[go: up one dir, main page]

JPH07152008A - Measuring method of magnetic field and magneto-optical sensor using that - Google Patents

Measuring method of magnetic field and magneto-optical sensor using that

Info

Publication number
JPH07152008A
JPH07152008A JP29882293A JP29882293A JPH07152008A JP H07152008 A JPH07152008 A JP H07152008A JP 29882293 A JP29882293 A JP 29882293A JP 29882293 A JP29882293 A JP 29882293A JP H07152008 A JPH07152008 A JP H07152008A
Authority
JP
Japan
Prior art keywords
magnetic field
optical
magneto
rare earth
rig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29882293A
Other languages
Japanese (ja)
Inventor
Hiroichi Hamada
普一 濱田
Yukinobu Yoneyama
幸伸 米山
Nobuo Nakamura
宣夫 中村
Koichiro Maki
孝一郎 槙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP29882293A priority Critical patent/JPH07152008A/en
Publication of JPH07152008A publication Critical patent/JPH07152008A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a measuring method of a magnetic field of high intensity using RIG which is inexpensive and of high massproductivity, as a magneto- optical material, and to obtain a magneto-optical sensor using this method. CONSTITUTION:The intensity of a magnetic field is measured by using rare earth iron garnet(RIG) as a magneto-optical material. In this method, a magnetic field controlling member 24 made a magnetic material is disposed near the rare earth iron garnet to control the substantial intensity of the magnetic field applied on the RIG to smaller than the saturation magnetic field of the RIG. By constituting the detecting part for a magnetic field of the detecting terminal 23 using the RIG film as a magneto-optical material and the magnetic field controlling member 24 made a magnetic material, even a magnetic field of high intensity which can not be measured with a magneto-optical sensor using a conventional RIG film as a magneto-optical material can be measured. By using the RIG film, improvement in the massproductivity and the cost reduction of the sensor can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類鉄ガーネット膜
のファラデ−効果を利用した高磁界強度の測定方法と、
これを利用した光磁界センサに関する。 特に電力を供
給する送電線、受変電設備(以下キュ−ビクル)などの
高圧送電線や高圧配線回路の周囲に発生する高磁界強度
の測定により電流の大きさを検知する光磁界センサに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring a high magnetic field intensity using the Faraday effect of a rare earth iron garnet film,
The present invention relates to an optical magnetic field sensor utilizing this. In particular, the present invention relates to an optical magnetic field sensor that detects the magnitude of a current by measuring a high magnetic field strength generated around a high-voltage power transmission line such as a power transmission line that supplies power, a power receiving and transforming facility (hereinafter, cubicle), or a high-voltage wiring circuit.

【0002】[0002]

【従来の技術】高圧送電線や高圧配線回路等を介して発
電所から変電所、あるいは変電所から変電所へ電力が送
られる。この高圧送電線や高圧配線回路に流れる電流の
異常、例えば断線等の異常を検出する装置としてトラン
ス型電流センサが用いられてきた。このトランス型電流
センサは、鉄芯に絶縁線をコイル状に巻いたものであ
り、大型、大重量、絶縁性が悪いなど種々の問題点があ
った。近年このトランス型電流センサを光磁界センサに
置き換える計画が進められている。というのは、光磁界
センサであれば小型化、軽量化が可能であり、絶縁性に
優れているからである。
2. Description of the Related Art Electric power is transmitted from a power plant to a substation or from a substation to a substation via a high voltage power transmission line or a high voltage wiring circuit. A transformer-type current sensor has been used as a device for detecting an abnormality in the current flowing through the high-voltage power transmission line or the high-voltage wiring circuit, for example, an abnormality such as disconnection. This transformer-type current sensor has an iron core wound with an insulating wire in a coil shape, and has various problems such as large size, large weight, and poor insulation. In recent years, there are plans to replace the transformer type current sensor with an optical magnetic field sensor. This is because the optical magnetic field sensor can be made smaller and lighter and has excellent insulation properties.

【0003】この目的に用いられる電流測定用光磁界セ
ンサの基本構成を図16に示す。光源1から出射した光
は光ファイバ2を通りレンズ3、偏光ビ−ムスプリッタ
(以下PBSという)4を通過し直線偏光となり半波長
板5を通過し磁気光学材料6に入射する。ここで光は磁
気光学材料6を通過するとき、被測定磁界(以後磁界と
称する)の強さに応じて旋光されPBS7を通過するこ
とにより磁界の強さに応じた強度となり、レンズ8で光
ファイバ9に集光される。ここで半波長板5を用いるの
は、PBS4の通過光の偏光面を45度回転させ、通過
光とPBS7との相対偏光角度を45度(磁界0の状態
で)とし、センサの感度を最大とするためである。な
お、半波長板5と磁気光学材料6は配置を入れ換えても
特性上大きな問題はない。
FIG. 16 shows the basic structure of a current measuring optical magnetic field sensor used for this purpose. The light emitted from the light source 1 passes through the optical fiber 2, the lens 3, and the polarization beam splitter (hereinafter referred to as PBS) 4, becomes linearly polarized light, passes through the half-wave plate 5, and enters the magneto-optical material 6. Here, when the light passes through the magneto-optical material 6, the light is rotated according to the strength of the magnetic field to be measured (hereinafter referred to as the magnetic field), and passes through the PBS 7 to have the strength according to the strength of the magnetic field. It is focused on the fiber 9. Here, the half-wave plate 5 is used to rotate the polarization plane of the passing light of the PBS 4 by 45 degrees so that the relative polarization angle between the passing light and the PBS 7 is 45 degrees (when the magnetic field is 0), and the sensitivity of the sensor is maximum. This is because It should be noted that the half-wave plate 5 and the magneto-optical material 6 do not have a big problem in characteristics even if their positions are interchanged.

