[go: up one dir, main page]

JPH07153410A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPH07153410A
JPH07153410A JP5329983A JP32998393A JPH07153410A JP H07153410 A JPH07153410 A JP H07153410A JP 5329983 A JP5329983 A JP 5329983A JP 32998393 A JP32998393 A JP 32998393A JP H07153410 A JPH07153410 A JP H07153410A
Authority
JP
Japan
Prior art keywords
charged particle
objective lens
voltage
particle beam
extraction electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5329983A
Other languages
Japanese (ja)
Other versions
JP3343421B2 (en
Inventor
Koji Ueda
耕司 上田
Kazufumi Hosono
一史 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP32998393A priority Critical patent/JP3343421B2/en
Publication of JPH07153410A publication Critical patent/JPH07153410A/en
Application granted granted Critical
Publication of JP3343421B2 publication Critical patent/JP3343421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To always focus charged particle beams to fix a surface charge at a minimum state by changing a voltage of an extraction electrode when an irradiated area is changed, and interlocking with this, controlling a coil current of an objective lens. CONSTITUTION:Charged particle beams 102 are radiated from a charged particle gun and pass inside of an objective lens 105 and an extraction electrode 106 directly before irradiating an IC 110 to be measured. In order to focus the charged particle beams 102 in interlocking with variation of an irradiated area to be swept, a magnetic field corresponding to each speed of the charged particle beams 102, namely, an optimum refractive index is imparted by the objective lens 105. A voltage of an extraction electrode control voltage source 40 is read by a current control part 50, and a current of the objective lens 105 suitable for this voltage is determined and the current value thereof is indicated to an objective lens current source 60. Consequently, a clear and high quality picture can be obtained. Since it is excellent in reproducibility, a measuring effect is remarkable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、半導体集積回路(以
下「IC」という)の設計開発時に利用される荷電粒子
ビーム装置に関し、特に被測定デバイスである被測定I
Cの表面帯電の防止技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charged particle beam apparatus used when designing and developing a semiconductor integrated circuit (hereinafter referred to as "IC"), and more particularly to a device under test I to be measured.
The present invention relates to a technique for preventing surface charging of C.

【0002】[0002]

【従来の技術】一般に、試作されたICの内部を解析す
るのに、荷電粒子ビーム装置を作動させて試作した素子
の各部を流れる電圧波形を参照して不良個所を特定して
いる。
2. Description of the Related Art In general, in order to analyze the inside of a prototype IC, a defective part is specified by operating a charged particle beam device and referring to a voltage waveform flowing through each part of a prototype device.

【0003】図3に従来のEBテスタの鏡筒100の一
例を示す。鏡筒100の内部は真空チャンバとなってお
り、ターボ・モレキュラ・ポンプやイオン・ゲッタ・ポ
ンプによって真空化され、その真空度は10-4Paから
10-5Paのオーダである。荷電粒子銃101から放射
されたエネルギーの高いパルス化された荷電粒子ビーム
102は、静電レンズ103と電磁レンズ104で明る
さを失わずに減速される。そして、対物レンズ105で
被測定IC110上に0.1μm径のスポットで焦点が
合わされる。また、荷電粒子ビーム102はスキャンニ
ングによって、2mm×2mmの範囲で偏向され、被測
定IC110上を掃引照射する。
FIG. 3 shows an example of a lens barrel 100 of a conventional EB tester. The interior of the lens barrel 100 is a vacuum chamber, which is evacuated by a turbo molecular pump or an ion getter pump, and the degree of vacuum is on the order of 10 −4 Pa to 10 −5 Pa. The high-energy pulsed charged particle beam 102 emitted from the charged particle gun 101 is decelerated by the electrostatic lens 103 and the electromagnetic lens 104 without losing the brightness. Then, the objective lens 105 focuses on the IC 110 to be measured with a spot having a diameter of 0.1 μm. Further, the charged particle beam 102 is deflected by scanning within a range of 2 mm × 2 mm, and sweeps and irradiates the measured IC 110.

