[go: up one dir, main page]

JPH07161356A - Alkaline battery - Google Patents

Alkaline battery

Info

Publication number
JPH07161356A
JPH07161356A JP5310141A JP31014193A JPH07161356A JP H07161356 A JPH07161356 A JP H07161356A JP 5310141 A JP5310141 A JP 5310141A JP 31014193 A JP31014193 A JP 31014193A JP H07161356 A JPH07161356 A JP H07161356A
Authority
JP
Japan
Prior art keywords
mercury
alkaline battery
zinc
powder
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5310141A
Other languages
Japanese (ja)
Inventor
Kiyohide Tsutsui
清英 筒井
Akihide Izumi
彰英 泉
Masatake Nishio
昌武 西尾
Kuniyoshi Nishida
国良 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP5310141A priority Critical patent/JPH07161356A/en
Publication of JPH07161356A publication Critical patent/JPH07161356A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve discharge characteristics of non-amalgamated alkaline battery using zinc alloy powder as a negative pole active material by setting in a specified range, bulk density of zinc alloy powder, in which no mercury is contained but small amount of more than one of specified alloy elements are added. CONSTITUTION:An alkaline battery which is composed of zinc alloy, in which small amounts of more than one kind of lead, indium, alminium, gallium, tin, calcium, magnesium, bismuth, lithium, sodium, etc., are added but no mercury is contained, and formed by using the powder within the range of bulk density of 2.2-2.6g/cm<3> as a negative electrode active material, expresses favorable discharge characteristic ever under a low temperature. Zinc alloy power having small bulk density has a large surface area per volume. Therefore reactivity in electrolyte is improved, reactivity continues even if discharging under a low temperature, utilization rate of active material is improved, and large discharge capacity is exhibited.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、亜鉛粉末(正確には
微量の合金元素を添加した亜鉛基合金粉末である)を負
極活物質とするアルカリ電池に関し、特に、亜鉛粉末を
水銀でアマルガム化することを廃止したいわゆる無水銀
アルカリ電池の特性改善技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline battery using a zinc powder (to be exact, a zinc-based alloy powder to which a trace amount of alloying elements is added) as a negative electrode active material, and in particular, zinc powder is amalgamated with mercury. The present invention relates to a technique for improving characteristics of a so-called silver-free alkaline battery, which has been eliminated.

【0002】[0002]

【従来の技術】良く知られいてるように、アルカリ電池
用の亜鉛粉末は通常アトマイズ法により製造され、粒径
は75〜400μm程度であり、多くはイモ状の粒子形
状をしている(比較的丸いジャガイモ状のものや、細長
いサツマイモ状のものが混じっているのが普通であ
る)。表面積の大きい粉末の形の亜鉛を負極に使用して
いるので、電解液中での反応性に優れ、そのためこの種
アルカリ電池は大電流放電に適している。その反面、表
面積が大きいことから負極亜鉛が電解液中で腐食されや
すく、従来は多量の水銀を用いて耐食性を維持してき
た。ところが、廃乾電池中の水銀による環境汚染問題に
対する懸念から、アルカリ電池の低水銀化そして無水銀
化へと技術改良が進められてきた。
2. Description of the Related Art As is well known, zinc powder for alkaline batteries is usually produced by an atomizing method and has a particle size of about 75 to 400 .mu.m, most of which have a potato-like particle shape (relatively. Round potatoes and elongated sweet potatoes are usually mixed). Since zinc in the form of powder having a large surface area is used for the negative electrode, it has excellent reactivity in the electrolytic solution, and therefore this type of alkaline battery is suitable for high current discharge. On the other hand, because of the large surface area, the negative electrode zinc is easily corroded in the electrolytic solution, and conventionally, a large amount of mercury has been used to maintain the corrosion resistance. However, due to concern over the environmental pollution problem of mercury in waste dry batteries, technical improvements have been made to reduce mercury in alkaline batteries and to make them silver-free.

【0003】亜鉛粉末を水銀でアマルガム化することを
廃止し、代りに、適当な合金元素を微量添加した亜鉛基
合金の粉末を負極活物質とすることで、その耐食性およ
び電池特性を改善する。このような観点で盛んに研究が
行われ、腐食防止に効果的な合金元素がいくつも見いだ
されている。例えば鉛、インジウム、アルミニウム、ガ
リウム、スズ、カルシウム、マグネシウム、ビスマス、
リチウム、ナトリウムなどである(ただし鉛については
環境汚染問題の懸念があり、できるだけ使用しない方向
にある)。これら合金元素の適切な添加量や複数元素の
組み合わせ添加について、多くのデータが蓄積され、そ
の結果ほぼ実用に耐える無水銀アルカリ電池が実現され
つつある。
The amalgamation of zinc powder with mercury is abolished, and instead, a zinc-based alloy powder containing a trace amount of a suitable alloying element is used as the negative electrode active material to improve its corrosion resistance and battery characteristics. From this point of view, extensive research has been conducted and a number of alloying elements effective for corrosion prevention have been found. For example, lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth,
Lithium, sodium, etc. (However, with regard to lead, there is a concern of environmental pollution problems, so there is a tendency to use it as little as possible). A large amount of data has been accumulated regarding the appropriate addition amount of these alloy elements and the combined addition of a plurality of elements, and as a result, a mercury-free alkaline battery that is practically practical is being realized.

