[go: up one dir, main page]

JPH07150260A - Method for dehydrating bound water in pisolite ore - Google Patents

Method for dehydrating bound water in pisolite ore

Info

Publication number
JPH07150260A
JPH07150260A JP32576093A JP32576093A JPH07150260A JP H07150260 A JPH07150260 A JP H07150260A JP 32576093 A JP32576093 A JP 32576093A JP 32576093 A JP32576093 A JP 32576093A JP H07150260 A JPH07150260 A JP H07150260A
Authority
JP
Japan
Prior art keywords
ore
bound water
pisolite
irradiation
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32576093A
Other languages
Japanese (ja)
Inventor
Jun Okazaki
潤 岡崎
Yukihiro Hida
行博 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32576093A priority Critical patent/JPH07150260A/en
Publication of JPH07150260A publication Critical patent/JPH07150260A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

(57)【要約】 【目的】 ピソライト鉱石中の結合水を、鉱石自体を粉
化させることなく脱水する。 【構成】 ピソライト鉱石を鉱石ホッパー1からベルト
コンベアー2上に供給する。ベルト中央部に電磁波発生
装置4を設置し、移動している鉱石に電磁波を照射し、
300〜500℃の温度に加熱する。
(57) [Abstract] [Purpose] Bound water in pisolite ore is dehydrated without pulverizing the ore itself. [Configuration] Pisolite ore is supplied from the ore hopper 1 onto the belt conveyor 2. The electromagnetic wave generator 4 is installed in the central part of the belt to irradiate the moving ore with electromagnetic waves,
Heat to a temperature of 300-500 ° C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉製鉄法の原料であ
る鉄鉱石中の結合水の脱水方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for dehydrating bound water in iron ore, which is a raw material for ironmaking in a blast furnace.

【0002】[0002]

【従来の技術】ピソライト鉱石をそのまま焼結すると、
その鉱物特性、特にピソライト構造から焼結鉱の歩留、
強度が低下する。これは、ピソライト鉱石に含まれるゲ
ーサイト(Fe2 3 ・2H2 O)という鉱物が加熱さ
れることにより結合水の分解が起こり、ゲーサイト部に
大きな亀裂が生じ、その亀裂に生成した融液が浸透する
ため、焼結鉱の鉱物組織に粗大な気孔が多量に生成する
からである。
2. Description of the Related Art When a pisolite ore is directly sintered,
Yield of sinter from its mineral properties, especially the pisolite structure,
Strength is reduced. This is because when the mineral called goethite (Fe 2 O 3 · 2H 2 O) contained in pisolite ore is heated, the combined water is decomposed and a large crack is generated at the goethite part, and the melt generated in the crack is generated. This is because the liquid permeates and a large amount of coarse pores are generated in the mineral structure of the sinter.

【0003】その対策としては、ピソライト鉱石中の結
合水を焼成前にあらかじめ脱水し、その後焼成すればよ
い。ピソライト鉱石中の結合水の分解開始温度は約25
0℃、終了は約450℃であるから、この範囲あるいは
それ以上の温度で加熱すれば結合水は脱水できる。たと
えば特開平1−316427号公報には、鉄鉱石中の結
合水の脱水方法として鉱石を1200℃以上で直接加熱
する方法が記載されているが、まだ実用化はされていな
い。現在、焼結鉱を製造する前にピソライト鉱石を含め
鉱石の加熱処理は行われていない。
As a countermeasure, the bound water in the pisolite ore may be dehydrated in advance before firing and then fired. The decomposition temperature of the bound water in pisolite ore is about 25
Since the temperature is 0 ° C. and the temperature is about 450 ° C., the bound water can be dehydrated by heating at a temperature in this range or higher. For example, Japanese Unexamined Patent Publication No. 1-316427 describes a method of directly heating ore at 1200 ° C. or higher as a method for dehydrating bound water in iron ore, but it has not been put into practical use yet. At present, the heat treatment of ores including pisolite ore is not performed before the production of sinter.