【0004】いま、I0を磁気光学材料6に入射する光
の強度、IをPBS7を通過した後の光強度、Hsを磁
気光学材料の飽和磁界強度、θをファラデー回転角、H
を(H>Hsの場合にはH=Hs)磁界の強度としたと
き、PBS7通過後の光の強度と磁界の強度との関係は
数1で示される。すなわち、光磁界センサは数1の関係
を利用するものである。
Now, I 0 is the intensity of light incident on the magneto-optical material 6, I is the light intensity after passing through the PBS 7, Hs is the saturation magnetic field intensity of the magneto-optical material, θ is the Faraday rotation angle, and H is
Where (H = Hs in the case of H> Hs) is the strength of the magnetic field, the relationship between the intensity of the light after passing through the PBS 7 and the strength of the magnetic field is expressed by Equation 1. That is, the optical magnetic field sensor utilizes the relationship of the equation (1).

【0005】[0005]

【数1】 I/I0=cos2(θ)+(H2/Hs2)・sin2(θ)## EQU1 ## I / I 0 = cos 2 (θ) + (H 2 / Hs 2 ) .sin 2 (θ)

【0006】なお、光磁界センサは、一般に図7に示し
たように光源1、検出部10、そして出力部11をそれ
ぞれ光ファイバ2,9で結合して構成される。検出部1
0は、図7の破線で囲んだ部分を、例えば、合成樹脂板
製の容器内に装着して作成する。そして、出力部11
は、光検出器12及び信号処理回路13とから構成す
る。そして、使用に際しては、磁界と磁気光学材料6を
通過する光の進路とが平行になるように検出端を設置し
ている。
The optical magnetic field sensor is generally constructed by connecting a light source 1, a detecting section 10 and an output section 11 with optical fibers 2 and 9, respectively, as shown in FIG. Detector 1
0 is created by mounting the part surrounded by the broken line in FIG. 7 in a container made of a synthetic resin plate, for example. And the output unit 11
Is composed of a photodetector 12 and a signal processing circuit 13. In use, the detection end is installed so that the magnetic field and the path of light passing through the magneto-optical material 6 are parallel to each other.

【0007】ところで、高電圧の受変電設備では、電線
中に流れる電流は約30000アンペアもあり、電線近
傍に発生する磁界の強度は約3000 Oeにもなる。
従って、この磁界の強度を測定するために光磁界センサ
を用いようとすれば、数1より分かるとおり、Hsが3
000 Oeを越える磁気光学材料を使用しなければな
らない。これを満足する磁気光学材料は鉛ガラスであ
る。
By the way, in the high-voltage power receiving and transforming equipment, the electric current flowing in the electric wire is about 30,000 amperes, and the strength of the magnetic field generated near the electric wire is about 3,000 Oe.
Therefore, if an optical magnetic field sensor is used to measure the strength of this magnetic field, Hs is 3
Magneto-optical materials in excess of 000 Oe must be used. A magneto-optical material satisfying this is lead glass.

【0008】しかしながら、鉛ガラスを用いて光磁気セ
ンサを構成すると、確かにこのような高磁場の検出に適
しているものの、量産性が悪く、かつθが小さいため、
装置の小型化がままならないという問題が発生する。
However, if the magneto-optical sensor is constructed by using lead glass, it is certainly suitable for detecting such a high magnetic field, but it is not suitable for mass production and θ is small.
There is a problem that the device cannot be downsized.

【0009】装置の小型化を達成するためにはθが大き
な磁気光学材料を用いることが必要である。大きなθを
持ち、かつ比較的安価で量産性の良い磁気光学材料とし
て希土類鉄ガーネット(以下「RIG」と示す。)が知
られている。そこで、このRIGを用いた光磁界センサ
を前記高強度の磁界の検出に用いることが試みられてい
る。しかしながら、この試みは必ずしも成功していな
い。というのは、RIGのHsは、組成にもよるが、高
々1500 Oeであるからである。
In order to reduce the size of the device, it is necessary to use a magneto-optical material having a large θ. Rare earth iron garnet (hereinafter referred to as “RIG”) is known as a magneto-optical material having a large θ, relatively inexpensive and good in mass productivity. Therefore, it has been attempted to use the optical magnetic field sensor using this RIG to detect the high-intensity magnetic field. However, this attempt has not always been successful. This is because the Hs of RIG depends on the composition but is at most 1500 Oe.