【0004】[0004]

【発明が解決しようとする課題】現状の無水銀アルカリ
電池については、水銀を使用した従来のアルカリ電池と
比較して、その特性上いくつかの不十分な点がある。そ
の1つは、低温での放電性能が常温時に比べて大きく低
下する点である。250ppmの水銀を含むアマルガム
化亜鉛粉末を使用した従来のアルカリ電池(以下、有水
銀アルカリ電池という)と、アルミニウムとビスマスと
インジウムを適量添加した亜鉛基合金粉末を使用した無
水銀アルカリ電池との放電性能を比較試験した。常温下
での放電容量は無水銀アルカリ電池も有水銀アルカリ電
池とそれほど遜色はなかった。しかし、低温下での放電
容量を比較すると(−10℃、10Ω連続放電、終止電
圧0.9V)、有水銀アルカリ電池の容量を100とし
たとき、無水銀アルカリ電池のそれは56と非常に小さ
かった。つまり亜鉛粉末をアマルガム化することは、亜
鉛の耐食性を向上させるという効果だけでなく、低温時
の放電特性を良好に保つ上でも大きな効果をあげている
ことになる。
The current mercury-free alkaline battery has some inadequacies in characteristics as compared with the conventional alkaline battery using mercury. One of them is that the discharge performance at low temperature is significantly lower than that at normal temperature. Discharge between a conventional alkaline battery (hereinafter referred to as a mercury-containing alkaline battery) that uses zinc amalgamated zinc powder containing 250 ppm of mercury and an anhydrous silver alkaline battery that uses a zinc-based alloy powder to which aluminum, bismuth, and indium are added in appropriate amounts. The performance was comparatively tested. The discharge capacity at room temperature was comparable to that of mercury-free alkaline batteries and mercury-containing alkaline batteries. However, comparing the discharge capacities at low temperature (-10 ° C, 10Ω continuous discharge, final voltage 0.9V), when the capacity of the mercury-containing alkaline battery was set to 100, that of the mercury-free alkaline battery was 56, which was very small. It was That is, converting the zinc powder into an amalgam has a great effect not only on improving the corrosion resistance of zinc but also on maintaining good discharge characteristics at low temperatures.

【0005】この発明は前述した従来の問題点に鑑みな
されたもので、水銀を含まず、鉛、インジウム、アルミ
ニウム、ガリウム、スズ、カルシウム、マグネシウム、
ビスマス、リチウム、ナトリウムなどを微量添加した亜
鉛基合金粉末を負極活物質とする無水銀アルカリ電池の
放電特性をさらに改善することを目的とし、特に、低温
放電時の容量を大きくすることにある。
The present invention has been made in view of the above-mentioned conventional problems, and does not contain mercury and contains lead, indium, aluminum, gallium, tin, calcium, magnesium,
The object is to further improve the discharge characteristics of a mercury-free alkaline battery using a zinc-based alloy powder to which a small amount of bismuth, lithium, sodium, etc. is added as a negative electrode active material, and particularly to increase the capacity during low-temperature discharge.

【0006】[0006]

【課題を解決するための手段】そこでこの発明では、前
記の亜鉛基合金粉末の見掛密度に着目した。まずJIS
−Z−2504で規定された見掛密度試験方法に従い、
従来の無水銀アルカリ電池用亜鉛基合金粉末の見掛密度
を測定したところ、2.7〜4.0g/cmの範囲であ
った。一方、アトマイズ法で亜鉛基合金の粉末を製造す
る際の条件を種々変化させて、2.8g/cm3 以下の
見掛密度の粉末を種々つくり、それら亜鉛基合金粉末を
用いたアルカリ電池を従来と同様に製作し、その放電性
能を調べた。
Therefore, in the present invention, attention is paid to the apparent density of the zinc-based alloy powder. First JIS
-According to the apparent density test method specified in Z-2504,
When the apparent density of the conventional zinc-based alloy powder for a mercury-free alkaline battery was measured, it was in the range of 2.7 to 4.0 g / cm. On the other hand, various conditions for producing the zinc-based alloy powder by the atomization method were changed to produce various powders with an apparent density of 2.8 g / cm 3 or less, and alkaline batteries using these zinc-based alloy powders were manufactured. It was manufactured in the same manner as the conventional one, and its discharge performance was examined.