【0004】[0004]

【発明が解決しようとする課題】特開平1−31642
7号公報記載のように、従来の鉱石中結合水の脱水方法
は1200℃以上の高温が必要であり、工業的に難し
い。また、それ以下の温度で加熱すると、結合水の脱水
時にゲーサイト部に大きな亀裂が生じる問題は解決でき
ない。この亀裂は鉱石内で空隙となり、焼結時に融液に
囲まれて粗大気孔を生成させる。そして、この粗大気孔
は焼結の歩留および強度を著しく低下させる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
As described in Japanese Patent No. 7, the conventional method for dehydrating bound water in ore requires a high temperature of 1200 ° C. or higher, which is industrially difficult. Further, if the heating is carried out at a temperature lower than that, the problem that large cracks occur in the goethite part during dehydration of bound water cannot be solved. These cracks form voids in the ore and are surrounded by the melt during sintering to generate coarse air holes. The coarse air holes significantly reduce the yield and strength of sintering.

【0005】本発明は、高温の熱源を必要とせず、かつ
鉱石中ゲーサイト部の熱割れを起こすことなくピソライ
ト鉱石中の結合水を脱水することを可能とする。
The present invention makes it possible to dehydrate the bound water in the pisolite ore without requiring a high temperature heat source and without causing the thermal cracking of the goethite portion in the ore.

【0006】[0006]

【課題を解決するための手段】本発明の要旨は、ピソラ
イト鉱石に電磁波を照射して300〜500℃の温度に
加熱することを特徴とするピソライト鉱石中結合水の脱
水方法であり、必要に応じピソライト鉱石を水平方向に
連続的に移動させながら電磁波を照射する。
The gist of the present invention is a method for dehydrating bound water in pisolite ore, characterized by irradiating the pisolite ore with electromagnetic waves to heat it to a temperature of 300 to 500 ° C. In response, electromagnetic waves are emitted while continuously moving the pisolite ore horizontally.

【0007】[0007]

【作用】本発明は、特定の周波数を持つ電磁波が水分子
同志の共振によりO−H結合を励起させ、発熱させるこ
とを利用して結合水を脱水するもので、電子レンジの加
熱原理と同様である。
The present invention dehydrates the bound water by utilizing the fact that electromagnetic waves having a specific frequency excite the OH bond due to the resonance of water molecules to generate heat, which is the same as the heating principle of a microwave oven. Is.

【0008】ピソライト鉱石の結合水はゲーサイト(F
2 3 ・2H2 O)として存在している。従来は結合
水の分解温度以上に直接加熱し、結合水を脱水していた
が、直接加熱は鉱石の表面と内部で温度分布ができるこ
とから脱水時にゲーサイト部に大きな亀裂が生じ、焼結
鉱の歩留および強度を低下させる原因になっていた。そ
れに比べ電磁波を用いると、加熱を鉱石内部まで均一に
行えるので亀裂を発生させずに脱水できる。加熱温度が
300℃未満では結合水の十分な脱水が行えず、また結
合水の脱水は500℃で終了するため、これを超えて加
熱する必要はない。
The bound water of pisolite ore is goethite (F
e 2 O 3 · 2H 2 O). Conventionally, the bound water was dehydrated by directly heating it above the decomposition temperature of the bound water, but direct heating causes a temperature distribution on the surface and inside of the ore, so large cracks occur in the goethite part during dehydration, and the sintered ore It was a cause of lowering the yield and strength. On the other hand, when electromagnetic waves are used, heating can be performed evenly inside the ore, and dehydration can be performed without causing cracks. If the heating temperature is lower than 300 ° C, the bound water cannot be sufficiently dehydrated, and since the dehydration of the bound water is completed at 500 ° C, it is not necessary to heat above the temperature.

【0009】図1を参照して本発明の詳細を説明する。
ピソライト鉱石の結合水の脱水は、ベルトコンベアー2
上で鉱石を移動させながら電磁波を照射することにより
生産性を向上させることができる。
The present invention will be described in detail with reference to FIG.
Dewatering of bound water of pisolite ore is done by conveyor belt 2
Productivity can be improved by irradiating electromagnetic waves while moving the ore above.

