JPH0715840B2 - High speed atomic beam emitter - Google Patents
High speed atomic beam emitterInfo
- Publication number
- JPH0715840B2 JPH0715840B2 JP33122189A JP33122189A JPH0715840B2 JP H0715840 B2 JPH0715840 B2 JP H0715840B2 JP 33122189 A JP33122189 A JP 33122189A JP 33122189 A JP33122189 A JP 33122189A JP H0715840 B2 JPH0715840 B2 JP H0715840B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- small
- plate
- atomic beam
- plate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 25
- 125000004429 atom Chemical group 0.000 description 24
- 230000005684 electric field Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 150000002500 ions Chemical group 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- -1 Oxygen ions Chemical class 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001882 dioxygen Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000007935 neutral effect Effects 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
- Physical Vapour Deposition (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はスパッタリングなどに使用する高速原子線放射
装置に関する。TECHNICAL FIELD The present invention relates to a high-speed atomic beam radiation device used for sputtering or the like.
(従来の技術) 常温大気中で熱運動している原子は概ね0.05ev程度の運
動エネルギーを有しているが、これに比べて遥かに大き
い運動エネルギーで飛翔する分子や原子を総称して「高
速原子」と呼び、これが一方向にビーム状に流れる場合
を「高速原子線」と呼んでいる。(Prior Art) An atom that is thermally moving in a room temperature atmosphere has a kinetic energy of about 0.05 ev, but molecules and atoms that fly with a much larger kinetic energy than this are collectively called “ It is called a "fast atom", and when it flows in a beam in one direction, it is called a "fast atom beam".
従来、スパッタリング技術の内、スパッタエッチングや
二次イオン放出による物質組成分析などにおいて、この
高速原子線を利用するスパッタリング技術がある。そし
て、この高速原子線を使用する装置には通常のスパッタ
リングで使用されるアルゴンなどの不活性ガス以外に塩
素や酸素などのガスを利用するものがある。更に、これ
らの装置は上述のようなガスをイオン化してそのまま射
出するものと、電気的に中性な高速原子線として射出す
るものがある。Conventionally, among the sputtering techniques, there is a sputtering technique that uses this high-speed atom beam in sputter etching, material composition analysis by secondary ion emission, and the like. Some devices that use this high-speed atomic beam utilize a gas such as chlorine or oxygen in addition to an inert gas such as argon used in ordinary sputtering. Further, these devices include one that ionizes the gas as described above and ejects it as it is, and one that ejects it as an electrically neutral high-speed atomic beam.
この電気的に中性化を行う高速原子線源としては、イオ
ン源から放出されるイオンビームを電子線を利用した中
性化手段などによって電気的中性の高速原子線とするも
のや、更には、次に示す第7図のように高速原子線を直
接射出する装置がある。As the high-speed atom beam source for electrically neutralizing, an ion beam emitted from the ion source is made into an electrically neutral high-speed atom beam by a neutralizing means using an electron beam, or the like. There is a device for directly injecting a high-speed atomic beam as shown in FIG.
第7図の高速原子線放射装置の構成として、まず、円筒
形の陰極1内の中央部には陰極1の側面に沿ったドーナ
ツ状の陽極2が配置されている。この陰極1と陽極2は
真空容器外に配置された直流高圧電源3に接続されてい
る。円筒形の陰極1内部に開口しているガス注入ノズル
4から例えば酸素ガスを注入し、直流高圧電源3で直流
高電圧を印加することによって、円筒形の陰極1内はグ
ロー放電によるプラズマ6が発生し、酸素イオンと電子
が生成される。更に、陰極1の底面から放出される電子
は陽極2を挟んで高周波振動を行い、酸素ガスと衝突し
て酸素イオンを生成する。In the structure of the high-speed atomic beam emitting device of FIG. 7, first, a doughnut-shaped anode 2 is arranged along the side surface of the cathode 1 in the center of the cylindrical cathode 1. The cathode 1 and the anode 2 are connected to a DC high voltage power supply 3 arranged outside the vacuum container. By injecting, for example, oxygen gas from a gas injection nozzle 4 that is open inside the cylindrical cathode 1, and applying a high direct current voltage by a high direct current power source 3, a plasma 6 due to glow discharge is generated in the cylindrical cathode 1. Oxygen ions and electrons are generated. Further, the electrons emitted from the bottom surface of the cathode 1 vibrate at high frequency across the anode 2 and collide with oxygen gas to generate oxygen ions.