【0010】[0010]

【発明が解決しようとする課題】本発明は上記状況を考
慮してなされたものである。即ち、本発明は安価で量産
性の高いRIGを磁気光学材料に用いた高強度の磁場の
測定方法と、これを用いた光磁界センサの提供とを目的
とする。
The present invention has been made in consideration of the above situation. That is, an object of the present invention is to provide a method for measuring a high-strength magnetic field using an inexpensive and highly mass-producible RIG as a magneto-optical material, and an optical magnetic field sensor using the method.

【0011】[0011]

【課題を解決するための手段】上記課題を解決する本発
明の測定方法は、磁気光学材料として希土類鉄ガーネッ
トを用いて磁場の強度を測定する方法において、希土類
鉄ガーネット近傍に磁性体製の磁界調節部材を設け、希
土類鉄ガーネットにかかる磁界の実質的強度を、希土類
鉄ガーネットの飽和磁界強度未満とするものであり、こ
れを具現化する本発明の光磁界センサは、光源と、磁界
測定用検出部と、出力部とから基本的に構成される光磁
界センサにおいて、磁気測定用検出部が、検出端子と磁
性体製の磁界調節部材とから構成され、検出端子の必須
構成要素である磁気光学材料が希土類鉄ガーネットを用
いたものである。
The measuring method of the present invention for solving the above-mentioned problems is a method of measuring the strength of a magnetic field using a rare earth iron garnet as a magneto-optical material. An adjusting member is provided to make the substantial strength of the magnetic field applied to the rare earth iron garnet less than the saturation magnetic field strength of the rare earth iron garnet, and the optical magnetic field sensor of the present invention that embodies this is a light source and a magnetic field measuring device. In an optical magnetic field sensor basically composed of a detection unit and an output unit, the magnetic measurement detection unit is composed of a detection terminal and a magnetic field adjusting member made of a magnetic material, and is a magnetic element which is an essential component of the detection terminal. The optical material uses rare earth iron garnet.

【0012】[0012]

【作用】本発明に用いられる検出端子は、従来一般に用
いられているPBS、半波長板、希土類鉄ガーネット
膜、PBSをこの順に構成したものを用いて構成しても
良く、更に簡略化して希土類鉄ガーネット膜のみを用い
て構成しても良い。重要なことは希土類鉄ガーネット膜
が、必ず磁界中に配置されるようになっていることであ
る。
The detection terminal used in the present invention may be constituted by a PBS, a half-wave plate, a rare earth iron garnet film, and a PBS which are generally used in this order. You may comprise only an iron garnet film | membrane. Importantly, the rare earth iron garnet film is always arranged in the magnetic field.

【0013】本発明の光磁界センサの検出部は、検出端
子と磁性体製の磁界調節部材とから構成されており、例
えば、磁界調節部材が検出端子を覆う構造になっている
場合には、必ず検出端子の一部が露出、あるいは外部よ
りその表面が確認できる状態となっていなければならな
い。むろん、検出端子を構成する容器の一部を磁性体製
部材とし、これを磁界調節部材として用いても良い。
The detector of the optical magnetic field sensor of the present invention comprises a detection terminal and a magnetic field adjusting member made of a magnetic material. For example, when the magnetic field adjusting member has a structure covering the detection terminal, Be sure that a part of the detection terminal is exposed or the surface can be seen from the outside. Of course, a part of the container forming the detection terminal may be made of a magnetic material member, and this may be used as a magnetic field adjusting member.

【0014】検出部をこのように構成することにより、
検出部を磁界内に設置したとき、磁界調節部材により検
出部内に逆磁場が発生し、検出端子にかかる磁界強度が
減少する。この結果、このような検出部を希土類鉄ガー
ネットの飽和磁界強度Hsを大幅に越える磁界内に設置
しても、検出部内の希土類鉄ガーネットにかかる磁界強
度を前記Hs未満とすることが可能となる。よって、発
生させる逆磁場の大きさによっては、磁性体材質として
強磁性体を選択する。
By configuring the detector in this way,
When the detection unit is installed in the magnetic field, a reverse magnetic field is generated in the detection unit by the magnetic field adjustment member, and the magnetic field strength applied to the detection terminal is reduced. As a result, even if such a detector is installed in a magnetic field that greatly exceeds the saturation magnetic field strength Hs of the rare earth iron garnet, the magnetic field strength applied to the rare earth iron garnet in the detector can be less than the above Hs. . Therefore, a ferromagnetic material is selected as the magnetic material depending on the magnitude of the reverse magnetic field generated.

【0015】また、磁界調節部材は、有効に逆磁場を発
生させ、希土類鉄ガーネットにかかる磁界を減少できる
ものであれば良く、その限りにおいて形状を問わない。
むろん、磁界調節部材の諸元は、発生させる逆磁場の大
きさにより調節する。
The magnetic field adjusting member may be of any shape as long as it can effectively generate a reverse magnetic field and reduce the magnetic field applied to the rare earth iron garnet.
Of course, the specifications of the magnetic field adjusting member are adjusted according to the magnitude of the reverse magnetic field generated.

【0016】以上述べたように、本発明の方法、装置に
よれば、安価で量産容易な希土類鉄ガーネットを用い
て、希土類鉄ガーネットのHsを大幅に越える高い磁界
強度の測定が可能となる。
As described above, according to the method and apparatus of the present invention, it is possible to measure a high magnetic field strength significantly exceeding Hs of rare earth iron garnet by using the rare earth iron garnet which is inexpensive and easy to mass produce.

