[go: up one dir, main page]

JPH07161389A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH07161389A
JPH07161389A JP33886493A JP33886493A JPH07161389A JP H07161389 A JPH07161389 A JP H07161389A JP 33886493 A JP33886493 A JP 33886493A JP 33886493 A JP33886493 A JP 33886493A JP H07161389 A JPH07161389 A JP H07161389A
Authority
JP
Japan
Prior art keywords
battery
short circuit
active material
positive pole
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33886493A
Other languages
Japanese (ja)
Inventor
Toshio Hirai
敏雄 平井
Takashi Goto
孝 後藤
Masakado Yamaji
山地  正矩
Hisashi Tsukamoto
寿 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP33886493A priority Critical patent/JPH07161389A/en
Publication of JPH07161389A publication Critical patent/JPH07161389A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To make a cathode active material effective to prevent not only external short circuit but also internal short circuit by using a material for the positive pole active material wherein the material's resistance increases as temperature rises due to heat generation by short circuit of a battery. CONSTITUTION:A strap anode 3 and a strip of a positive pole 2 are wound around through a prescribed thickness of finely porous polyethylene separator 5 between them and the strap positive pole 3 is wound around to give an electricity generating element 8. A material whose resistance increases as temperature rises is used for the positive pole active material. For example, in the case Li2O-Co3O4-Mn2O3 having PTC property is used for the positive pole active material, large short circuit current due to short circuit is limited by the resistance and temperature rise of the battery is suppressed, so that the battery is prevented from being broken. As a result, a excellently stable at the time of battery's short circuit is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質電池に関す
るものである。
FIELD OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery.

【0002】[0002]

【従来の技術とその課題】電子機器の急激な小形軽量化
に伴い、小形で軽量かつ高エネルギー密度の電池が求め
られている。これら要求を満たす電池として、非水電解
質電池が有望である。
2. Description of the Related Art Along with the rapid reduction in size and weight of electronic equipment, there is a demand for small, lightweight batteries with high energy density. Non-aqueous electrolyte batteries are promising as batteries that meet these requirements.

【0003】しかし、非水電解質電池は、高エネルギー
密度である反面、短絡が生じた場合には、従来の水溶液
電池に比較して著しく大きな発熱をともない、その結
果、電池が炎上したり爆発したりするなど大変危険であ
る。
However, while the non-aqueous electrolyte battery has a high energy density, when a short circuit occurs, the non-aqueous electrolyte battery generates significantly more heat than a conventional aqueous battery, and as a result, the battery burns or explodes. It is very dangerous to do so.

【0004】そこで、温度が上昇すると抵抗値が増加す
る、いわゆるPTC(Positive Temperature Coefficient)
素子を非水電解質電池に直列接続して、短絡時の過大電
流を制限し、安全性を高めていた。
Therefore, the so-called PTC (Positive Temperature Coefficient) increases in resistance as the temperature rises.
The device was connected in series to a non-aqueous electrolyte battery to limit the overcurrent at the time of short circuit and enhance the safety.

【0005】しかし、このようなPTC 素子を用いた方法
は、電池の外部短絡には有効であるが、内部短絡に対し
ては効果が無い。したがって、内部短絡においても有効
な安全化手法が求められていた。
However, the method using such a PTC element is effective for the external short circuit of the battery, but is not effective for the internal short circuit. Therefore, there has been a demand for an effective safety technique even for an internal short circuit.

【0006】[0006]

【課題を解決するための手段】本発明は、温度が上昇す
ると抵抗値が増加する正極活物質を用いた非水電解質電
池を用いることにより前記問題を解決するものである。
The present invention solves the above problems by using a non-aqueous electrolyte battery that uses a positive electrode active material whose resistance value increases as the temperature rises.