【0004】被測定IC110はパルス化された荷電粒
子ビーム102の掃引照射により2次電子を放出する。
2次電子の量は、照射された地点の電位の大小によって
異なる。この2次電子を2次電子引出電極106によっ
て効率よく捕捉し、2次電子検出器107によって検出
する。2次電子検出器107は、2次電子を一度光の信
号に変換し、その後に電位コントラスト像(SEM像:
Scanning ElectronMicroscope、SIM像:Scanning I
on Microscope)として表示するための電気信号に変換
する。電位コントラスト像の明るさは、2次電子流の量
に従って変化する。
The IC 110 to be measured emits secondary electrons by sweeping irradiation of the pulsed charged particle beam 102.
The amount of secondary electrons depends on the magnitude of the electric potential at the irradiated point. The secondary electrons are efficiently captured by the secondary electron extraction electrode 106 and detected by the secondary electron detector 107. The secondary electron detector 107 once converts the secondary electrons into a light signal, and thereafter, a potential contrast image (SEM image:
Scanning Electron Microscope, SIM image: Scanning I
on Microscope) to convert to an electrical signal for display. The brightness of the potential contrast image changes according to the amount of secondary electron flow.

【0005】波形を観測するには、サンプリング・オッ
シロスコープと同様に、被測定IC110の信号と同期
して作られるパルス・ビームによって電圧をサンプリン
グする。このパルス・ビームの発生タイミングを被測定
波形の位相上で変化させることで、波形として測定され
る。
To observe the waveform, the voltage is sampled by a pulse beam created in synchronization with the signal of the IC 110 to be measured, as in the sampling oscilloscope. It is measured as a waveform by changing the generation timing of this pulse beam on the phase of the waveform to be measured.

【0006】図4に、被測定IC110と2次電子引出
電極106と対物レンズ105の拡大図を示す。被測定
IC110は、電極111を保護するためにSiO
2 (酸化シリコン)等の絶縁膜にてカバーされている。
この絶縁膜112に荷電粒子ビーム102を照射する
と、2次電子108を放出する。2次電子108の放出
電荷が入射した荷電粒子ビーム102の電荷と等しくて
相殺すると絶縁物112の表面は帯電しないが、荷電粒
子銃101の加速電圧を1KV程度で、絶縁膜112が
SiO2 やSiN等の場合は2次電子放出率が1以上に
なるため、絶縁膜112の表面は正に帯電する。帯電し
た被測定IC110を観察、測定すると、2次電子の放
出が変動して、定量的な特性試験はもとより定性的な試
験でも多くの困難を伴う。この絶縁膜112表面の帯電
量は入射する荷電粒子ビーム量、加速電圧、照射面積、
照射の走査スピード、2次電子引出電界強度や絶縁物の
種類等に依存して複雑に変化する。
FIG. 4 shows an enlarged view of the IC to be measured 110, the secondary electron extraction electrode 106, and the objective lens 105. The IC 110 to be measured is made of SiO 2 to protect the electrode 111.
It is covered with an insulating film such as 2 (silicon oxide).
When the insulating film 112 is irradiated with the charged particle beam 102, secondary electrons 108 are emitted. When the emitted charges of the secondary electrons 108 are equal to the charges of the incident charged particle beam 102 and cancel each other out, the surface of the insulator 112 is not charged, but the acceleration voltage of the charged particle gun 101 is about 1 KV, and the insulating film 112 has SiO 2 or In the case of SiN or the like, since the secondary electron emission rate is 1 or more, the surface of the insulating film 112 is positively charged. When the charged IC to be measured 110 is observed and measured, the emission of secondary electrons fluctuates, which causes many difficulties not only in quantitative characteristic tests but also in qualitative tests. The amount of charge on the surface of the insulating film 112 depends on the amount of incident charged particle beam, accelerating voltage, irradiation area,
Irradiation scanning speed changes intricately depending on secondary electron extraction electric field strength, type of insulator, and the like.

【0007】荷電粒子ビーム装置は、この表面電荷11
3の帯電を最小にするために、照射面積(倍率に相当)
と2次電子引出電界強度に着眼し、その他の緒元を一定
にしていた。つまり、倍率を変えたときは2次電子引出
電極106の電圧を自動的に変化させて、2次電子引出
電界強度を最適値に設定していた。ところが、2次電子
引出電極106の電圧を変化させると、図4に示すよう
に荷電粒子ビーム102の焦点が、b及びcのようにず
れてしまう不都合が存在した。
In the charged particle beam device, this surface charge 11
Irradiated area (equivalent to magnification) to minimize the charging of 3
And the secondary electron extraction electric field strength, and other specifications were kept constant. That is, when the magnification is changed, the voltage of the secondary electron extraction electrode 106 is automatically changed to set the secondary electron extraction electric field strength to the optimum value. However, when the voltage of the secondary electron extraction electrode 106 is changed, the focal point of the charged particle beam 102 is deviated as shown in b and c as shown in FIG.