【0017】[0017]

【実施例】以下、実施例によりさらに具体的に説明す
る。 (実施例1)本発明により製作した光磁界センサの検出
部20の構成を図1,2に示す。図1は検出部20を上
から見た図であり、図2は同じ検出部を光ファイバー2
1,22側、即ち、光の入出射側から見た図である。こ
の検出部20は幅16mm×奥行き7mm×厚さ8の検
出端子23を厚さ1mmの純鉄の板(以下、単に「鉄
板」という。)で作成した外寸で幅20×奥行き11m
m×高さ12mmの磁界調節部材24内に設けたもので
ある。
EXAMPLES The present invention will be described in more detail below with reference to examples. (Embodiment 1) FIGS. 1 and 2 show the structure of a detection unit 20 of an optical magnetic field sensor manufactured according to the present invention. 1 is a view of the detection unit 20 as seen from above, and FIG. 2 shows the same detection unit as the optical fiber 2
It is the figure seen from the 1 and 22 side, ie, the light entrance and exit side. The detection unit 20 has a width of 20 mm and a depth of 11 m, which is formed by forming a detection terminal 23 having a width of 16 mm, a depth of 7 mm, and a thickness of 8 from a pure iron plate having a thickness of 1 mm (hereinafter, simply referred to as “iron plate”).
It is provided inside the magnetic field adjusting member 24 of m × height 12 mm.

【0018】検出端子23の要部を図3に示した。すな
わち、偏光子としてPBS25,26を、磁気光学材料
として厚さ約25μmの希土類鉄ガーネット膜(組成
(YbYb)5Fe3O12 以下「本RIG膜」と示す。)27を
用い、これらと半波長板28とをPBS25、半波長板
28、本RIG膜27、PBS26の順に合成樹脂板製
の容器内に取り付けて製作した検出端子である。なお、
PBS25,26は同一平面上に置きかつ45度配置に
するために半波長板28を本RIG膜27の直前に配置
した。
The main part of the detection terminal 23 is shown in FIG. That is, PBSs 25 and 26 are used as polarizers, and a rare earth iron garnet film (composition: about 25 μm thick) is used as a magneto-optical material.
(YbYb) 5 Fe 3 O 12 Hereinafter referred to as “this RIG film”. ) 27, and these and the half-wave plate 28 are attached in the order of the PBS 25, the half-wave plate 28, the RIG film 27, and the PBS 26 in a container made of a synthetic resin plate to manufacture a detection terminal. In addition,
The PBSs 25 and 26 were placed on the same plane and a half-wave plate 28 was placed immediately in front of the main RIG film 27 so as to be placed at 45 degrees.

【0019】本実施例の検出部20の使用に際しては、
検出部20と磁界方向とが図2おいて、磁界調節部材の
A面が磁界Hに対してgradHで定義される勾配ベク
トル方向で磁界が減少する方向になるように検出部20
を配置した。そして、光源(図示せず。)として波長
0.85μm光を発生する発光ダイオ−ドを用い、光源
より光ファイバ21に光を入射した。この光は、PBS
25により直線偏光とされ、半波長板28を介して本R
IG膜27に入射された。光は本RIG膜27を通過す
る際に、本RIG膜27にかかっている磁場の強度に応
じて旋光し、偏光面が回転される。その後、光はPBS
26を通過することにより前記磁場強度に対応した光量
に変換される。このPBS26の通過光は光ファイバ2
2を介してSiフォトダイオードを用いた光検出器(図
示せず。)に入射され、光検出器で光電変換された。こ
のようにして得られた電流信号を信号処理回路(図示せ
ず。)に入力した。そして、信号処理回路よりの出力信
号を電圧変換し、これを測定した。なお、このため測定
値は相対値となっている。このように構成された本実施
例の光磁界センサの検出部を磁界の中に設置し、磁界強
度と出力との関係を求めた。なお、本実施例で用いた本
RIG膜のHsは室温で1350 Oeであり、磁界強
度は±5000 Oeの範囲で変化させた。得られた結
果を図4のa1に示した。
When using the detecting section 20 of this embodiment,
In FIG. 2, the detecting unit 20 and the magnetic field direction are arranged such that the A surface of the magnetic field adjusting member is in a direction in which the magnetic field decreases in the gradient vector direction defined by gradH with respect to the magnetic field H.
Was placed. Then, as a light source (not shown), a light emitting diode which emits light having a wavelength of 0.85 μm was used, and light was incident on the optical fiber 21 from the light source. This light is PBS
It is made into linearly polarized light by 25, and the main R is transmitted through the half-wave plate 28.
It is incident on the IG film 27. When the light passes through the RIG film 27, the light is rotated according to the strength of the magnetic field applied to the RIG film 27, and the polarization plane is rotated. After that, the light is PBS
By passing through 26, it is converted into a light quantity corresponding to the magnetic field strength. The light passing through the PBS 26 is the optical fiber 2
The light was incident on a photodetector (not shown) using a Si photodiode via 2 and was photoelectrically converted by the photodetector. The current signal thus obtained was input to a signal processing circuit (not shown). Then, the output signal from the signal processing circuit was voltage-converted and measured. Therefore, the measured value is a relative value. The detection unit of the optical magnetic field sensor of this example having the above-described configuration was installed in the magnetic field, and the relationship between the magnetic field strength and the output was obtained. The Hs of the RIG film used in this example was 1350 Oe at room temperature, and the magnetic field strength was changed within a range of ± 5000 Oe. The obtained results are shown in a1 of FIG.