【0007】[0007]

【作用】PTC 特性を有する正極活物質を用いた非水電解
質電池は、電池が短絡して発熱すると活物質の抵抗値が
増大し放電が困難になる。この結果、電池の過剰な温度
上昇が抑制されて安全性が向上するものである。
[Function] In a non-aqueous electrolyte battery using a positive electrode active material having PTC characteristics, when the battery short-circuits and generates heat, the resistance value of the active material increases and discharge becomes difficult. As a result, excessive temperature rise of the battery is suppressed and safety is improved.

【0008】[0008]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。
EXAMPLES The present invention will be described below with reference to preferred examples.

【0009】炭酸リチウムと塩基性炭酸コバルトと炭酸
マンガンとを原料として、種種の組成で秤量し、少量の
アルコールとともに、めのう乳鉢中で混合した。それら
の混合粉末を金ボートを用い、空気中、800℃で12
時間仮焼した。得られた粉体を再混合し、800℃で2
4時間本焼成した。
Lithium carbonate, basic cobalt carbonate and manganese carbonate were used as raw materials, weighed in various compositions and mixed with a small amount of alcohol in an agate mortar. Use a gold boat to mix these powders in air at 800 ° C for 12 hours.
I calcined for an hour. Re-mix the resulting powder and mix at 800 ° C for 2
It was fired for 4 hours.

【0010】つぎに、得られた粉末を粉砕、混合したの
ちペレット状に成形し、800℃で24時間焼成した。
得られたペレットの両面に金ペーストを塗布し、800
℃で焼成して電気伝導度を測定するサンプルとした。電
気伝導度は、インピーダンスアナライザー(ソーラトロ
ン1260)を用い、空気中、室温から800℃、0.
1HZ〜20MHZの周波数領域で測定した。
Next, the obtained powder was pulverized and mixed, then formed into pellets, and fired at 800 ° C. for 24 hours.
Apply gold paste on both sides of the obtained pellet,
The sample was fired at ° C to measure the electrical conductivity. The electric conductivity was measured by using an impedance analyzer (Solartron 1260) in the air from room temperature to 800 ° C. at 0.
The measurement was performed in the frequency range of 1HZ to 20MHZ.

【0011】この結果、図1に示したLi2 O-Co3 O4 -
Mn2 O3 相図上の半円内に含まれるa、b,c,d,
e,fのサンプルが、図2に示すように室温から50℃
近辺の温度までPTC 特性を発現することを見いだした。
すなわち、この温度域では、温度が上昇すると、抵抗値
が著しく上昇した。
As a result, the Li 2 O-Co 3 O 4 -shown in FIG.
A, b, c, d, included in the semicircle on the Mn 2 O 3 phase diagram
Samples of e and f are from room temperature to 50 ° C as shown in Fig. 2.
It was found that the PTC property was expressed up to the temperature around.
That is, in this temperature range, the resistance value remarkably increased as the temperature increased.

【0012】前記のa、b,c,d,e,fのサンプル
粉末を正極活物質として用い、下記の要領で本発明の非
水電解質電池(A),(B),(C),(D),
(E),(F)を試作した。
Using the above sample powders a, b, c, d, e and f as the positive electrode active material, the non-aqueous electrolyte batteries (A), (B), (C), ( D),
(E) and (F) were made as prototypes.

【0013】正極を次のように作製した。上記の各正極
活物質粉末を平均粒径6 μm に粉砕したものを89重量
部、導電助材のケッチェンブラック(三菱油化製ECP600
JD)を2重量部と結着剤のポリフッ化ビニリデンを9重
量部とを混合し、N-メチル-2- ピロリドンを加えてペー
スト状にし、厚さ20ミクロンのアルミニウム箔に片面厚
さが80μm になるように塗布した後、乾燥、圧延、切断
して厚さが0.150mm 、幅が40mmの帯状正極板1と厚さが
0.150mm 、幅が40mm、長さが30mmの短冊状正極板2を作
製した。
A positive electrode was manufactured as follows. 89 parts by weight of each of the above positive electrode active material powders pulverized to an average particle size of 6 μm, Ketjen Black (Mitsubishi Yuka ECP600
2 parts by weight of JD) and 9 parts by weight of polyvinylidene fluoride as a binder are mixed, N-methyl-2-pyrrolidone is added to form a paste, and an aluminum foil having a thickness of 20 microns has a thickness of 80 μm on one side. After coating, the product is dried, rolled, and cut to a thickness of 0.150 mm and a width of 40 mm.
A strip-shaped positive electrode plate 2 having a length of 0.150 mm, a width of 40 mm and a length of 30 mm was produced.