【0007】その結果、水銀を含まず、鉛、インジウ
ム、アルミニウム、ガリウム、スズ、カルシウム、マグ
ネシウム、ビスマス、リチウム、ナトリウムなどの1種
以上を微量添加した亜鉛基合金からなり、見掛密度が
2.2〜2.6g/cm3 の範囲の粉末を負極活物質と
して使用してアルカリ電池を構成すると、低温時でも良
好な放電特性を示すことを見いだした。
As a result, mercury-free zinc-based alloys containing trace amounts of one or more of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium, etc., have an apparent density of 2 It has been found that when an alkaline battery is constructed by using a powder in the range of 0.2 to 2.6 g / cm 3 as a negative electrode active material, good discharge characteristics are exhibited even at low temperatures.

【0008】[0008]

【作用】金属粉末の見掛密度はその粒子形状に関係した
数値であり、体積当たりの表面積が大きい粒子ほど見掛
密度が小さくなる。2.2〜2.6g/cm3 と従来よ
り見掛密度が小さい亜鉛基合金粉末は、従来のものより
表面積が大きい。そのため電解液中での反応性が向上
し、低温下の放電でも反応が継続して活物質の利用率が
向上し、大きな放電容量を示すのではないかと考えられ
る。なお、アトマイズ法により亜鉛粉末を製造した場
合、生産特性上、見掛密度は2.1g/cm3程度が下
限値であった。
The apparent density of the metal powder is a numerical value related to the particle shape, and the larger the surface area per volume, the smaller the apparent density. The zinc-based alloy powder having an apparent density of 2.2 to 2.6 g / cm 3 which is smaller than the conventional one has a larger surface area than the conventional one. Therefore, it is considered that the reactivity in the electrolytic solution is improved, the reaction is continued even at the discharge at a low temperature, the utilization factor of the active material is improved, and a large discharge capacity is exhibited. When the zinc powder was produced by the atomization method, the apparent density had a lower limit of about 2.1 g / cm 3 due to production characteristics.

【0009】[0009]

【実施例】つぎのように無水銀アルカリ電池を試作し、
それぞれの放電性能を比較評価した。アルミニウムを4
0ppm、ビスマスを150ppm、インジウムを50
0ppm、鉛を10ppm添加した亜鉛基合金を原料と
し、アトマイズ法により見掛密度の異なる6種類の亜鉛
基合金粉末を製造した(粒度分布は75〜450μmの
範囲で、75〜300μmの範囲のものが80%を占め
るというのは6種に共通する)。このように見掛密度の
みが異なる6種類の亜鉛基合金粉末を負極活物質とし、
その他は同じ構成でLR6型アルカリ電池をそれぞれ1
00個製作した。
[Example] A trial manufacture of a mercury-free alkaline battery was carried out as follows.
Each discharge performance was comparatively evaluated. 4 aluminum
0 ppm, bismuth 150 ppm, indium 50
Six kinds of zinc-based alloy powders having different apparent densities were manufactured by using a zinc-based alloy with 0 ppm and 10 ppm of lead added as a raw material (the particle size distribution is in the range of 75 to 450 μm and in the range of 75 to 300 μm). Is common to 6 species). In this way, six types of zinc-based alloy powders having different apparent densities are used as negative electrode active materials,
Others have the same structure and each one LR6 type alkaline battery
I made 00 pieces.

【0010】そして各試作電池について、−10℃、1
0Ω連続放電、終止電圧0.9Vという条件の低温放電
試験を行い、放電容量を測定し、6種類各100個の平
均値を求めた。その結果をつぎのグラフに示している。
なお、このグラフでは見掛密度が2.8g/cm3 の亜
鉛基合金粉末を使用した電池の放電容量を100とする
相対値で示している。このグラフから明らかなように、
見掛密度が2.2〜2.6g/cm3 の範囲の亜鉛基合
金を用いた電池が良好な特性を示した。
For each prototype battery, -10 ° C, 1
A low temperature discharge test was carried out under the conditions of 0Ω continuous discharge and a final voltage of 0.9 V, the discharge capacity was measured, and an average value of 100 pieces of each of 6 types was obtained. The results are shown in the graph below.
In this graph, the relative density is shown with the discharge capacity of the battery using the zinc-based alloy powder having an apparent density of 2.8 g / cm 3 as 100. As you can see from this graph,
A battery using a zinc-based alloy having an apparent density in the range of 2.2 to 2.6 g / cm 3 showed good characteristics.