【0020】図4より分かる通り、磁界強度が±500
0 Oeの範囲内でも光磁界センサ出力とは磁界強度と
の直線性は保たれており、本実施例の光磁界センサが有
効であることが分かる。
As can be seen from FIG. 4, the magnetic field strength is ± 500.
Even in the range of 0 Oe, the linearity between the output of the optical magnetic field sensor and the magnetic field strength is maintained, and it can be seen that the optical magnetic field sensor of this embodiment is effective.

【0021】(実施例2)検出部20と磁界方向とが図
2おいて、磁界調節部材のA面が磁界Hに対してgra
dHで定義される勾配ベクトル方向で磁界が減少する方
向になるように検出部20を設置した。そして、その他
は実施例1と同じ装置を用い、同様にして光磁界センサ
の出力と磁界強度との関係を求めた。得られた結果を図
4のa2に示した。
(Embodiment 2) The detection unit 20 and the magnetic field direction are shown in FIG. 2, and the surface A of the magnetic field adjusting member is gra against the magnetic field H.
The detection unit 20 was installed so that the magnetic field decreased in the direction of the gradient vector defined by dH. Then, other than that, the same apparatus as in Example 1 was used, and the relationship between the output of the optical magnetic field sensor and the magnetic field strength was similarly obtained. The obtained results are shown in a2 of FIG.

【0022】図4より分かる通り、本実施例の使用方法
でも光磁界センサの出力と磁界強度との直線性は失われ
ていない。しかし、a1より傾きは緩やかであり、より
幅広い磁場強度の変化に対応できることが分かる。
As can be seen from FIG. 4, the linearity between the output of the optical magnetic field sensor and the magnetic field strength is not lost even in the method of use of this embodiment. However, the inclination is gentler than that of a1, and it can be seen that a wider range of changes in magnetic field strength can be accommodated.

【0023】又、図4のa1とa2との結果は、磁界発
生源となる電線等が2つある場合、両者からの磁界強度
が等しくなる中央部においても本発明の光磁界センサを
1つの発生源に向ければ、他方に比べて強い信号が得ら
れることを示しているといえる。
Further, the results of a1 and a2 in FIG. 4 indicate that when there are two electric wires or the like which are magnetic field generation sources, the optical magnetic field sensor of the present invention is used even in the central portion where the magnetic field strengths from both are equal. It can be said that this indicates that a stronger signal can be obtained from the source than the other.

【0024】(実施例3,4)検出端子の要部を図5の
ように、全反射プリズム31、偏光子32、本RIG膜
33、偏光子34、全反射プリズム35で、この順に配
置して構成した以外は実施例1,2と同様な光磁界セン
サを組み、同様にして光磁界センサの出力と磁界強度と
の関係を求めた(実施例3,4)。その結果、それぞれ
実施例1,2と同様に±5000 Oeの範囲では光磁
界センサ出力と磁界強度との間に良好な比例関係が見ら
れた。
(Examples 3 and 4) As shown in FIG. 5, the main parts of the detection terminal are a total reflection prism 31, a polarizer 32, a main RIG film 33, a polarizer 34, and a total reflection prism 35, which are arranged in this order. The same optical magnetic field sensor as in Examples 1 and 2 was assembled except that the above configuration was made, and the relationship between the output of the optical magnetic field sensor and the magnetic field strength was similarly obtained (Examples 3 and 4). As a result, as in Examples 1 and 2, respectively, a good proportional relationship was found between the output of the optical magnetic field sensor and the magnetic field strength in the range of ± 5000 Oe.