【0014】負極を次のように作製した。平均粒径25μ
m の鱗片状人造黒鉛(LONZA KS25)と平均粒径25μm の
球状黒鉛(大阪ガス製MCMB)とを重量比で3:1 に混合し
た黒鉛混合物86重量部と結着剤のポリフッ化ビニリデン
14部とを混合し、溶剤のN-メチル-2- ピロリドンを加え
てペースト状にし、厚さ18μm の銅板に片面厚さが70μ
m になるように塗布した後、乾燥、圧延、切断して厚さ
が0.110mm で幅が41mmの帯状負極板3と厚さが0.110mm
で幅が41mmで長さが31mmの短冊状負極板4を作製した。
A negative electrode was prepared as follows. Average particle size 25μ
86 parts by weight of a graphite mixture in which m 3 scale artificial graphite (LONZA KS25) and spheroidal graphite having an average particle size of 25 μm (MCMB manufactured by Osaka Gas) were mixed in a weight ratio of 3: 1 and polyvinylidene fluoride as a binder.
Mix with 14 parts, add the solvent N-methyl-2-pyrrolidone to make a paste, and add a thickness of 70μ on one side to a copper plate with a thickness of 18μm.
After coating so that it has a thickness of m, it is dried, rolled and cut to a strip-shaped negative electrode plate 3 with a thickness of 0.110 mm and a width of 41 mm and a thickness of 0.110 mm.
Then, a strip-shaped negative electrode plate 4 having a width of 41 mm and a length of 31 mm was produced.

【0015】上記の正極板1,2および負極板3,4を
用いて次のような発電要素を作製した。図3は、試作し
た電池発電要素の断面図である。そこで、図3に示すよ
うにまず帯状の負極3と短冊状の正極2(3枚)とを27
μm 厚さの微多孔膜ポリエチレンセパレーター(三菱化
成エクセポール)5を介して巻回し、その後帯状正極1
を巻回して発電要素を試作した。
Using the above positive electrode plates 1 and 2 and negative electrode plates 3 and 4, the following power generating element was produced. FIG. 3 is a sectional view of a prototype battery power generation element. Therefore, as shown in FIG. 3, first, the strip-shaped negative electrode 3 and the strip-shaped positive electrode 2 (three sheets) are used.
Wound through a microporous polyethylene separator (Mitsubishi Kasei Exepol) 5 with a thickness of μm, then strip positive electrode 1
Was wound and a power generation element was prototyped.