【0008】[0008]

【発明が解決しようとする課題】この発明は、倍率を変
更した場合、それに基づき引出電極の電圧を変化させて
も、荷電粒子ビームの焦点が被測定ICの表面に結ばれ
る荷電粒子ビーム装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention provides a charged particle beam device in which the focus of the charged particle beam is focused on the surface of the IC to be measured when the magnification is changed and the voltage of the extraction electrode is changed accordingly. The purpose is to provide.

【0009】ここで、荷電粒子ビームが被測定ICに照
射されたときの、被測定IC前面の電位分布について今
一度考察する。当初、引出電極の2次電子引出電圧Ve
が正で、被測定ICの絶縁膜電位Vsが零である場合、
被測定IC表面の前面には2次電子に対する加速電界の
みが存在する。ここで荷電粒子ビームの照射を行うと、
前述の理由により絶縁膜上の被照射領域は正に帯電す
る。この帯電量が増大するに従い、照射領域前面の電界
は正から負に逆転する。しかしながら、更に照射領域か
ら前面により離れると、電界は再び正になる。つまり、
ここに電位鞍点が生じる。この電位鞍点の位置及び電位
は、照射領域とその帯電量及び引出電界強度の大きさに
強く依存する。
Here, the potential distribution on the front surface of the IC to be measured when the charged particle beam is irradiated on the IC to be measured will be considered once again. Initially, the secondary electron extraction voltage Ve of the extraction electrode
Is positive and the insulating film potential Vs of the IC to be measured is zero,
Only the accelerating electric field for secondary electrons exists on the front surface of the IC surface to be measured. When irradiation of the charged particle beam is performed here,
For the above reason, the irradiated area on the insulating film is positively charged. As the amount of charge increases, the electric field in front of the irradiation area reverses from positive to negative. However, further away from the illuminated area by the front surface, the electric field becomes positive again. That is,
A potential saddle point occurs here. The position and potential of this potential saddle point strongly depend on the irradiation region, its charge amount, and the magnitude of the extraction electric field strength.

【0010】図5は、電極の幅が2aで、電位Vsが5
V(ボルト)で、電極以外は0Vの場合の、電位分布図
の一例である。この電位分布図について考察する。表面
帯電により、照射領域の電位Vsは正になり、引出電界
強度がE[V/mm]の場合のZ,X平面での電位は次式で
表現できる。[日本学術振興会荷電粒子ビームの工業へ
の応用第132委員会:電子ビームテスティングハンド
ブック電子ビーム研究第7巻:昭和62年5月] Φ(z,x )=E*z+Vs/π*[tan-1{(a-x)/z}+tan
-1{(a+x)/z}] ここで、電位鞍点の位置座標を(0,Zm)、電位をΦ
mとすると、 Zm={(2aVs/πE)−a2 1/2 Φm=E*Zm+(2Vs/π)*tan-1(a/Zm) となり、これをグラフに表すと図6となる。ΦmとVs
の差分は電位障壁となり、2次電子を抑制するように働
く。
In FIG. 5, the electrode width is 2a and the potential Vs is 5
It is an example of a potential distribution diagram in the case of V (volt) and 0 V except for electrodes. Consider this potential distribution map. The surface charging makes the potential Vs of the irradiation region positive, and the potentials on the Z and X planes when the extraction electric field strength is E [V / mm] can be expressed by the following equation. [Japan Society for the Promotion of Science Application of charged particle beam to industry 132nd Committee: Electron Beam Testing Handbook Electron Beam Research Volume 7: May 1987] Φ (z, x) = E * z + Vs / π * [ tan -1 {(ax) / z} + tan
-1 {(a + x) / z}] where the position coordinates of the potential saddle point are (0, Zm) and the potential is Φ
If m, then Zm = {(2aVs / πE) −a 2 } 1/2 Φm = E * Zm + (2Vs / π) * tan −1 (a / Zm), which is shown in the graph of FIG. . Φm and Vs
Becomes a potential barrier and acts to suppress secondary electrons.