【0025】(実施例5〜14)磁界調節部材の構造
を、板状にしたもの(図6,実施例5)、開いたコの字
状にしたもの(図7,実施例6)、実施例1の磁界調節
部材の背面に板状の鉄板を設けたもの(図8,実施例
7)、コの字状磁界調節部材の両端に、互いに反対方向
になるように鉄板を取り付けたもの(図9,実施例
8)、角型筒状にしたもの(図10,実施例9)、4枚
の鉄板を一枚の鉄板の側面に取り付けたもの(図11,
実施例10)、円管状にしたもの(図12,実施例1
1)、開口部を持った球状にしたもの(図13,実施例
12)、円管の一部を切り裂いたものに鉄板を取り付け
たもの(図14,実施例13)、鉄板をΩ状に曲げ加工
したもの(図15,実施例14)を用いた以外は実施例
1と同様な光磁界センサを組み、実施例1と同様にして
光磁界センサの出力と磁界強度との関係を求めた。その
結果、実施例1と同様に±5000 Oeの範囲では光
磁界センサ出力と磁界強度との間に良好な比例関係が見
られた。
(Examples 5 to 14) The structure of the magnetic field adjusting member is a plate (FIG. 6, Example 5), an open U-shape (FIG. 7, Example 6), and One in which a plate-shaped iron plate is provided on the back surface of the magnetic field adjusting member of Example 1 (FIG. 8, Example 7), and one in which iron plates are attached in opposite directions to both ends of the U-shaped magnetic field adjusting member ( FIG. 9, Example 8), a rectangular tube (FIG. 10, Example 9), four iron plates attached to the side surface of one iron plate (FIG. 11,
Example 10), a tubular shape (FIG. 12, Example 1)
1), a spherical shape having an opening (FIG. 13, Example 12), a circular tube with a part cut away and an iron plate attached (FIG. 14, Example 13), and an iron plate formed into an Ω shape. An optical magnetic field sensor similar to that of Example 1 was assembled except that a bent product (FIG. 15, Example 14) was used, and the relationship between the output of the optical magnetic field sensor and the magnetic field strength was obtained in the same manner as in Example 1. . As a result, as in Example 1, a good proportional relationship was observed between the output of the optical magnetic field sensor and the magnetic field strength in the range of ± 5000 Oe.

【0026】(実施例15)検出端子を構成する容器の
6面の内、一面と、その両側面の3面を鉄板製とし、他
を合成樹脂板製とし、合成樹脂板の部分に、端子を構成
する磁気光学素子等の部材を取り付けたものを検出部と
した以外は実施例1と同様な光磁界センサを組み、実施
例1と同様にして光磁界センサの出力と磁界強度との関
係を求めた。その結果、実施例1と同様に±5000
Oeの範囲では光磁界センサ出力と磁界強度との間に良
好な比例関係が見られた。
(Embodiment 15) Of the six faces of the container constituting the detection terminal, one face and three faces on both sides thereof are made of iron plate and the other are made of synthetic resin plate. An optical magnetic field sensor similar to that of the first embodiment is assembled except that a member having a member such as a magneto-optical element constituting the above is used as the detecting unit, and the relationship between the output of the optical magnetic field sensor and the magnetic field strength is similar to the first embodiment. I asked. As a result, ± 5000 as in Example 1.
In the range of Oe, a good proportional relationship was found between the output of the optical magnetic field sensor and the magnetic field strength.

【0027】(実施例16,17)検出端子の要部を図
16の従来品と同様に、光ファイバ、レンズ、PBS、
半波長板、RIG膜、PBS、レンズ、光ファイバで、
この順に配置して構成した以外は実施例1,2と同様な
光磁界センサを組み、同様にして光磁界センサの出力と
磁界強度との関係を求めた(実施例6,7)。その結
果、それぞれ実施例1,2と同様に±5000 Oeの
範囲では光磁界センサ出力と磁界強度との間に良好な比
例関係が見られた。
(Examples 16 and 17) Similar to the conventional product shown in FIG. 16, the essential parts of the detection terminal are the optical fiber, lens, PBS, and
Half-wave plate, RIG film, PBS, lens, optical fiber,
Optical magnetic field sensors similar to those in Examples 1 and 2 were assembled except that they were arranged in this order, and the relationship between the output of the optical magnetic field sensor and the magnetic field strength was similarly obtained (Examples 6 and 7). As a result, as in Examples 1 and 2, respectively, a good proportional relationship was found between the output of the optical magnetic field sensor and the magnetic field strength in the range of ± 5000 Oe.

【0028】(従来例)実施例1の光磁界センサの検出
部の磁界調節部材を取り除き、以後は実施例1と同様に
して、光磁界センサ出力と磁界強度との関係を求めた。
得られた結果を図4のbに示した。
(Prior art example) The magnetic field adjusting member of the detecting portion of the optical magnetic field sensor of the first embodiment was removed, and the relationship between the optical magnetic field sensor output and the magnetic field strength was obtained in the same manner as in the first embodiment.
The obtained result is shown in b of FIG.

【0029】図4より分かる通り、±1350 Oe内
では良好な比例関係が見られるものの、この範囲をはず
れるとセンサ出力は一定値となり、センサとして機能し
ないことが分かる。
As can be seen from FIG. 4, although a good proportional relationship can be seen within ± 1350 Oe, if it deviates from this range, the sensor output becomes a constant value and it does not function as a sensor.

【0030】[0030]

【発明の効果】以上述べたように、本発明による光磁界
センサは、磁気光学材料としてRIG膜を用いた検出端
子と磁性体性の磁界調節部材とから磁界の検出部を構成
するため、従来のRIG膜を磁気光学材料として用いた
光磁界センサでは測定できない高強度の磁界も測定可能
となる。また、RIG膜を用いるため、量産性の向上と
低価格化が可能となる。
As described above, in the optical magnetic field sensor according to the present invention, the magnetic field detecting section is composed of the detecting terminal using the RIG film as the magneto-optical material and the magnetic field adjusting member of the magnetic material. It is also possible to measure a high-intensity magnetic field that cannot be measured by the optical magnetic field sensor using the RIG film as the magneto-optical material. Further, since the RIG film is used, mass productivity can be improved and cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に用いた光磁界センサの検出部
の構成を示した図である。
FIG. 1 is a diagram showing a configuration of a detection unit of an optical magnetic field sensor used in an example of the present invention.