こうして生成した酸素イオンは陰極1の底面に向かって
加速されて高速イオンとなる。そして、この酸素イオン
は陰極1の付近に残留している酸素ガス分子と接触して
酸素原子に戻り、また、陰極1の底面近傍の空間で高周
波振動の折り返しを迎える低エネルギーの電子と再結合
して酸素原子に戻る。The oxygen ions thus generated are accelerated toward the bottom surface of the cathode 1 to become high-speed ions. Then, the oxygen ions come into contact with oxygen gas molecules remaining near the cathode 1 to return to oxygen atoms, and recombine with low-energy electrons that fold back high-frequency vibrations in the space near the bottom surface of the cathode 1. Then it returns to the oxygen atom.
このような高速の酸素イオンは上記のように酸素原子に
戻ってもその運動エネルギーの損失は少ないので、その
ままエネルギーが原子に受け継がれて高速原子となる。
そして、この高速原子は円筒形の陰極1の一方の底面に
空けられた放出孔7から高速原子線8となって放出され
る。Since such a high-speed oxygen ion loses little kinetic energy even when it returns to the oxygen atom as described above, the energy is directly transferred to the atom and becomes a high-speed atom.
Then, the fast atoms are emitted as a fast atom beam 8 from an emission hole 7 formed in one bottom surface of the cylindrical cathode 1.
(発明が解決しようとする課題) 上記のような高速原子線放射装置において、放射装置内
に供給されたガスをイオン化する為に、具備されている
電極間に高電圧を印加し、グロー放電やスパーク放電な
どを発生させて供給されたガスをイオン化して加速して
いる。この場合、放電を発生させるために上述のように
高電圧が必要であり、畢竟、加速されたイオンは運動エ
ネルギーが高い状態となってしまう。(Problems to be Solved by the Invention) In the high-speed atomic beam radiation device as described above, in order to ionize the gas supplied into the radiation device, a high voltage is applied between the electrodes provided, and glow discharge or A spark discharge is generated and the supplied gas is ionized and accelerated. In this case, the high voltage is required to generate the discharge as described above, and the kinetic energy of the defected and accelerated ions ends up being high.
ここで、この加速されたイオンに所定の運動エネルギー
を与え且つ中性化するため、多くの場合減速又は加速が
必要となり、特に低い運動エネルギーとしたい場合に、
散乱が大きくなり且つ電極への衝突が多くなるなどして
効率が落ちてしまうという問題がある。Here, in order to give a predetermined kinetic energy to this accelerated ion and neutralize it, deceleration or acceleration is required in many cases, and especially when it is desired to have a low kinetic energy,
There is a problem that efficiency is lowered due to increased scattering and more collisions with the electrodes.
更に、上述のように従来の装置ではイオン化のプロセス
及びこのイオンを再び中性化するプロセスを含んでい
る。各プロセスにはそれぞれ効率があり、プロセスが増
えればそれだけ最終的効率が低下するのは自明である。
例えば従来のイオン化プロセスの効率は数%〜約40%で
あり、中性化のプロセスの効率は約10%〜約80%であ
る。従って、最終的な効率は高くても30%程度となって
しまう。Further, as mentioned above, conventional devices include a process of ionization and a process of re-neutralizing this ion. Each process has its own efficiency, and it is obvious that the more the processes, the lower the final efficiency.
For example, the efficiency of conventional ionization processes is from a few percent to about 40%, and the efficiency of neutralization processes is from about 10% to about 80%. Therefore, the final efficiency is about 30% at the highest.
本発明の目的は、上述の問題を解決して、反応性の高い
高速原子の発生を高効率で容易に得ることができ、且つ
高速原子の運動エネルギーを低い値から高い値まで任意
に設定できる高速原子線放射装置を提供することにあ
る。An object of the present invention is to solve the above problems, to easily generate highly reactive fast atoms with high efficiency, and to set the kinetic energy of fast atoms arbitrarily from a low value to a high value. It is to provide a high-speed atomic beam emitter.