【0011】図6より次のことが自明である。2次電子
引出電界強度が一定の場合は、照射面積が大きくなるほ
ど電位障壁の高さは小さくなっている。つまり、低倍率
になるほど電位障壁の高さが小さい。電位障壁の高さが
小さいほど、照射領域から放出された2次電子は引出電
界に取り込まれやすいので、照射領域の表面は更に帯電
量が増加することになる。つまり、2次電子引出電界強
度が一定の場合は、電位障壁の高さが照射面積に依存す
るために、照射面積が大きくなるほど(低倍率になるほ
ど)表面帯電量が増加することになる。
The following is obvious from FIG. When the secondary electron extraction electric field strength is constant, the height of the potential barrier becomes smaller as the irradiation area becomes larger. That is, the lower the magnification, the smaller the height of the potential barrier. As the height of the potential barrier is smaller, the secondary electrons emitted from the irradiation region are more likely to be taken into the extraction electric field, so that the amount of charge on the surface of the irradiation region further increases. That is, when the secondary electron extraction electric field strength is constant, the height of the potential barrier depends on the irradiation area, and thus the surface charge amount increases as the irradiation area increases (lower magnification).

【0012】低倍率ほど表面帯電が増加する不具合を避
けるには、倍率変化に自動的に連動して低倍率ほど2次
電子引出電界を小さくすればよい。このことにより、電
位障壁の高さを同一レベルに保ちながら、照射面積の増
大に伴う帯電量増加を防止することが可能である。ただ
し、特定倍率以上の高倍率では、引出電界強度を変化さ
せたときに生じる不具合(CADレイアウトとSEM像
とのマッチングずれやプローブ点のシフト等)を避ける
ために、引出電界強度を一定値に保つことが現実的であ
る。
In order to avoid the disadvantage that the surface charge increases as the magnification becomes lower, the secondary electron extraction electric field may be made smaller as the magnification becomes lower automatically in association with the change in magnification. As a result, it is possible to prevent the amount of charge from increasing as the irradiation area increases while keeping the height of the potential barrier at the same level. However, at a high magnification higher than a specific magnification, the extraction electric field strength is set to a constant value in order to avoid problems (change in matching between CAD layout and SEM image, shift of probe points, etc.) that occur when the extraction electric field strength is changed. It is realistic to keep.

【0013】この引出電界強度の変更に伴い、電界によ
るレンズ作用が変化し、荷電粒子ビームの焦点が定まら
なくなる問題が新しく生じた。焦点の合う度合いによっ
て、照射領域表面の帯電量に変化をもたらすから問題で
ある。この発明は、この引出電極の電圧を変えても焦点
を結ぶ荷電粒子ビーム装置を提供するものである。
Along with this change in the extraction electric field strength, the lens action due to the electric field changes, and a new problem arises in that the focus of the charged particle beam cannot be determined. This is a problem because the amount of charge on the surface of the irradiation region changes depending on the degree of focus. The present invention provides a charged particle beam device that focuses even if the voltage of the extraction electrode is changed.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、倍率(照射面積に相当)の変化に対応し
て自動的に引出電極の電圧を変化させ、引出電界強度の
変更と同時に、その引出電極の電圧に連動して荷電粒子
ビームが焦点を結ぶように対物レンズのコイル電流を制
御する構成とする。
In order to achieve the above object, the present invention automatically changes the voltage of the extraction electrode in response to the change of the magnification (corresponding to the irradiation area) and changes the extraction electric field strength. At the same time, the coil current of the objective lens is controlled so that the charged particle beam is focused in conjunction with the voltage of the extraction electrode.

【0015】この発明の構成によれば、2次電子引出電
極の電圧と、荷電粒子ビームの焦点が合う対物レンズの
コイル電流との関係を明確にし、2次電子引出電極の電
圧に連動して対物レンズのコイル電流を制御するので、
常に荷電粒子ビームの焦点が合い、従って、表面電荷は
常に最小状態で一定となり、測定誤差はほとんど無くな
る。
According to the structure of the present invention, the relationship between the voltage of the secondary electron extraction electrode and the coil current of the objective lens on which the charged particle beam is focused is clarified, and linked with the voltage of the secondary electron extraction electrode. Since the coil current of the objective lens is controlled,
The charged particle beam is always in focus, so the surface charge is always constant in the minimum state and the measurement error is almost eliminated.