【0010】原料であるピソライト鉱石は鉱石ホッパー
1からベルトコンベアー2の上に供給される。ベルトの
速度は電磁波の照射時間で決まる。供給された鉱石は排
鉱部側へ移動し、カットオフプレート3で高さを調整す
る。電磁波発生装置4はベルトの中央に設置し、電磁波
照射開始位置P1 から電磁波照射終了位置P2 の範囲で
照射する。照射後の鉱石はそのまま鉱石貯鉱層へ送る。
The raw material pisolite ore is supplied from the ore hopper 1 onto the belt conveyor 2. The belt speed is determined by the electromagnetic wave irradiation time. The supplied ore moves to the mine ore side, and the height is adjusted by the cutoff plate 3. The electromagnetic wave generator 4 is installed in the center of the belt and irradiates the electromagnetic wave in the range from the electromagnetic wave irradiation start position P 1 to the electromagnetic wave irradiation end position P 2 . The ore after irradiation is sent to the ore storage layer as it is.

【0011】鉱石ホッパー1からの切り出し量は、生産
量に合わせて調整する。ベルトの幅は500mmで、積
み付けの鉱石層の厚みは100mm以下が好ましい。こ
れ以上になると脱水に要する照射時間が大幅に長くなっ
てしまうためである。電磁波出力は300W/t−or
e超30kW/t−ore以下であればよい。前者は結
合水の分解開始温度に匹敵する最低の出力、後者は短時
間で完全に結合水を除去できる出力だからである。ま
た、照射時間は特に5分超60分以下が望ましい。5分
以下では脱水による鉱石の減量が始まらず、60分超に
なると結合水がほとんど脱水するためである。また、照
射距離を示すP1 〜P2 間は50〜100cmが望まし
い。50cm未満では脱水効率が低下し、100cm超
になると設備的な制約により設置が困難となるからであ
る。
The amount cut out from the ore hopper 1 is adjusted according to the production amount. It is preferable that the width of the belt is 500 mm and the thickness of the ore layer to be stacked is 100 mm or less. This is because the irradiation time required for dehydration becomes significantly longer when the amount is longer than this. Electromagnetic wave output is 300W / t-or
It may be more than e and 30 kW / t-ore or less. This is because the former is the lowest output comparable to the decomposition start temperature of bound water, and the latter is the output that can completely remove bound water in a short time. The irradiation time is preferably more than 5 minutes and 60 minutes or less. This is because the ore weight loss due to dehydration does not start in 5 minutes or less and the bound water is almost dehydrated in 60 minutes or more. Further, it is desirable that the distance between P 1 and P 2 indicating the irradiation distance is 50 to 100 cm. If it is less than 50 cm, the dehydration efficiency will decrease, and if it exceeds 100 cm, installation will be difficult due to equipment restrictions.

【0012】ピソライト鉱石を300〜500℃の温度
に保持する際の鉱石の移動速度は、P1 〜P2 を5〜1
0cm/分で移動するのが望ましい。これ以上の速度で
は脱水効率が低下してしまい、この速度範囲以下では生
産速度が低下するためである。また、照射装置と鉱石と
の距離は20〜30cmが好ましい。これは、20cm
未満では鉱石全体に電磁波が均一に照射できないため脱
水効率が低下し、30cm超では照射密度が小さくなり
脱水効率が低下するためである。
When the pisolite ore is held at a temperature of 300 to 500 ° C., the ore moving speed is 5 to 1 for P 1 to P 2 .
It is desirable to move at 0 cm / min. This is because if the speed is higher than this, the dehydration efficiency is lowered, and if the speed is below this range, the production rate is lowered. The distance between the irradiation device and the ore is preferably 20 to 30 cm. This is 20 cm
If it is less than the above value, the entire ore cannot be uniformly irradiated with electromagnetic waves, so that the dehydration efficiency decreases, and if it exceeds 30 cm, the irradiation density becomes small and the dehydration efficiency decreases.