【0016】図4は、本発明の一実施例である角形非水
電解質電池を示す。実施例電池の寸法は、厚さ7.8mm 、
幅40mm、長さ48mmである。6は70μm のPPフィルムを片
面に接着し他の面に絶縁と表面保護を兼ねた約8 μm の
塗装膜を備えた鋼板を樹脂フィルム面が内側になるよう
に成形してなる角形容器である。7は同じ鋼板を樹脂フ
ィルムが内面になるように成形してなる角形容器蓋であ
り、6の容器と二重巻き締め封口により封口されてい
る。容器内には、前記の電池発電要素が収納されてい
る。容器蓋8にはTPX製ガスケット9を介してステン
レス製リベット端子10が2個カシメ固定されている。
それぞれのリベット端子は、正極板および負極板と電池
内部で電気的に接続されている。11はゴム製の弁体を
備えた安全弁である。電解液は、エチレンカーボネート
とジメチルカーボネートとの1:1混合物に0.03mol の
LiClO4 と0.97mol のLiPF6 を溶解したものを用いた。
FIG. 4 shows a prismatic nonaqueous electrolyte battery which is an embodiment of the present invention. The size of the example battery is 7.8 mm thick,
The width is 40 mm and the length is 48 mm. 6 is a rectangular container made by adhering a 70 μm PP film on one surface and a steel plate with a coating film of about 8 μm on the other surface for insulation and surface protection, with the resin film surface facing inside. . Reference numeral 7 denotes a rectangular container lid formed by molding the same steel plate so that the resin film is on the inner surface, and is sealed with the container of 6 and a double winding sealing. The battery power generating element is housed in the container. Two stainless steel rivet terminals 10 are caulked to the container lid 8 via TPX gaskets 9.
Each rivet terminal is electrically connected to the positive electrode plate and the negative electrode plate inside the battery. Reference numeral 11 is a safety valve having a rubber valve body. The electrolyte is 0.03 mol in a 1: 1 mixture of ethylene carbonate and dimethyl carbonate.
A solution prepared by dissolving LiClO 4 and 0.97 mol of LiPF 6 was used.

【0017】また、正極活物質に LiCoO2 を用いた以外
は、本発明の非水電解質電池と同様の構成とした比較電
池を(ア)と呼ぶ。
A comparative battery having the same structure as the non-aqueous electrolyte battery of the present invention except that LiCoO 2 is used as the positive electrode active material is referred to as (A).

【0018】また、正極活物質に LiNiO2 を用いた以外
は、本発明の非水電解質電池と同様の構成とした比較電
池を(イ)と呼ぶ。
A comparative battery having the same structure as the non-aqueous electrolyte battery of the present invention except that LiNiO 2 is used as the positive electrode active material is referred to as (a).

【0019】また、正極活物質にLiNix Co1-x O2 (0<x
<1) を用いた以外は、本発明の非水電解質電池と同様の
構成とした比較電池を(ウ)と呼ぶ。
Further, LiNi x Co 1-x O 2 (0 <x
A comparative battery having the same structure as the non-aqueous electrolyte battery of the present invention except that <1) was used is referred to as (C).

【0020】また、正極活物質に相図上の半円外のg,
h,iのサンプル粉末を用いた以外は、本発明の非水電
解質電池と同様の構成とした比較電池をそれぞれ
(エ)、(オ)、(カ)と呼ぶ。
In addition, the positive electrode active material has a g outside the semicircle on the phase diagram,
Comparative batteries having the same structure as the non-aqueous electrolyte battery of the present invention except that the sample powders of h and i were used are referred to as (d), (e), and (f), respectively.

【0021】これらの電池を200mA の電流で、端子電圧
が4.35V に至るまで充電し、直径2mmの釘で貫く釘さし
試験を行い電池の挙動を観察した。この結果、本発明の
電池(A),(B),(C),(d),(E),(F)
は、釘貫通部から液もれしたのみであったのに対して、
比較のための電池(ア)、(イ)、(ウ)、(エ)、
(オ)、(カ)は、いずれも破裂した。このような挙動
の違いは、電池を内部で強制短絡した場合に、比較のた
めの電池は、大きな短絡電流が流れて電池温度が上昇
し、電池構成材料の熱化学反応がおこり、内圧が急激に
上昇して破裂したのに対して、本発明の電池は、正極活
物質のPTC 特性によって短絡電流が制限され電池の温度
上昇が抑制された結果、破裂に至らなかった結果による
ものと考えられる。
These batteries were charged with a current of 200 mA until the terminal voltage reached 4.35 V, and a nailing test was performed by piercing with a nail having a diameter of 2 mm to observe the behavior of the batteries. As a result, the batteries (A), (B), (C), (d), (E), (F) of the present invention
Was only leaking from the nail penetration, whereas
Batteries for comparison (A), (B), (C), (D),
Both (e) and (f) burst. This difference in behavior is that when a battery is forcibly short-circuited internally, a large short-circuit current flows in the battery for comparison, the battery temperature rises, a thermochemical reaction of the battery constituent materials occurs, and the internal pressure rises sharply. The battery of the present invention is considered to be due to the result that the short circuit current was limited by the PTC characteristic of the positive electrode active material and the temperature rise of the battery was suppressed, and the battery did not burst. .