【0016】[0016]

【実施例】本発明の一実施例を図1に示す。図4と対応
する部分には同一符号を付して示す。本発明は従来の荷
電粒子ビーム装置に加えて、対物レンズ105用の対物
レンズ用電流源60と、対物レンズ用電流源60を制御
する電流制御部50と、電流制御部50に引出電極10
6の変更電圧を指示する引出電極用制御電圧源40によ
って構成される。
FIG. 1 shows an embodiment of the present invention. Portions corresponding to those in FIG. 4 are designated by the same reference numerals. The present invention includes, in addition to the conventional charged particle beam device, an objective lens current source 60 for the objective lens 105, a current control unit 50 for controlling the objective lens current source 60, and the extraction electrode 10 for the current control unit 50.
The extraction electrode control voltage source 40 for instructing the changing voltage of No. 6 is used.

【0017】図1に示すように、荷電粒子ビームは荷電
粒子銃から放射されて、被測定IC110を照射する直
前に対物レンズ105と引出電極106の内を通過す
る。
As shown in FIG. 1, the charged particle beam is emitted from the charged particle gun and passes through the objective lens 105 and the extraction electrode 106 immediately before irradiating the IC 110 to be measured.

【0018】図2(A)に示すように、2次電子引出電
極106は、前述のように、照射面積を変えても被測定
IC110の表面の帯電を最小にするために、照射面積
に連動して電圧を変化させ、引出電界強度を最適にす
る。2次電子引出電極106の電圧を変化させること
は、荷電粒子ビーム102の加速電圧を変化させること
になり、従って、荷電粒子ビームの速度変化となり、焦
点がずれてくるのである。
As shown in FIG. 2A, the secondary electron extraction electrode 106 is interlocked with the irradiation area in order to minimize the charging of the surface of the IC 110 to be measured even if the irradiation area is changed, as described above. Then, the voltage is changed to optimize the extraction electric field strength. Changing the voltage of the secondary electron extraction electrode 106 changes the accelerating voltage of the charged particle beam 102. Therefore, the velocity of the charged particle beam changes, and the focus shifts.

【0019】そこで、常に荷電粒子ビーム102の焦点
が合うように、荷電粒子ビーム102の各速度に対応し
た磁界、即ち、最適の屈折率を対物レンズ105で与え
るようにするとよい。つまり、図2(B)に示すよう
に、2次電子引出電極106の電圧変化に伴って、対物
レンズ105のコイル電流を制御して、常に焦点が合う
ようにする。
Therefore, it is preferable that the objective lens 105 gives a magnetic field corresponding to each velocity of the charged particle beam 102, that is, an optimum refractive index so that the charged particle beam 102 always focuses. That is, as shown in FIG. 2B, the coil current of the objective lens 105 is controlled in accordance with the change in the voltage of the secondary electron extraction electrode 106 so that the objective lens 105 is always focused.

【0020】本発明は、電流制御部50で引出電極用制
御電圧源40の電圧を読み取り、その電圧に適した対物
レンズ105の電流を定め、その電流値を対物レンズ用
電流源60に指示し、対物レンズ用可変電流源60は指
示された電流を対物レンズ105に流すようにした装置
である。ここで、最適電流値は、装置の構造により異な
るのでその機種によって定める必要がある。即ち、対物
レンズ105のコイルの巻数、2次電子引出電極106
と被測定IC110の表面との距離や絶縁膜112の種
類によって異なる。また荷電粒子ビーム102のパルス
幅、掃引照射速度や加速電圧等によっても異なるので、
固定できるものは一定値として、可変数を少なくすると
よい。従って、最適電流値は、可変数に基ずきテーブル
化しそのテーブル表に従って制御してもよいし、あるい
は、その値は図2(B)のように区間内は線形であるの
で区間毎に数式化し、演算により制御してもよい。
In the present invention, the current control unit 50 reads the voltage of the extraction electrode control voltage source 40, determines the current of the objective lens 105 suitable for the voltage, and instructs the current value to the objective lens current source 60. The objective lens variable current source 60 is a device configured to flow a specified current to the objective lens 105. Here, since the optimum current value differs depending on the structure of the device, it needs to be determined depending on the model. That is, the number of turns of the coil of the objective lens 105, the secondary electron extraction electrode 106
And the distance from the surface of the IC 110 to be measured and the type of the insulating film 112. Also, since it varies depending on the pulse width of the charged particle beam 102, the sweep irradiation speed, the acceleration voltage, etc.,
What can be fixed should be a fixed value, and the variable number should be small. Therefore, the optimum current value may be formed into a table based on a variable number and controlled according to the table, or the value is linear within the section as shown in FIG. It may be converted into a control and controlled by calculation.