【0013】また、焼結鉱製造に使用する10mm以下
の鉱石には約6%程度の水を添加し、1mm以上の粒子
に1mm以下の粒子を造粒させて粒状の鉱石凝集体をつ
くる。これを擬似粒子という。この擬似粒子をつくるの
に必要な添加水は使用する鉱石で微妙に変化させる必要
があるため、脱水率を変化させる必要がある。焼結の燃
焼用コークス量は擬似粒子全体の水分(結合水も含む)
と大きな関係があるため、他の鉱石とのバランス等から
最適な結合水量を確保することが重要なためである。
Further, about 6% of water is added to an ore of 10 mm or less used for producing a sintered ore, and particles of 1 mm or less are granulated into particles of 1 mm or more to form a granular ore aggregate. This is called a pseudo particle. It is necessary to change the dehydration rate because the amount of added water required to produce these pseudo particles needs to be changed slightly depending on the ore used. The amount of coke for combustion during sintering is the water content of the entire pseudo particle (including bound water)
This is because it is important to secure the optimum amount of bound water in view of the balance with other ores.

【0014】照射対象のピソライト鉱石の粒度は10m
m以下である。ピソライト鉱石は全粒度にわたり結合水
を8%程度含有しているためである。
The particle size of the irradiated pisolite ore is 10 m
m or less. This is because the pisolite ore contains about 8% bound water over the entire grain size.

【0015】本発明で使用する電磁波の周波数は245
0MHzで、一般に使用されている電子レンジと同様で
ある。
The frequency of the electromagnetic wave used in the present invention is 245.
At 0 MHz, it is similar to a microwave oven that is generally used.

【0016】脱水効果は、結合水減量率(%)=(1−
(電磁波照射前鉱石の結合水含有率(wt%)−照射後
鉱石の結合水含有率(wt%))/電磁波照射前鉱石の
結合水含有率(wt%))×100で表し、この値が大
きいほど電磁波照射の効果が大きいことを示す。
The dewatering effect is the bound water reduction rate (%) = (1-
(Bound water content of ore before electromagnetic irradiation (wt%)-Bound water content of ore after irradiation (wt%)) / Bound water content of ore before electromagnetic irradiation (wt%)) x 100 The larger the value, the greater the effect of electromagnetic wave irradiation.

【0017】[0017]

【実施例1】豪州の代表的ピソライト鉱石(平均粒度=
3.3mm、結合水含有率=8.5wt%)を使用し
た。試料は、500ccビーカーに該鉱石を500g入
れたものである。
Example 1 A typical Australian pisolite ore (average grain size =
3.3 mm, bound water content = 8.5 wt%) was used. The sample is a 500 cc beaker containing 500 g of the ore.