【0022】なお、上記実施例では、Li-Co-Mn系のPTC
特性を有する正極活物質を用いた例を示したが、PTC 特
性を有する物質で非水電解質電池の正極活物質として作
動するものであれば、正極活物質の材料は、基本的に限
定されない。例えば、Li-Ni(-Co)-Mn 系のPTC 特性を有
する正極活物質を用いてもよい。
In the above embodiment, the Li--Co--Mn PTC is used.
Although an example using a positive electrode active material having characteristics has been shown, the material of the positive electrode active material is basically not limited as long as it is a material having PTC characteristics and operates as a positive electrode active material of a non-aqueous electrolyte battery. For example, a Li-Ni (-Co) -Mn-based positive electrode active material having PTC characteristics may be used.

【0023】また、実施例では、負極に炭素材料を用
い、電解液に有機電解液を用いたが、本発明の非水電解
質電池においては、温度が上昇すると抵抗値が増加する
正極活物質を用いておれば、負極活物質や電解液は基本
的に限定されない。すなわち、従来の非水電解質電池に
用いられている負極活物質、たとえば純リチウム、リチ
ウム合金などを負極活物質に用いてもよい。また、電解
液に他の有機溶媒、例えばエチレンカーボネイト、プロ
ピレンカーボネートなどの環状エステル類およびテトラ
ハイドロフラン,ジオキソランなどのエーテル類を単独
もしくは2種以上を混合して用いても良い。あるいは、
有機固体電解質や無機固体電解質を電解質に用いてもよ
い。同様に、支持電解質、セパレーター、電極基体、電
池ケースの材質なども基本的に限定されない。
In the examples, the carbon material was used for the negative electrode and the organic electrolytic solution was used for the electrolytic solution. However, in the non-aqueous electrolyte battery of the present invention, a positive electrode active material whose resistance value increases with increasing temperature is used. If used, the negative electrode active material and the electrolytic solution are basically not limited. That is, a negative electrode active material used in a conventional non-aqueous electrolyte battery, for example, pure lithium or lithium alloy may be used as the negative electrode active material. Further, other organic solvents such as cyclic esters such as ethylene carbonate and propylene carbonate and ethers such as tetrahydrofuran and dioxolane may be used alone or in combination in the electrolyte solution. Alternatively,
An organic solid electrolyte or an inorganic solid electrolyte may be used as the electrolyte. Similarly, the materials for the supporting electrolyte, the separator, the electrode substrate, the battery case, etc. are not basically limited.

【0024】さらに、前記の実施例に係る電池はボタン
電池であるが、円筒形、角形またはペーパー形電池に本
発明を適用してもよい。また、実施例の二次電池だけで
なく、本発明を非水電解質一次電池に適用しても同様の
効果が得られる。
Further, although the batteries according to the above-mentioned embodiments are button batteries, the present invention may be applied to cylindrical, prismatic or paper type batteries. The same effect can be obtained by applying the present invention not only to the secondary battery of the example but also to the non-aqueous electrolyte primary battery.

【0025】[0025]

【発明の効果】上述のごとく、本発明の非水電解質電池
は、電池短絡時の安全性に優れている。
As described above, the non-aqueous electrolyte battery of the present invention is excellent in safety when the battery is short-circuited.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例のPTC 特性を有する正極活物質の範囲を
示す相図。
FIG. 1 is a phase diagram showing a range of a positive electrode active material having PTC characteristics of an example.

【図2】実施例の活物質のPTC 特性を示す図。FIG. 2 is a graph showing PTC characteristics of active materials of Examples.

