、 1は路面、2は無人車、3はPSD(半導体位置検出
器)、4,5,6,7は電極、8は半導体レーザ、9,10はA/D変
換器、11,12はバッファ、13はCPU(中央処理回路)であ
る。
1 and 2 are a side view and a front view showing an embodiment of the present invention, and FIGS. 3 and 4 are sectional views of a PSD, respectively.
FIG. 5 is a perspective view, FIG. 5 is a configuration diagram of an arithmetic processing circuit, FIGS.
Figures and 9 are explanatory views of the trajectory on the PSD respectively. Figure 8 is a plan view showing the geometric conditions, Figure 10 is a side view showing the geometric conditions, and Figure 11 is a front view of the unmanned vehicle. FIG. 12 is an explanatory diagram showing the relationship between the deviation angle and the horizontal distances m t0 and m t1 . In the drawing, 1 is a road surface, 2 is an unmanned vehicle, 3 is a PSD (semiconductor position detector), 4,5,6,7 are electrodes, 8 is a semiconductor laser, 9 and 10 are A / D converters, and 11 and 12. Is a buffer, and 13 is a CPU (central processing circuit).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】受光した点の2次元的位置を検出すること
のできる光位置検出器を無人車の前面に取り付ける一
方、該無人車の予定軌道における路面上にレーザ発振器
を設置して前記光位置検出器へある仰角をもって照射さ
せ、更に前記光位置検出器上の受光点の軌跡を幾何学的
条件に従って分析し、前記予定軌道に対する水平距離、
偏差角及び車体の速度を演算する演算回路を設けたこと
を特徴とする車体位置・速度検出装置。
1. An optical position detector capable of detecting a two-dimensional position of a received light is attached to a front surface of an unmanned vehicle, and a laser oscillator is installed on a road surface in a planned track of the unmanned vehicle. Irradiate the position detector at a certain elevation angle, further analyze the trajectory of the light receiving point on the optical position detector according to geometric conditions, the horizontal distance to the planned trajectory,
A vehicle body position / velocity detection device comprising a calculation circuit for calculating a deviation angle and a vehicle body speed.
JP8392288U 1988-06-27 1988-06-27 Vehicle position / speed detector Expired - Lifetime JPH0716164Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8392288U JPH0716164Y2 (en) 1988-06-27 1988-06-27 Vehicle position / speed detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8392288U JPH0716164Y2 (en) 1988-06-27 1988-06-27 Vehicle position / speed detector

Publications (2)

Publication Number Publication Date
JPH026310U JPH026310U (en) 1990-01-17
JPH0716164Y2 true JPH0716164Y2 (en) 1995-04-12

Family

ID=31308627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8392288U Expired - Lifetime JPH0716164Y2 (en) 1988-06-27 1988-06-27 Vehicle position / speed detector

Country Status (1)

Country Link
JP (1) JPH0716164Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582209B2 (en) * 1992-09-11 1997-02-19 大淀ヂ−ゼル株式会社 Mobile work vehicle
KR100633160B1 (en) * 2004-12-17 2006-10-11 삼성전자주식회사 Robot system that can recognize position and direction using beacon

Also Published As

Publication number Publication date
JPH026310U (en) 1990-01-17

Similar Documents

Publication Publication Date Title
JP3731123B2 (en) Object position detection method and apparatus
JPH0690042B2 (en) Position control device for self-propelled vehicle
JPH05150827A (en) Guide system for unattended vehicle
JP3340606B2 (en) Guidance method and guidance system for mobile robot
JPH0716164Y2 (en) Vehicle position / speed detector
JP2000213936A (en) Position detecting system of unmanned carrier vehicle
JPH10105235A (en) Continuous position detecting and controlling device for traveling object
CN210210406U (en) Tracking robot
JP3149661B2 (en) Automatic guided vehicle position identification method
JP2018073027A (en) Unmanned carrier guide system and guide method
JPH0716165Y2 (en) Vehicle position / speed detector
JPS6227406B2 (en)
WO1995029380A1 (en) Navigation system for fast automated vehicles and mobile robots
JPH01282615A (en) Position correcting system for self-travelling unmanned vehicle
JP2503534Y2 (en) Vehicle position / speed detector
JP2002108452A (en) Travel controller of unmanned vehicle
JP3727429B2 (en) Method for calculating positional relationship with respect to travel route of vehicle
JP2503533Y2 (en) Vehicle position / speed detector
JP2676831B2 (en) Automatic guided vehicle position detection device
JPH07281740A (en) Method and device for detecting position of unmanned vehicle
JPS5962917A (en) Introduction method of unattended car
KR102653633B1 (en) Automated guided vehicle and method for controlling movement of automated guided vehicle
CN114594769B (en) Walking navigation system, computer room inspection system and computer room inspection method
JPH06332531A (en) Unmanned trackless vehicle
JP2802521B2 (en) Reference point detection device for position control of self-propelled vehicles