(課題を解決するための手段) 本発明の上記目的は、板状電極と該板状電極に対向し表
面積が該板状電極より小さい小型電極とが配置される真
空容器と、板状電極と小型電極とを接続して真空容器外
に配置された直流高圧電源とを有し、板状電極の一箇所
又は複数箇所で小型電極に対向して配置されて電気双極
子を有するガス分子を注入するノズルを備える構成の高
速原子線放射装置により達成される。(Means for Solving the Problems) The above object of the present invention is to provide a vacuum container in which a plate electrode and a small electrode facing the plate electrode and having a surface area smaller than the plate electrode are arranged, and a plate electrode. It has a DC high-voltage power supply that is connected to a small electrode and is arranged outside the vacuum container, and injects gas molecules that have electric dipoles that are arranged to face the small electrode at one or more locations of the plate electrode. This is achieved by a high-speed atom beam emitting device having a nozzle for
即ち、前記直流高圧電源によって両電極には同じ大きさ
の電荷が現れるが、前記板状電極に対向する前記小型電
極の部分の表面積が該板状電極より小さく設定されるの
で、小型電極近傍の電界の強さが板状電極近傍より強く
なり、小型電極へ近づく程電気力線の密度が高くなって
ゆく。これは小型電極の板状電極に対向する部分の表面
積が小さくなるほど(一般には小型電極が小さくなれば
なるほど)著しくなる。ここで、この電界の中に板状電
極側から前記ノズルよりある程度の速度で小型電極方向
へ電気双極子が注入されると、電気双極子の小型電極側
にある電荷は板状電極側の電荷よりも強い電界内に存在
することになり、この電気双極子は小型電極へ向かって
加速され、高速原子線となって放射される。That is, electric charges of the same size appear on both electrodes by the DC high-voltage power supply, but the surface area of the portion of the small electrode facing the plate electrode is set smaller than that of the plate electrode. The strength of the electric field becomes stronger than in the vicinity of the plate electrode, and the density of the lines of electric force becomes higher as it approaches the small electrode. This becomes more remarkable as the surface area of the portion of the small electrode facing the plate electrode becomes smaller (generally, the smaller the small electrode becomes). Here, when an electric dipole is injected into the electric field from the plate electrode side toward the small electrode at a certain speed from the nozzle, the electric charges on the small electrode side of the electric dipole are charged on the plate electrode side. The electric dipole will be accelerated toward the small electrode and will be emitted as a fast atom beam.
このような電気双極子の小型電極方向への加速は上述の
ように小型電極と板状電極との相対する部分の表面積比
による電界の分布(特に小型電極近傍)に影響され、更
に、電気双極子の双極子モーメントが大きくなる程この
加速は小型電極方向へより大きくなる。また、両電極の
極性はどちらを負極または陽極としても、それに対応し
て電気双極子の向きも変わるので、この交換はまったく
問題はない。Such acceleration of the electric dipole toward the small electrode is affected by the electric field distribution (particularly in the vicinity of the small electrode) due to the surface area ratio of the facing portions of the small electrode and the plate electrode as described above. The larger the child's dipole moment, the greater this acceleration toward the small electrode. Moreover, since the direction of the electric dipole changes correspondingly to whichever of the polarities of both electrodes is the negative electrode or the positive electrode, there is no problem in this replacement.
以上のように、本発明は不均一な強電界中に存在する電
気双極子が電界の強い方向に加速されることを利用し、
ガスのイオン化・加速及び中性化のプロセスを経ずに高
速原子線を放射することを可能とする。As described above, the present invention utilizes the fact that the electric dipoles existing in the nonuniform strong electric field are accelerated in the strong electric field direction,
It is possible to radiate a fast atom beam without going through the processes of ionization / acceleration and neutralization of gas.
更に、前記真空容器内の前記板状電極と前記小型電極と
の間に紫外線を照射する紫外線光源を配置する構成によ
り、両電極間で加速中の電気双極子は紫外線により励起
され、反応性の高い高速原子線を放射することを可能と
する。Further, by a configuration in which an ultraviolet light source that irradiates ultraviolet rays is arranged between the plate-shaped electrode and the small electrode in the vacuum container, the electric dipole being accelerated between both electrodes is excited by ultraviolet rays, and the reactivity is high. It is possible to emit a high-speed atomic beam.
(実施例) 以上、添付図面を用いて本発明の実施例について説明す
る。(Embodiment) An embodiment of the present invention will be described with reference to the accompanying drawings.
第1図は本発明の高速原子線放射装置の一実施例を示す
概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the fast atom beam emitting device of the present invention.