【図3】実施例の非水電解質電池の発電要素の断面図を
示す図。
FIG. 3 is a diagram showing a cross-sectional view of a power generation element of a non-aqueous electrolyte battery of an example.

【図4】本発明の角形非水電解質電池を示す図。FIG. 4 is a diagram showing a prismatic non-aqueous electrolyte battery of the present invention.

【符号の説明】[Explanation of symbols]

1 帯状正極板 2 短冊状正極板 3 帯状負極板 4 短冊状負極板 5 微多孔膜ポリエチレンセパレーター 6 角形容器 7 角形容器蓋 8 電池発電要素 9 TPX製ガスケット 10 ステンレス製リベット端子 11 安全弁 1 strip-shaped positive electrode plate 2 strip-shaped positive electrode plate 3 strip-shaped negative electrode plate 4 strip-shaped negative electrode plate 5 microporous membrane polyethylene separator 6 square container 7 square container lid 8 battery generator element 9 TPX gasket 10 stainless steel rivet terminal 11 safety valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 後藤 孝 宮城県仙台市太白区郡山6丁目5−8− 205 (72)発明者 山地 正矩 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 (72)発明者 塚本 寿 京都市南区吉祥院西ノ庄猪之馬場町1番地 日本電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Goto 6-5-8-205, Koriyama, Taichiro-ku, Sendai-shi, Miyagi Prefecture (72) Masanori Yamachi, No. 1, Nishinosho-Inobabacho, Kichijoin, Minami-ku, Kyoto In Japan Battery Co., Ltd. (72) Inventor, Tsutomu Tsukamoto, No. 1 Babacho, Inosho Nishinosho, Kichijoin, Minami-ku, Kyoto City

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】温度が上昇すると抵抗値が増加する正極活
物質を用いた非水電解質電池。
1. A non-aqueous electrolyte battery using a positive electrode active material whose resistance value increases as temperature rises.
JP33886493A 1993-12-02 1993-12-02 Nonaqueous electrolyte battery Pending JPH07161389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33886493A JPH07161389A (en) 1993-12-02 1993-12-02 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33886493A JPH07161389A (en) 1993-12-02 1993-12-02 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH07161389A true JPH07161389A (en) 1995-06-23