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【発明の効果】以上詳細に説明したように、この発明に
よれば、水銀を含まず、鉛、インジウム、アルミニウ
ム、ガリウム、スズ、カルシウム、マグネシウム、ビス
マス、リチウム、ナトリウムなどを微量添加した亜鉛基
合金粉末を負極活物質とする無水銀アルカリ電池の放電
特性をさらに改善することができ、特に、低温放電時の
容量を大きくすることができる。
As described in detail above, according to the present invention, a zinc group which does not contain mercury and to which a trace amount of lead, indium, aluminum, gallium, tin, calcium, magnesium, bismuth, lithium, sodium or the like is added is added. The discharge characteristics of a mercury-free alkaline battery using the alloy powder as a negative electrode active material can be further improved, and in particular, the capacity at low temperature discharge can be increased.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西田 国良 東京都港区新橋5丁目36番11号 富士電気 化学株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyoshi Nishida 5-36-11 Shinbashi, Minato-ku, Tokyo Fuji Electric Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水銀を含まず、鉛、インジウム、アルミ
ニウム、ガリウム、スズ、カルシウム、マグネシウム、
ビスマス、リチウム、ナトリウムなどの1種以上を微量
添加した亜鉛基合金の粉末を負極活物質とするアルカリ
電池であって、前記亜鉛基合金粉末の見掛密度が2.2
〜2.6g/cm3 の範囲であることを特徴とするアル
カリ電池。
1. Mercury-free lead, indium, aluminum, gallium, tin, calcium, magnesium,
What is claimed is: 1. An alkaline battery in which a powder of a zinc-based alloy to which a trace amount of one or more of bismuth, lithium, sodium and the like is added is used as a negative electrode active material, and the apparent density of the zinc-based alloy powder is 2.2.
Alkaline battery characterized by being in the range of up to 2.6 g / cm 3 .
JP5310141A 1993-12-10 1993-12-10 Alkaline battery Pending JPH07161356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310141A JPH07161356A (en) 1993-12-10 1993-12-10 Alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5310141A JPH07161356A (en) 1993-12-10 1993-12-10 Alkaline battery

Publications (1)

Publication Number Publication Date
JPH07161356A true JPH07161356A (en) 1995-06-23

Family

ID=18001664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310141A Pending JPH07161356A (en) 1993-12-10 1993-12-10 Alkaline battery

Country Status (1)

Country Link
JP (1) JPH07161356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003209A1 (en) * 1999-06-30 2001-01-11 Grillo-Werke Ag Mixture consisting of metal particles and/or alloy particles and of a liquid electrolytic medium and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003209A1 (en) * 1999-06-30 2001-01-11 Grillo-Werke Ag Mixture consisting of metal particles and/or alloy particles and of a liquid electrolytic medium and method for producing the same
JP2003504804A (en) * 1999-06-30 2003-02-04 グリーロ ヴェルケ アクチェンゲゼルシャフト Mixture of metal particles and / or alloy particles and liquid electrolytic solvent, and methods for producing them
US6706220B1 (en) 1999-06-30 2004-03-16 Grillo-Werke Ag Mixture consisting of metal particles and/or alloy particles and of a liquid electrolytic medium and method for producing the same

Similar Documents

Publication Publication Date Title
JP4319253B2 (en) Electrochemical battery zinc anode
JP3215448B2 (en) Zinc alkaline battery
KR100978749B1 (en) Zinc Powder Or Zinc Alloy Powder For Alkaline Batteries
JP3215447B2 (en) Zinc alkaline battery
JPH05190171A (en) Nonaqueous electrolyte secondary battery
WO1984003591A1 (en) Rechargeable electrochemical apparatus and negative pole therefor
JP4222488B2 (en) Alkaline battery
JPH07161356A (en) Alkaline battery
JPH07169463A (en) Alkaline battery
JP2708884B2 (en) Non-aqueous electrolyte battery
JP2925672B2 (en) Non-aqueous electrolyte battery
WO2019181538A1 (en) Alkaline battery
JP3198891B2 (en) Positive electrode for alkaline storage battery
JP2580235B2 (en) Negative electrode for non-aqueous secondary battery and its manufacturing method
JP3188651B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP3188652B2 (en) Negative electrode zinc base alloy powder for alkaline batteries
JP3187862B2 (en) Zinc alkaline battery
JPH0140472B2 (en)
JP2804577B2 (en) Non-aqueous electrolyte battery
JP3094589B2 (en) Manganese dry battery manufacturing method
JP3219418B2 (en) Zinc alkaline battery
JP2005166419A (en) Alkaline battery
JPH0636764A (en) Zinc-alkaline battery
JPH0745282A (en) Nickel electrode for alkaline storage battery
JPS6089068A (en) Nonaqueous electrolyte secondary battery