【図2】図1の検出部を光の入出射側から見た図であ
る。
FIG. 2 is a diagram of the detection unit of FIG. 1 viewed from a light incident / emission side.

【図3】図1の検出部の検出端子の要部を示した図であ
り、PBS、半波長板、RIG膜、PBSから構成され
る。
3 is a diagram showing a main part of a detection terminal of the detection unit of FIG. 1, which is composed of a PBS, a half-wave plate, an RIG film, and a PBS.

【図4】実施例1,2従来例で得られた結果を示した図
であり、光磁界センサ出力と磁界強度との関係を示した
ものである。
FIG. 4 is a diagram showing the results obtained in Examples 1 and 2 and a conventional example, showing the relationship between the output of the optical magnetic field sensor and the magnetic field strength.

【図5】実施例3,4で用いた検出部の検出端子の要部
を示した図であり、全反射プリズム、偏光子、RIG
膜、偏光子、全反射プリズムで、この順に配置して構成
されたものである。
FIG. 5 is a diagram showing a main part of a detection terminal of a detection unit used in Examples 3 and 4, and a total reflection prism, a polarizer, and a RIG.
The film, the polarizer, and the total reflection prism are arranged in this order.

【図6】実施例5で用いた磁界調節部材の形状を示した
図である。
FIG. 6 is a view showing the shape of a magnetic field adjusting member used in Example 5.

【図7】実施例6で用いた磁界調節部材の形状を示した
図である。
FIG. 7 is a view showing the shape of a magnetic field adjusting member used in Example 6.

【図8】実施例7で用いた磁界調節部材の形状を示した
図である。
FIG. 8 is a view showing the shape of a magnetic field adjusting member used in Example 7.

【図9】実施例8で用いた磁界調節部材の形状を示した
図である。
FIG. 9 is a diagram showing the shape of a magnetic field adjusting member used in Example 8.

【図10】実施例9で用いた磁界調節部材の形状を示し
た図である。
FIG. 10 is a view showing the shape of a magnetic field adjusting member used in Example 9.

【図11】実施例10で用いた磁界調節部材の形状を示
した図である。
FIG. 11 is a view showing the shape of a magnetic field adjusting member used in Example 10.

【図12】実施例11で用いた磁界調節部材の形状を示
した図である。
FIG. 12 is a view showing the shape of a magnetic field adjusting member used in Example 11.

【図13】実施例12で用いた磁界調節部材の形状を示
した図である。
13 is a diagram showing the shape of a magnetic field adjusting member used in Example 12. FIG.

【図14】実施例13で用いた磁界調節部材の形状を示
した図である。
FIG. 14 is a view showing the shape of a magnetic field adjusting member used in Example 13.

【図15】実施例14で用いた磁界調節部材の形状を示
した図である。
FIG. 15 is a diagram showing the shape of a magnetic field adjusting member used in Example 14;

【図16】従来の電流測定用光磁界センサの基本構成示
した図である。
FIG. 16 is a diagram showing a basic configuration of a conventional optical magnetic field sensor for current measurement.

【符号の説明】[Explanation of symbols]

1−−−−−−光源 2,9−−−−光
ファイバ 3,8−−−−レンズ 4,7−−−−偏
光ビ−ムスプリッタ 5−−−−−−半波長板 6−−−−−−磁
気光学材料 10−−−−−−光検出器 11−−−−−−
信号処理回路 20−−−−−−検出部 21,22−−−
光ファイバー 23−−−−−−検出端子 24−−−−−−
磁界調節部材 25,26−−−PBS 27−−−−−−
RIG膜 28−−−−−−半波長板 31,35−−−
全反射プリズム 32,34−−−偏光子 33−−−−−−
RIG膜
1 -------- Light source 2,9 ---- Optical fiber 3,8 --- Lens 4,7 --- Polarization beam splitter 5 -------- Half wave plate 6 --- --- Magneto-optical material 10 ------ Photodetector 11 --------
Signal processing circuit 20 --- Detection unit 21,22 ---
Optical fiber 23 --- Detection terminal 24 --------
Magnetic field adjusting member 25, 26 --- PBS 27 --------
RIG film 28 ----- Half-wave plate 31,35 ---
Total reflection prism 32,34 --- Polarizer 33 --------
RIG film