真空容器29中に配置された板状電極21と小型電極である
細線状電極22とに真空容器29外に配置された直流高圧電
源28が接続している。板状電極21の中心部にはガス注入
孔23が空けられ、そのガス注入孔23には真空容器29外部
からガスノズル24が導かれている。細線状電極22はガス
ノズル24の吹き出し方向と交差するように配置されてい
る。A DC high-voltage power supply 28 arranged outside the vacuum container 29 is connected to the plate electrode 21 arranged in the vacuum container 29 and the thin wire electrode 22 which is a small electrode. A gas injection hole 23 is formed in the center of the plate electrode 21, and a gas nozzle 24 is guided to the gas injection hole 23 from the outside of the vacuum container 29. The thin linear electrode 22 is arranged so as to intersect with the blowing direction of the gas nozzle 24.
電源28以外の要素は真空容器29内に収められ、真空容器
29内が充分に排気された後に任意のタイミングでガスノ
ズル24から電気双極子を有するガス分子が注入される。Elements other than the power supply 28 are housed in the vacuum container 29.
After the inside of 29 is sufficiently exhausted, gas molecules having an electric dipole are injected from the gas nozzle 24 at an arbitrary timing.
ここでこの電気双極子としては、前述のように双極子モ
ーメントが大きいものが好ましく、例えば、アセトアミ
ド・アセトニトリルなどの比較的高分子のものやヨウ化
カリウム・シアン化水素・過酸化水素・塩化ナトリウム
などがあり、更に、通常広く高速原子線として使用され
ているアルゴンやヘリウムなどの元素も高電圧下では電
子の分布に不均一が生じるので、電気双極子としての振
舞いをする。Here, as the electric dipole, those having a large dipole moment as described above are preferable. In addition, elements such as argon and helium, which are commonly used as high-speed atomic beams, have non-uniform electron distribution under high voltage, and thus behave as electric dipoles.
電源28の接続方向によって板状電極21及び細線状電極22
は陽極・陰極どちらでも設定できるが、例えば、第1図
のように板状電極21を陽極、細線状電極22を陰極とする
と、第2図の電気力線状態を示す断面図のように、電気
力線が板状電極21から細線状電極22へ向かって集中し
て、細線状電極22に近づく程電界が強くなる。Depending on the connection direction of the power supply 28, the plate electrode 21 and the thin wire electrode 22
Can be set with either an anode or a cathode. For example, if the plate electrode 21 is an anode and the thin wire electrode 22 is a cathode as shown in FIG. 1, as shown in the cross-sectional view showing the state of electric force lines in FIG. The lines of electric force are concentrated from the plate-shaped electrode 21 toward the thin linear electrode 22, and the electric field becomes stronger as the electric line approaches the thin linear electrode 22.
真空容器29内にガスノズル24から注入された電気双極子
は正電荷側が電気力線に沿って細線状電極22に向き、そ
の正電荷端の位置の電界が負電荷端の位置の電界より強
く、その差は細線状電極22に近づくほど大きくなるの
で、電気双極子は注入時の速度ベクトルと電気力線の接
線方向ベクトルとの合成ベクトル方向に向かって加速さ
れる。そして、ガスノズル24からの注入範囲に比較して
細線状電極22を極細くすることで、電気双極子の細線状
電極22との衝突を少なくし、高速原子線27となって放射
口30から放射させることができる。なお、この放射口30
は中央部分が開口していても良いし、全面が開口してい
ても良い。The electric dipole injected from the gas nozzle 24 into the vacuum container 29 has the positive charge side facing the thin linear electrode 22 along the line of electric force, the electric field at the position of the positive charge end thereof is stronger than the electric field at the position of the negative charge end, Since the difference becomes larger as it gets closer to the thin linear electrode 22, the electric dipole is accelerated toward the combined vector direction of the velocity vector at the time of injection and the tangential direction vector of the electric force line. Then, by making the fine linear electrode 22 extremely thin compared to the injection range from the gas nozzle 24, collision with the fine linear electrode 22 of the electric dipole is reduced, and a high-speed atomic beam 27 is emitted from the emission port 30. Can be made. In addition, this radiation port 30
May have an opening at the central portion or may have an opening on the entire surface.
第3図は本発明の他の実施例を示す概略斜視図である。
ここにおいて、第1図と同様の要素には同一の符号を付
す。FIG. 3 is a schematic perspective view showing another embodiment of the present invention.