【0021】[0021]

【発明の効果】以上説明したように、本発明は荷電粒子
ビーム装置において、被測定IC110の表面電荷11
3を最小化し、しかも常に荷電粒子ビーム102の焦点
が合うので、明瞭で高品質な画面が得られ、再現性に優
れているので、その測定効果は大である。
As described above, in the charged particle beam apparatus according to the present invention, the surface charge 11 of the IC to be measured 11 is measured.
3 is minimized, and the charged particle beam 102 is always in focus, so that a clear and high-quality screen can be obtained and the reproducibility is excellent, so that the measurement effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の図である。FIG. 1 is a diagram of an embodiment of the present invention.

【図2】図1に示した実施例の説明図である。FIG. 2 is an explanatory view of the embodiment shown in FIG.

【図3】従来の主要技術を説明するための一例の図であ
る。
FIG. 3 is a diagram illustrating an example of a conventional main technique.

【図4】図3に示した従来例の一部の拡大図である。FIG. 4 is an enlarged view of a part of the conventional example shown in FIG.

【図5】電位分布図である。FIG. 5 is a potential distribution diagram.

【図6】電位障壁と照射領域との関係図である。FIG. 6 is a relationship diagram between a potential barrier and an irradiation region.

【符号の説明】[Explanation of symbols]

40 引出電極用制御電圧源 50 電流制御部 60 対物レンズ用電流源 100 鏡筒 101 荷電粒子銃 102 荷電粒子ビーム 103 静電レンズ 104 電磁レンズ 105 対物レンズ 106 2次電子引出電極 107 2次電子検出器 108 2次電子 110 被測定IC 111 電極 112 絶縁膜 113 表面電荷 40 Extraction Electrode Control Voltage Source 50 Current Control Unit 60 Objective Lens Current Source 100 Lens Barrel 101 Charged Particle Gun 102 Charged Particle Beam 103 Electrostatic Lens 104 Electromagnetic Lens 105 Objective Lens 106 Secondary Electron Extraction Electrode 107 Secondary Electron Detector 108 secondary electron 110 IC to be measured 111 electrode 112 insulating film 113 surface charge

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビームを半導体集積回路の表面
に掃引照射し、照射点毎に発生する2次電子を検出して
半導体集積回路を解析する荷電粒子ビーム装置におい
て、 掃引する照射面積の変更に連動して2次電子引出電極
(106)の電圧を変更する引出電極用制御電圧源(4
0)と、 引出電極用制御電圧源(40)の電圧変更に連動して対
物レンズ(105)のコイル電流を制御する電流制御部
(50)と、 電流制御部(50)の指示により対物レンズ(105)
のコイル電流を変更する対物レンズ電流源(60)と、
を具備することを特徴とする荷電粒子ビーム装置。
1. A charged particle beam device for sweeping and irradiating a surface of a semiconductor integrated circuit with a charged particle beam, and detecting secondary electrons generated at each irradiation point to analyze the semiconductor integrated circuit. The extraction electrode control voltage source (4) for changing the voltage of the secondary electron extraction electrode (106) in conjunction with
0), a current control unit (50) for controlling the coil current of the objective lens (105) in association with a change in the voltage of the extraction electrode control voltage source (40), and an objective lens according to instructions from the current control unit (50). (105)
An objective lens current source (60) for changing the coil current of
A charged particle beam device comprising:
JP32998393A 1993-12-01 1993-12-01 Charged particle beam equipment Expired - Fee Related JP3343421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32998393A JP3343421B2 (en) 1993-12-01 1993-12-01 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32998393A JP3343421B2 (en) 1993-12-01 1993-12-01 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH07153410A true JPH07153410A (en) 1995-06-16
JP3343421B2 JP3343421B2 (en) 2002-11-11