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 磁気光学材料として希土類鉄ガーネッ
トを用いて磁場の強度を測定する方法において、希土類
鉄ガーネット近傍に磁性体製の磁界調節部材を設け、希
土類鉄ガーネットにかかる磁界の実質的強度を、希土類
鉄ガーネットの飽和磁界強度未満とすることを特徴とす
る磁界の測定方法。
1. A method for measuring the strength of a magnetic field using rare earth iron garnet as a magneto-optical material, wherein a magnetic field adjusting member made of a magnetic material is provided in the vicinity of the rare earth iron garnet, and the substantial strength of the magnetic field applied to the rare earth iron garnet is set. , A method of measuring a magnetic field, characterized in that it is less than the saturation magnetic field strength of rare earth iron garnet.
【請求項2】 磁気光学材料が希土類鉄ガーネットを
用いたものであることを特徴とする請求項1記載の磁界
の測定方法。
2. The method for measuring a magnetic field according to claim 1, wherein the magneto-optical material is a rare earth iron garnet.
【請求項3】 検出端子の一部が露出、あるいは外部
よりその表面が確認できる状態となるように、検出端子
が磁界調節部材で覆われていることを特徴とする請求項
1又は2記載の磁界の測定方法。
3. The detection terminal is covered with a magnetic field adjusting member so that a part of the detection terminal is exposed or the surface can be confirmed from the outside. Measuring method of magnetic field.
【請求項4】 検出端子を構成する容器の一部が磁性
体製部材としたことを特徴とする請求項1又は2記載の
磁界の測定方法。
4. The method for measuring a magnetic field according to claim 1, wherein a part of the container forming the detection terminal is made of a magnetic material.
【請求項5】 光源と、磁界測定用検出部と、出力部
とから基本的に構成される光磁界センサにおいて、磁気
測定用検出部が、磁気光学材料を用いた検出端子と磁性
体製の磁界調節部材とから構成されたことを特徴とする
光磁界センサ。
5. An optical magnetic field sensor basically composed of a light source, a magnetic field measuring detector, and an output unit, wherein the magnetic measuring detector is made of a magneto-optical material and a detection terminal and is made of a magnetic material. An optical magnetic field sensor comprising a magnetic field adjusting member.
【請求項6】 磁気光学材料が希土類鉄ガーネットを
用いたものであることを特徴とする請求項5記載の光磁
界センサ。
6. The optical magnetic field sensor according to claim 5, wherein the magneto-optical material uses rare earth iron garnet.
【請求項7】 検出端子の一部が露出、あるいは外部
よりその表面が確認できる状態となるように、検出端子
が磁界調節部材で覆われていることを特徴とする請求項
5又は6記載の光磁界センサ。
7. The detection terminal is covered with a magnetic field adjusting member so that a part of the detection terminal is exposed or the surface can be confirmed from the outside. Optical magnetic field sensor.
【請求項8】 検出端子を構成する容器の一部が磁性
体製部材としたことを特徴とする請求項5又は6記載の
光磁界センサ。
8. The optical magnetic field sensor according to claim 5, wherein a part of the container forming the detection terminal is a member made of a magnetic material.
JP29882293A 1993-11-30 1993-11-30 Measuring method of magnetic field and magneto-optical sensor using that Pending JPH07152008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29882293A JPH07152008A (en) 1993-11-30 1993-11-30 Measuring method of magnetic field and magneto-optical sensor using that

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29882293A JPH07152008A (en) 1993-11-30 1993-11-30 Measuring method of magnetic field and magneto-optical sensor using that

Publications (1)

Publication Number Publication Date
JPH07152008A true JPH07152008A (en) 1995-06-16

Family

ID=17864671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29882293A Pending JPH07152008A (en) 1993-11-30 1993-11-30 Measuring method of magnetic field and magneto-optical sensor using that

Country Status (1)

Country Link
JP (1) JPH07152008A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161773A1 (en) * 2012-04-23 2013-10-31 日立金属株式会社 Magnetic sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161773A1 (en) * 2012-04-23 2013-10-31 日立金属株式会社 Magnetic sensor device
CN104246525A (en) * 2012-04-23 2014-12-24 日立金属株式会社 Magnetic sensor device
JPWO2013161773A1 (en) * 2012-04-23 2015-12-24 日立金属株式会社 Magnetic sensor device
US9594130B2 (en) 2012-04-23 2017-03-14 Hitachi Metals, Ltd. Magnetic sensor device

Similar Documents

Publication Publication Date Title
US5635830A (en) Optical magnetic field sensor employing differently sized transmission lines
US4998063A (en) Fiber optic coupled magneto-optic sensor having a concave reflective focusing surface
JPH0475470B2 (en)
CA2160472A1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
JPH05500709A (en) Fiber optic device for measuring the strength of current
EP0774669B1 (en) Optical fiber magnetic-field sensor
US9146358B2 (en) Collimator holder for electro-optical sensor
JPH07152008A (en) Measuring method of magnetic field and magneto-optical sensor using that
KR100662744B1 (en) Optical high current / high voltage sensor
JPH0322595B2 (en)
JPH0424665B2 (en)
JP3166987B2 (en) Current sensor
JPS5938663A (en) Current measurement device using optical fiber
JPH0743392A (en) Lightning current measuring method
JP3135744B2 (en) Optical magnetic field sensor
JPH03216558A (en) Photocurrent sensor
Yoshida et al. Development of an optical current transducer using a flint glass fiber for a gas circuit breaker
JPS5957170A (en) Electric current measuring apparatus
JPH08327669A (en) Magnetooptical field sensor
JPH0980137A (en) Light magnetic field sensor
JPS62159053A (en) Optical current transformer
JPS60375A (en) Measuring device of magnetic field
JPH0980135A (en) Magneto-optical sensor
JPH07280849A (en) Optical current transformer
JPH0797116B2 (en) Fiber optic current sensor