【0018】図2に、照射時間を10分一定で電磁波を
照射した時の、電磁波出力に対する結合水減量率および
鉱石温度を示す。電磁波出力を大きくするほど鉱石温度
は上昇し、結合水減量率は高くなる。図3には、照射出
力を800W一定にした時の照射時間に対する結合水減
量率および鉱石温度を示す。鉱石温度は照射後5分から
上昇し始め、照射後10分で約700℃となり、結合水
減量率は約90%になり、60分では100%となっ
た。表1には、500℃加熱による脱水と本発明を実施
した場合の結合水減量率と実験前後の鉱石の平均粒子直
径の差を比較した結果を示す。同一の結合水減量率のも
とで、直接500℃に加熱した場合の粒子径差0.54
mmに対し、本発明では0.09mmとなり、粉化を起
こさず結合水を脱水することができた。図4に、鉱石層
を10cm/分で移動させながら照射幅を変化させた時
の結果を示した。脱水率は50〜100cmの位置で最
大を示した。
FIG. 2 shows the bound water loss rate and the ore temperature with respect to the electromagnetic wave output when the electromagnetic wave was irradiated for a fixed irradiation time of 10 minutes. The higher the electromagnetic wave output, the higher the ore temperature and the higher the bound water loss rate. FIG. 3 shows the bound water loss rate and the ore temperature with respect to the irradiation time when the irradiation output was kept constant at 800 W. The ore temperature began to rise 5 minutes after the irradiation, reached about 700 ° C. 10 minutes after the irradiation, and the bound water loss rate reached about 90% and reached 100% after 60 minutes. Table 1 shows the results of comparing the difference in the bound water loss rate when dehydration by heating at 500 ° C. and the present invention and the difference between the average particle diameters of the ores before and after the experiment. Difference in particle size when heated directly to 500 ° C under the same bound water loss rate 0.54
In the present invention, the combined water was 0.09 mm, and the bound water could be dehydrated without causing pulverization. FIG. 4 shows the results when the irradiation width was changed while moving the ore layer at 10 cm / min. The dehydration rate showed the maximum at a position of 50 to 100 cm.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【実施例2】図5に、ベルトコンベアー上を10cm/
分で移動させたピソライト鉱石に出力1000Wの電磁
波を10分間照射し、焼結実験を行った時の操業成績を
示す。この時のピソライト鉱石の使用量は配合原料中3
0%で、結合水減量率は95%である。電磁波の照射に
より焼結鉱の成品歩留は4%向上し、焼結時間は26分
から22分に短縮され、生産率は3%向上した。また、
結合水脱水時の熱補償分のコークスは2kg/t−焼結
鉱の低減となった。
[Embodiment 2] In FIG. 5, 10 cm /
The operation results when a sinter experiment is conducted by irradiating the pisolite ore, which has been moved for a minute, with an electromagnetic wave having an output of 1000 W for 10 minutes are shown. The amount of pisolite ore used at this time was 3 in the blended raw materials.
At 0%, the bound water loss rate is 95%. The product yield of the sintered ore was improved by 4% by the irradiation of electromagnetic waves, the sintering time was shortened from 26 minutes to 22 minutes, and the production rate was improved by 3%. Also,
The amount of coke for thermal compensation at the time of dehydration of bound water was reduced by 2 kg / t-sinter.

【0021】[0021]

【発明の効果】本発明により、ピソライト鉱石中の結合
水を鉱石を粉化させることなく脱水し、焼結操業成績の
向上を図ることができる。
According to the present invention, it is possible to improve the sintering operation result by dehydrating the bound water in the pisolite ore without pulverizing the ore.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施するための装置の例を示す図であ
る。
FIG. 1 shows an example of a device for implementing the invention.

【図2】照射時間一定の場合の電磁波出力と結合水減量
率および鉱石温度の関係を示す図である。
FIG. 2 is a diagram showing a relationship among an electromagnetic wave output, a bound water loss rate, and an ore temperature when irradiation time is constant.

【図3】照射出力一定の場合の照射時間と結合水減量率
および鉱石温度の関係を示す図である。
FIG. 3 is a diagram showing a relationship between an irradiation time, a bound water reduction rate, and an ore temperature when the irradiation output is constant.

【図4】照射出力および鉱石移動速度一定の場合の照射
距離と結合水減量率の関係を示す図である。
FIG. 4 is a diagram showing a relationship between an irradiation distance and a bound water reduction rate when the irradiation output and the ore moving speed are constant.

【図5】電磁波照射により脱水したピソライト鉱石を用
いた焼結操業の結果を示す図である。
FIG. 5 is a diagram showing a result of a sintering operation using pisolite ore dehydrated by electromagnetic wave irradiation.

【符号の説明】[Explanation of symbols]

1 鉱石ホッパー 2 ベルトコンベアー 3 カットオフプレート 4 電磁波発生装置 P1 電磁波照射開始位置 P2 電磁波照射終了位置1 ore hopper 2 belt conveyor 3 cut-off plate 4 electromagnetic wave generator P 1 electromagnetic wave irradiation start position P 2 electromagnetic wave irradiation end position