Here, elements similar to those in FIG. 1 are designated by the same reference numerals.
この高速原子線放射装置は第1図の細線状電極22を小球
電極32に置き換えたものであり、この小球電極32はガス
ノズル24の吹き出し方向上に位置している。This high-speed atom beam emitting device is obtained by replacing the thin linear electrode 22 shown in FIG. 1 with a small ball electrode 32, and this small ball electrode 32 is located in the blowing direction of the gas nozzle 24.
細線状電極22よりも表面積が小さくなるのは明らかであ
り、電気力線の収束はガスノズル24の吹き出し方向に垂
直な平面で円状となり且つ収束の変化量が大きくなるの
で、高速原子線27はより密度が高くなる。It is obvious that the surface area is smaller than that of the thin linear electrode 22, and the convergence of the lines of electric force becomes a circle on a plane perpendicular to the blowing direction of the gas nozzle 24 and the amount of change in the convergence becomes large. Higher density.
第4図も本発明の他の実施例を示す概略斜視図であり、
第3図の実施例と同様に細線状電極22を置き換えたもの
で、これをリング状電極34としている。ここにおいて、
第1図と同様の要素には同一の符号を付す。FIG. 4 is also a schematic perspective view showing another embodiment of the present invention,
Similar to the embodiment of FIG. 3, the fine linear electrode 22 is replaced, and this is used as a ring-shaped electrode 34. put it here,
The same elements as those in FIG. 1 are designated by the same reference numerals.
前記小球電極32を採用した場合よりも表面積が大きくな
るので、電気力線の収束の変化量は小さくなるが、高速
原子線27の放射は充分可能であり、放射範囲及び状態を
変更するという意味で効果的である。そして、このリン
グ状電極34の直径はあまり小さいと小球電極32を大きく
した場合と同等となってしまうので、リングの太さの10
倍程度が好適である。Since the surface area is larger than when the small spherical electrode 32 is adopted, the amount of change in the convergence of the lines of electric force is small, but the fast atomic beam 27 can be sufficiently radiated and the radiation range and state are changed. Effective in a sense. If the diameter of the ring-shaped electrode 34 is too small, it will be equivalent to the case where the small ball electrode 32 is made large, so that the ring thickness is 10
About twice is preferable.
第5図も本発明の他の実施例を示す概略斜視図である。FIG. 5 is also a schematic perspective view showing another embodiment of the present invention.
真空容器29内で板状電極41は同一形状・同一面積の2枚
の長方形板からなっており、この2枚の板状電極41の間
に一列に並べられたガスノズル44が配置されている。そ
して、このガスノズル44に平行に相対峙して細線状電極
42が配置されている。また2枚の板状電極41の両方には
電源28の一方の極が接続され、他方の極が細線状電極42
に接続されている。In the vacuum container 29, the plate-shaped electrode 41 is composed of two rectangular plates having the same shape and the same area, and the gas nozzles 44 arranged in a line are arranged between the two plate-shaped electrodes 41. Then, in parallel with the gas nozzle 44, a thin linear electrode is provided.
42 are arranged. Further, one pole of the power source 28 is connected to both of the two plate electrodes 41, and the other pole is connected to the thin wire electrode 42.
It is connected to the.
この高速原子線放射装置では、細線状電極42に垂直な平
面における電気力線の収束状態が第2図と同様の状態と
なり、高速原子線は細線状電極42に対して平行線上の放
射密度がほぼ一定となる。従って、より広範囲の高速原
子線放射を行うことができる。In this high-speed atomic beam radiating device, the state of convergence of the lines of electric force on the plane perpendicular to the thin linear electrode 42 is the same as that in FIG. It becomes almost constant. Therefore, a wider range of high-speed atomic beam radiation can be performed.
更に、第6図も本発明の他の実施例を示す概略斜視図で
ある。この実施例では第1図の装置において、真空容器
29の側壁に紫外線照射装置50が配置されている。この他
の構成要素は第1図と同様であり、これらの要素には第
1図と同一の符号を付している。紫外線照射装置50は真
空容器29内で板状電極21と細線状電極22との間の空間
で、電気双極子が存在する部分に紫外線を照射する。Further, FIG. 6 is also a schematic perspective view showing another embodiment of the present invention. In this embodiment, in the apparatus shown in FIG.
An ultraviolet irradiation device 50 is arranged on the side wall of 29. The other constituent elements are the same as those in FIG. 1, and these elements are designated by the same reference numerals as in FIG. The ultraviolet irradiation device 50 irradiates ultraviolet rays to a portion where the electric dipole exists in the space between the plate electrode 21 and the thin wire electrode 22 in the vacuum container 29.
このように紫外線を受けた電気双極子は励起され、放射
される高速原子線27を反応性の高いものとすることがで
る。このような紫外線照射装置50は上記第1図以外の実
施例の装置にも適用可能である。In this way, the electric dipoles that have received the ultraviolet rays are excited, and the fast atom beam 27 emitted can be made highly reactive. Such an ultraviolet irradiation device 50 can also be applied to the devices of the embodiments other than that shown in FIG.
なお、上記各実施例において、板状電極と小型電極の極
性はどちらを負極または陽極としても同様の結果を得る
ことができる。In each of the above embodiments, the same result can be obtained regardless of which of the polarities of the plate electrode and the small electrode is the negative electrode or the anode.
(発明の効果) 以上述べたように、本発明の高速原子線放射装置によれ
ば、前記板状電極より前記小型電極の該板状電極に対向
する部分の表面積を小さく設定して、小型電極へ向かう
電気力線の密度を高くし、電気双極子を含むガスを電界
の不均一化によって電気的に直接加速するので、高速原
子線発生効率低下の原因となるイオン化・中性化などの
プロセスが存在せず、注入した電気双極子のほとんどを
高速原子線とする極めて大きな発生効率を得ることがで
きる。(Effects of the Invention) As described above, according to the high-speed atomic beam radiation device of the present invention, the surface area of the portion of the small electrode facing the plate electrode is set smaller than that of the plate electrode, and the small electrode The density of the lines of electric force going toward is increased, and the gas containing electric dipoles is electrically directly accelerated by the non-uniformity of the electric field, so processes such as ionization and neutralization that cause a decrease in the efficiency of generation of fast atom beams. Is not present, and it is possible to obtain extremely high generation efficiency in which most of the injected electric dipoles are fast atom beams.
また、数10eV程度の低運動エネルギー高速原子線の場合
でも、電気的な直接の加速であるので発生効率低下の要
因は少なく、効率の良い発生が可能である。Further, even in the case of a low kinetic energy high-speed atomic beam of about several tens of eV, since it is an electrical direct acceleration, there are few factors causing a decrease in generation efficiency, and efficient generation is possible.
更に紫外線照射装置を導入することによってガス分子を
励起し、反応性を高めることができる。Further, by introducing an ultraviolet irradiation device, gas molecules can be excited and the reactivity can be enhanced.
以上のように、数10eV程度の低運動エネルギーの高速原
子線によって材料に損傷を与えずに微細パターン加工や
材料分析を行うことができる。さらに高速原子線は全体
としては電気的に中性であるので、イオンビームでは適
用が困難であるプラスチックやセラミックスなどの絶縁
体を対象とする加工や分析の場合にも非常に好適であ
る。As described above, it is possible to perform fine pattern processing and material analysis without damaging the material by a high-speed atomic beam with a low kinetic energy of about several tens of eV. Furthermore, since the high-speed atomic beam is electrically neutral as a whole, it is also very suitable for processing and analysis of insulators such as plastics and ceramics, which are difficult to apply with ion beams.
第1図は本発明の高速原子線放射装置の一実施例を示す
概略構成図、 第2図は電気力線状態を示す断面図、 第3図、第4図、第5図、第6図は本発明の他の実施例
を示す概略構成図、 第7図は従来の高速原子線放射装置を示す概略斜視図で
ある。 (図中符号) 1…円筒形陰極、2…ドーナツ状陽極 3…直流高圧電源、4…ガス注入ノズル 6…プラズマ、7…放出孔 21…板状電極、22……細線状電極 23…ガス注入口、24…ガスノズル 27…高速原子線、28…直流高圧電源 29…真空容器、30…放射口 32…小球電極、34…リング状電極 41…板状電極、42…細線状電極 44…ガスノズル 50…紫外線照射装置FIG. 1 is a schematic configuration diagram showing an embodiment of a fast atom beam emitting device of the present invention, FIG. 2 is a sectional view showing a state of electric flux lines, FIG. 3, FIG. 4, FIG. 5 and FIG. Is a schematic configuration diagram showing another embodiment of the present invention, and FIG. 7 is a schematic perspective view showing a conventional high-speed atom beam emitting device. (Reference numeral in the figure) 1 ... Cylindrical cathode, 2 ... Donut-shaped anode 3 ... DC high-voltage power supply, 4 ... Gas injection nozzle 6 ... Plasma, 7 ... Emission hole 21 ... Plate electrode, 22 ... Fine wire electrode 23 ... Gas Injection port, 24 ... Gas nozzle 27 ... High-speed atom beam, 28 ... DC high-voltage power supply 29 ... Vacuum container, 30 ... Radiation port 32 ... Small ball electrode, 34 ... Ring electrode 41 ... Plate electrode, 42 ... Thin wire electrode 44 ... Gas nozzle 50 ... Ultraviolet irradiation device
Claims (2)
板状電極より小さい小型電極とが配置される真空容器
と、前記板状電極と前記小型電極とを接続して前記真空
容器外に配置された直流高圧電源と、前記板状電極の一
箇所又は複数箇所で前記小型電極に対向して配置されて
電気双極子を有するガス分子を注入するノズルとを備え
ることを特徴とする高速原子線放射装置。1. A vacuum container in which a plate electrode and a small electrode facing the plate electrode and having a surface area smaller than that of the plate electrode are arranged, and the plate electrode and the small electrode are connected to each other to provide the vacuum. A high-voltage direct-current power source disposed outside the container, and a nozzle for injecting a gas molecule having an electric dipole disposed at one or a plurality of positions of the plate electrode so as to face the small electrode, High-speed atomic beam emitter.
電極との間で前記電気双極子に紫外線を照射する紫外線
光源を備えることを特徴とする請求項(1)の高速原子
線放射装置。2. A high-speed atomic beam radiation according to claim 1, further comprising an ultraviolet light source for irradiating the electric dipole with ultraviolet rays between the plate-shaped electrode and the small electrode in the vacuum container. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33122189A JPH0715840B2 (en) | 1989-10-20 | 1989-12-22 | High speed atomic beam emitter |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1-271812 | 1989-10-20 | ||
JP27181289 | 1989-10-20 | ||
JP33122189A JPH0715840B2 (en) | 1989-10-20 | 1989-12-22 | High speed atomic beam emitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03219597A JPH03219597A (en) | 1991-09-26 |
JPH0715840B2 true JPH0715840B2 (en) | 1995-02-22 |
Family
ID=26549892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33122189A Expired - Lifetime JPH0715840B2 (en) | 1989-10-20 | 1989-12-22 | High speed atomic beam emitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0715840B2 (en) |
-
1989
- 1989-12-22 JP JP33122189A patent/JPH0715840B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03219597A (en) | 1991-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3328498B2 (en) | Fast atom beam source | |
US6768120B2 (en) | Focused electron and ion beam systems | |
JP2509488B2 (en) | Fast atom beam source | |
KR100307070B1 (en) | High speed atomic beam supply source | |
US5216241A (en) | Fast atom beam source | |
JP3064214B2 (en) | Fast atom beam source | |
JP2849771B2 (en) | Sputter type ion source | |
JPH0715840B2 (en) | High speed atomic beam emitter | |
JPH0770512B2 (en) | Low energy ionized particle irradiation device | |
JP3103181B2 (en) | Fast atom beam source | |
JPH06310297A (en) | Generating method and device of low energy neutral particle beam | |
JPS63221547A (en) | Ion neutralizer | |
JP2627420B2 (en) | Fast atom beam source | |
JPH0766760B2 (en) | Convergent fast atom source | |
JP3213135B2 (en) | Fast atom beam source | |
JP2671219B2 (en) | Fast atom beam source | |
JPH06289198A (en) | Fast atomic beam source | |
KR20240178981A (en) | Apparatus For Neutralizing Charge Of Object With Ion-beam Source | |
JPH0129295B2 (en) | ||
JPH02114433A (en) | Ion treatment device | |
JPH0755999A (en) | High-speed atomic beam source | |
JPH04341739A (en) | Ion-source device of ion implanter | |
JPH06265696A (en) | High-speed atomic beam source | |
JPH06289196A (en) | Fast atomic beam source | |
JPS61268015A (en) | Depositing device for thin-film |