Family

ID=18322120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33886493A Pending JPH07161389A (en) 1993-12-02 1993-12-02 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07161389A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008263A1 (en) * 1996-08-22 1998-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and its cathode
EP0851517A1 (en) * 1996-12-26 1998-07-01 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristics and battery using the same
JPH10241665A (en) * 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
WO1999034469A1 (en) * 1997-12-25 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
WO1999040639A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method for manufacturing thereof, and battery using the electrode
EP1104037A1 (en) * 1998-06-25 2001-05-30 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1128451A1 (en) * 1999-06-10 2001-08-29 Mitsubishi Denki Kabushiki Kaisha Cell
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary batteries
US6440608B1 (en) 1998-06-25 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6677074B2 (en) 1998-06-25 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
JP4011852B2 (en) * 1998-06-25 2007-11-21 三菱電機株式会社 Battery and manufacturing method thereof
JP2008262832A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US9172091B2 (en) 2008-12-02 2015-10-27 Kokam Co., Ltd. Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008263A1 (en) * 1996-08-22 1998-02-26 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary cell and its cathode
US6627352B1 (en) 1996-08-22 2003-09-30 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and its negative electrode
KR100321132B1 (en) * 1996-08-22 2002-03-08 모리시타 요이찌 Lithium ion secondary cell and its cathode
EP0851517A1 (en) * 1996-12-26 1998-07-01 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristics and battery using the same
JPH10241665A (en) * 1996-12-26 1998-09-11 Mitsubishi Electric Corp Electrode and battery using the same
US6346345B2 (en) * 1996-12-26 2002-02-12 Mitsubishi Denki Kabushiki Kaisha Electrode having PTC characteristic
EP1050917A1 (en) * 1997-12-25 2000-11-08 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
US6727021B1 (en) * 1997-12-25 2004-04-27 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
EP1050917A4 (en) * 1997-12-25 2009-02-18 Mitsubishi Electric Corp Lithium ion secondary battery
WO1999034469A1 (en) * 1997-12-25 1999-07-08 Mitsubishi Denki Kabushiki Kaisha Lithium ion secondary battery
EP0975037A4 (en) * 1998-02-06 2007-09-26 Mitsubishi Electric Corp Electrode, method of producing electrode, and cell comprising the electrode
JP3786973B2 (en) * 1998-02-06 2006-06-21 三菱電機株式会社 Electrode, method for producing the electrode, and battery using the electrode
EP0975037A1 (en) * 1998-02-06 2000-01-26 Mitsubishi Denki Kabushiki Kaisha Electrode, method of producing electrode, and cell comprising the electrode
WO1999040639A1 (en) * 1998-02-06 1999-08-12 Mitsubishi Denki Kabushiki Kaisha Electrode, method for manufacturing thereof, and battery using the electrode
US6773633B2 (en) * 1998-02-06 2004-08-10 Mitsubishi Denki Kabushiki Kaisha Process for producing an electrode with positive temperature coefficient (PTC) function
EP1104037A1 (en) * 1998-06-25 2001-05-30 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6677074B2 (en) 1998-06-25 2004-01-13 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
US6440608B1 (en) 1998-06-25 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Cell and method of producing the same
EP1104037A4 (en) * 1998-06-25 2001-09-12 Mitsubishi Electric Corp Cell and method of producing the same
JP4011852B2 (en) * 1998-06-25 2007-11-21 三菱電機株式会社 Battery and manufacturing method thereof
JP4011636B2 (en) * 1998-06-25 2007-11-21 三菱電機株式会社 Battery and manufacturing method thereof
EP1128451A4 (en) * 1999-06-10 2007-05-02 Mitsubishi Electric Corp Cell
EP1128451A1 (en) * 1999-06-10 2001-08-29 Mitsubishi Denki Kabushiki Kaisha Cell
JP2002008661A (en) * 2000-05-17 2002-01-11 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary batteries
JP2008262832A (en) * 2007-04-12 2008-10-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2008136177A1 (en) * 2007-04-12 2008-11-13 Panasonic Corporation Nonaqueous electrolytic secondary battery
US8105711B2 (en) 2007-04-12 2012-01-31 Panasonic Corporation Nonaqueous electrolyte secondary battery
US9172091B2 (en) 2008-12-02 2015-10-27 Kokam Co., Ltd. Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same

Similar Documents

Publication Publication Date Title
EP2262037B1 (en) Lithium secondary battery using ionic liquid
RU2546654C1 (en) Accumulator battery
KR100464746B1 (en) Positive Electrode Active Material And Lithium Ion Secondary Cell
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
CN113228341A (en) Secondary battery and device containing the same
JP4961654B2 (en) Nonaqueous electrolyte secondary battery
US8257847B2 (en) Lithium secondary battery
AU2015402938B2 (en) Non-aqueous electrolyte battery and battery pack
WO2015040747A1 (en) Non-aqueous electrolyte battery electrode, non-aqueous electrolyte battery, and battery pack
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP2016033888A (en) Nonaqueous electrolyte battery, assembled battery and battery pack
CN108432025B (en) Nonaqueous electrolyte battery and battery pack
JPH07161389A (en) Nonaqueous electrolyte battery
JP2010123331A (en) Nonaqueous electrolyte secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP2009259502A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP5207282B2 (en) Lithium secondary battery
JP2009134970A (en) Nonaqueous electrolytic battery
JPH1145720A (en) Lithium secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP3410027B2 (en) Non-aqueous electrolyte battery
JP3327468B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP6503768B2 (en) Lithium ion secondary battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040419