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ピソライト鉱石に電磁波を照射して30
0〜500℃の温度に加熱することを特徴とするピソラ
イト鉱石中結合水の脱水方法。
1. A method for irradiating a pisolite ore with an electromagnetic wave to obtain 30
A method for dehydrating bound water in pisolite ore, which comprises heating to a temperature of 0 to 500 ° C.
【請求項2】 前記ピソライト鉱石を水平方向に連続的
に移動させながら電磁波を照射することを特徴とする請
求項1記載のピソライト鉱石中結合水の脱水方法。
2. The method for dehydrating bound water in pisolite ore according to claim 1, wherein the pisolite ore is continuously moved in a horizontal direction and the electromagnetic wave is applied thereto.
JP32576093A 1993-12-01 1993-12-01 Method for dehydrating bound water in pisolite ore Withdrawn JPH07150260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32576093A JPH07150260A (en) 1993-12-01 1993-12-01 Method for dehydrating bound water in pisolite ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32576093A JPH07150260A (en) 1993-12-01 1993-12-01 Method for dehydrating bound water in pisolite ore

Publications (1)

Publication Number Publication Date
JPH07150260A true JPH07150260A (en) 1995-06-13

Family

ID=18180323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32576093A Withdrawn JPH07150260A (en) 1993-12-01 1993-12-01 Method for dehydrating bound water in pisolite ore

Country Status (1)

Country Link
JP (1) JPH07150260A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2009074107A (en) * 2007-09-18 2009-04-09 Nippon Steel Corp Pre-treatment method for high crystal water ore
JP2010168627A (en) * 2009-01-23 2010-08-05 Nippon Yakin Kogyo Co Ltd Method for dehydrating hydrous valuable metal-containing substance using microwave
JP2013119667A (en) * 2011-12-09 2013-06-17 Jfe Steel Corp Pretreatment method of ore
JP2016151047A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Method of drying iron production auxiliary material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100150A (en) * 2005-10-03 2007-04-19 Jfe Steel Kk Method for producing sintered ore
JP2009074107A (en) * 2007-09-18 2009-04-09 Nippon Steel Corp Pre-treatment method for high crystal water ore
JP2010168627A (en) * 2009-01-23 2010-08-05 Nippon Yakin Kogyo Co Ltd Method for dehydrating hydrous valuable metal-containing substance using microwave
JP2013119667A (en) * 2011-12-09 2013-06-17 Jfe Steel Corp Pretreatment method of ore
JP2016151047A (en) * 2015-02-18 2016-08-22 Jfeスチール株式会社 Method of drying iron production auxiliary material

Similar Documents

Publication Publication Date Title
AU2007291924B2 (en) Treatment of green pellets using microwave energy
EP3186210A1 (en) Method for producing a carbonate bonded, press-moulded article
JP5315659B2 (en) Method for producing sintered ore
KR20140024272A (en) Systems and methods for recycling steelmaking converter exhaust residue and products made thereby
CN107208977A (en) Sintered ore manufacturing equipment and manufacture method
JPH07150260A (en) Method for dehydrating bound water in pisolite ore
KR100217892B1 (en) Sintered steel manufacturing process
CN104661795B (en) The rapid curing of resin-bonded emery wheel
US1985526A (en) Heat treatment of diatomaceous earth
KR101773132B1 (en) Manufacturing method of ferrosilicon from silicon sludge and millscale and ferrosilicon manufactured thereby
KR101034955B1 (en) Sintered ore blend material moisture removal device and method
JP2019077905A (en) Smelting method of oxide ore
JPH07268494A (en) Method of agglomeration of ore by microwave irradiation
JP3273275B2 (en) Sinter production method
JP2022039966A (en) Manufacturing method of sintered ore and production apparatus of sintered ore
TW200307756A (en) Method for making reduced iron
KR102510420B1 (en) Method for upgrading low grade manganese ore
CN116556135B (en) Vehicle-mounted asphalt recycling heating furnace
JPH05339654A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JPS6313475B2 (en)
RU2214471C2 (en) Method of refining chromium or ferrochromium from nitrogen
RU2006344C1 (en) Method for production of iron powder of low apparent density
RU2296105C1 (en) Method for preparing magnesium oxide-base products
KR101311954B1 (en) Process for producing ore agglomerates with carbonaceous material incorporated therein
CN211664970U (en) Aluminum mud and aluminum ash recycling device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010206