Family

ID=18227463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32998393A Expired - Fee Related JP3343421B2 (en) 1993-12-01 1993-12-01 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP3343421B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193017A (en) * 2002-12-12 2004-07-08 Seiko Instruments Inc Scanning electron beam apparatus
JP2005338096A (en) * 2001-07-12 2005-12-08 Hitachi Ltd Pattern measuring method and charged particle beam device
JP2007242605A (en) * 2006-02-09 2007-09-20 Hitachi High-Technologies Corp Scanning electron microscope
US7700918B2 (en) 2001-07-12 2010-04-20 Hitachi, Ltd. Sample electrification measurement method and charged particle beam apparatus
US8153966B2 (en) 2008-05-16 2012-04-10 Hitachi High-Technologies Corporation Electrode unit and charged particle beam device
WO2015042051A1 (en) * 2013-09-17 2015-03-26 Kla-Tencor Corporation Non-invasive charged particle beam monitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005338096A (en) * 2001-07-12 2005-12-08 Hitachi Ltd Pattern measuring method and charged particle beam device
US7700918B2 (en) 2001-07-12 2010-04-20 Hitachi, Ltd. Sample electrification measurement method and charged particle beam apparatus
JP4506588B2 (en) * 2001-07-12 2010-07-21 株式会社日立製作所 Charged particle beam irradiation method and charged particle beam apparatus
US8835844B2 (en) 2001-07-12 2014-09-16 Hitachi, Ltd. Sample electrification measurement method and charged particle beam apparatus
JP2004193017A (en) * 2002-12-12 2004-07-08 Seiko Instruments Inc Scanning electron beam apparatus
JP2007242605A (en) * 2006-02-09 2007-09-20 Hitachi High-Technologies Corp Scanning electron microscope
JP4719699B2 (en) * 2006-02-09 2011-07-06 株式会社日立ハイテクノロジーズ Scanning electron microscope
US8153966B2 (en) 2008-05-16 2012-04-10 Hitachi High-Technologies Corporation Electrode unit and charged particle beam device
WO2015042051A1 (en) * 2013-09-17 2015-03-26 Kla-Tencor Corporation Non-invasive charged particle beam monitor
US9390887B2 (en) 2013-09-17 2016-07-12 Kla-Tencor Corporation Non-invasive charged particle beam monitor
TWI631591B (en) * 2013-09-17 2018-08-01 美商克萊譚克公司 Non-invasive charged particle beam monitor

Also Published As

Publication number Publication date
JP3343421B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
JP3456999B2 (en) Detection system for high aspect ratio measurement
JP3786875B2 (en) Objective lens for charged particle beam devices
EP0953203B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP3268583B2 (en) Particle beam device
US6259094B1 (en) Electron beam inspection method and apparatus
US4629898A (en) Electron and ion beam apparatus and passivation milling
JP3238705B2 (en) Scanning techniques to reduce the effects of surface charges in particle beam devices
US4864228A (en) Electron beam test probe for integrated circuit testing
JP2000200579A (en) Scanning electron microscope
JP5342728B2 (en) Collection of secondary electrons through the objective lens of a scanning electron microscope
JP2003533857A (en) Semiconductor wafer and mask inspection apparatus using low energy electron microscope having two illumination beams
US7372050B2 (en) Method of preventing charging, and apparatus for charged particle beam using the same
US5591971A (en) Shielding device for improving measurement accuracy and speed in scanning electron microscopy
JPH0266840A (en) electron beam measuring instrument
US20020109089A1 (en) SEM provided with an adjustable final electrode in the electrostatic objective
JP3101114B2 (en) Scanning electron microscope
JP3343421B2 (en) Charged particle beam equipment
KR20220148087A (en) Charged particle beam system
JP3515063B2 (en) Scanning electron microscope
JP3132796B2 (en) Method for observing semiconductor device and scanning electron microscope used therefor
KR100502377B1 (en) Charge amount measuring method and shift amount measuring method of charged beam
JP3494152B2 (en) Scanning electron microscope
US20020079449A1 (en) SEM having a detector surface segmented into a number of separate regions
US2986634A (en) Method of examining the quality of electron-optical images and devices for carrying out this method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020723

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees