[go: up one dir, main page]

JPH07147463A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH07147463A
JPH07147463A JP5321064A JP32106493A JPH07147463A JP H07147463 A JPH07147463 A JP H07147463A JP 5321064 A JP5321064 A JP 5321064A JP 32106493 A JP32106493 A JP 32106493A JP H07147463 A JPH07147463 A JP H07147463A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser
cross
elements
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5321064A
Other languages
Japanese (ja)
Other versions
JP3240794B2 (en
Inventor
Katsunori Abe
克則 安部
Yuji Kimura
裕治 木村
Kinya Atsumi
欣也 渥美
Yoshiki Ueno
祥樹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP32106493A priority Critical patent/JP3240794B2/en
Publication of JPH07147463A publication Critical patent/JPH07147463A/en
Application granted granted Critical
Publication of JP3240794B2 publication Critical patent/JP3240794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a beam having the cross-section of desired circular shape or approximate to a circle by a method wherein the radiation of beam of each semiconductor laser element is formed in the same direction in parallel with each other, and the angle of element arrangement and the shape of compound beam cross-section are specified. CONSTITUTION:The beam radiation of semiconductor laser elements 11 and 12 is brought into the same direction in parallel, and the angle of normal line of the semiconductor laser elements 11 and 12 is formed in element arrangement of 180/m (deg). The shape of cross section of the compound beam formed by compounding all beams is made at about 2n symmetric by rotation (n=2, 3...). Also, the beam in the direction of the same major axis is formed by the semiconductor laser elements 11 and 12, and the element number for each angle of beam is formed in the same number. At this point, the elements 11 and 12 are adhered on a copper heat sink 2 having a gold-plated chip stand having the angle of 90 deg.. Accordingly, the cross section of beam can be brought close to a circle which can be handled more easily than stacking or arranging in lateral direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体レーザに関し、
特に、複数の半導体レーザ素子により大出力のビームを
得て、レーザレーダシステムやロボットアイなどに利用
される半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser,
In particular, the present invention relates to a semiconductor laser used for a laser radar system, a robot eye, etc., by obtaining a high-power beam with a plurality of semiconductor laser elements.

【0002】[0002]

【従来の技術】近年、半導体レーザを用いて、自動車間
の距離を計測し、車間距離を一定に保ったり、前方の車
に接近しすぎた場合に警報を発するようなレーダシステ
ムが検討されている。このようなシステムでは、100m程
の先の物体を検知する必要があり、半導体レーザとして
は、パルス駆動で40〜80W の光出力が必要とされる。し
かし現在、一般に市販されている1チップの半導体レー
ザでは、最大でも30W 程度のものしか得られていない。
従って大出力を得るために、1チップレーザを縦に積み
重ねたスタック型レーザ(図9)、または横に並べたア
レイ型レーザとして供給されている。
2. Description of the Related Art In recent years, a radar system has been studied which uses a semiconductor laser to measure the distance between cars and keeps the car-to-car distance constant or gives an alarm when the car ahead is too close. There is. In such a system, it is necessary to detect an object about 100 m ahead, and as a semiconductor laser, a pulsed optical output of 40 to 80 W is required. However, at present, the commercially available one-chip semiconductor laser can obtain only a maximum of about 30 W.
Therefore, in order to obtain a large output, it is supplied as a stack type laser in which one-chip lasers are vertically stacked (FIG. 9) or an array type laser in which they are arranged side by side.

【0003】また、上記システムにおいて、レーザ光ビ
ームを所望の広がり角を持つ範囲に集光するために光学
レンズが用いられる。しかし、もともと1チップのレー
ザビームの断面形状が光の回折効果によって図8に示す
ように発光層の面に垂直方向に長い楕円形であり、それ
を重ねた形状になるため、上記のスタック型レーザでは
ビーム形状はより垂直方向に広がったビーム形状となっ
ている。
Further, in the above system, an optical lens is used to focus the laser light beam in a range having a desired spread angle. However, the cross-sectional shape of the laser beam of one chip is originally an ellipse that is long in the direction perpendicular to the surface of the light emitting layer due to the diffraction effect of light, and the shape is a stack of the elliptical shapes. The laser beam has a beam shape that spreads more vertically.

【0004】[0004]

【発明が解決しようとする課題】レンズの設計上および
制作上、半導体レーザのビームの断面形状は円形が取扱
いやすく円形断面ビームが望ましいが、しかしながら、
上記のようなスタック型レーザのビーム形状では、所望
の広がりのビームとするために用いる光学レンズは設計
および製造が非常に難しいという問題がある。特開昭55
-132091 号公報では、レーザ発光層を横に並べたアレイ
型レーザでビーム形状を円形に近づける工夫が提案され
ている(図10)が、垂直方向のビーム広がり角は水平
方向の2〜3倍もあり、単に横に並べるだけでは円形に
近づけることはできず、また光学レンズで広がりの格差
を是正することも難しく、目的は充分達成されていな
い。ビーム断面形状としては、光学的に取扱いが簡単に
なることから、円形が望ましい。従って、本発明の目的
は、望ましい円形または円形により近い断面のビームを
得るための半導体レーザを提供することである。
In designing and manufacturing a lens, it is desirable to use a circular cross-sectional beam as the cross-sectional shape of the beam of the semiconductor laser, which is easy to handle.
In the beam shape of the stack type laser as described above, there is a problem that an optical lens used for forming a beam having a desired spread is very difficult to design and manufacture. JP 55
-132091 proposes a method of making the beam shape closer to a circular shape by an array type laser in which the laser emitting layers are arranged side by side (Fig. 10), but the beam divergence angle in the vertical direction is 2-3 times that in the horizontal direction. Therefore, it is not possible to achieve a circular shape by simply arranging them side by side, and it is difficult to correct the spread difference with an optical lens. As the beam cross-sectional shape, a circular shape is desirable because it is optically easy to handle. Therefore, it is an object of the present invention to provide a semiconductor laser for obtaining a desired circular or near circular cross-section beam.

【0005】[0005]

【課題を解決するための手段】上記の課題を解決するた
め本発明の構成は、ビーム断面が略楕円形状であって、
該略楕円形状の長軸がレーザ発光層面に垂直な法線方向
となる発光層を持つ半導体レーザ素子を複数用いた半導
体レーザにおいて、前記各半導体レーザ素子のビーム放
射方向を同一方向かつ平行にし、前記各半導体レーザ素
子の前記法線のなす角度を180/n(deg)とした素子配置で
あり、全ビームを合成した合成ビーム断面形状が略2n回
転対称(n=2,3,…) となっていることである。また関連
発明の構成は、複数の半導体レーザ素子で同一長軸方向
のビームを構成し、前記各角度のビームごとに対する素
子数を同一個数としたことを特徴とする。
In order to solve the above-mentioned problems, the structure of the present invention has a beam cross section of a substantially elliptical shape,
In a semiconductor laser using a plurality of semiconductor laser elements having a light emitting layer in which the major axis of the substantially elliptical shape is a normal direction perpendicular to the laser light emitting layer surface, the beam emission directions of the respective semiconductor laser elements are the same direction and parallel, The semiconductor laser device has an element arrangement in which the angle formed by the normal line is 180 / n (deg), and the combined beam cross-sectional shape obtained by combining all the beams is approximately 2n rotational symmetry (n = 2,3, ...). It has become. Further, the structure of the related invention is characterized in that a plurality of semiconductor laser elements form a beam in the same major axis direction, and the number of elements for each beam at each of the angles is the same.

【0006】本発明の特徴ある別の構成はさらに、正m
角柱(m=3,4,…) の各側面、もしくは正m角孔の各内側
面に前記半導体レーザ素子が配置され、前記合成ビーム
断面形状が略2m回対称となっていることである。
Another feature of the present invention is that the positive m
The semiconductor laser element is arranged on each side surface of a prism (m = 3, 4, ...) Or on each inner surface of a regular m square hole, and the combined beam cross-sectional shape is symmetrical about 2m times.

【0007】[0007]

【作用および発明の効果】レーザの発光層面を、角度を
持たせた配置とすることにより、発光層に依存している
ビーム断面の分布に角度を持たせることになり、個々の
ビーム断面が略楕円形状でほぼ2回対称であることか
ら、合成されたビームの断面形状は、90°の素子配置の
場合で略4回対称、60°の素子配置の場合で略6回対称
となり、数個のレーザ素子で合成ビーム断面形状を多回
転対称にすることができる。さらに角度をわずかずつず
らして、必要個数レーザ素子を用いることで、より多回
転対称の合成ビームが得られる。従ってビームを積み重
ねたり、単に横に並べるよりもビーム断面形状を取扱や
すい円形に近づけることができる。また、各角度ごとの
レーザ素子の数を同一にすることでビーム強度の分布も
より均等になり、制御しやすいレーザビームが得られ
る。さらに個々のレーザ素子を別々に発光させることで
ビーム強度に分布を有する特徴を持たせることもでき
る。
[Advantageous Effects of the Invention and Effects of the Invention] By arranging the light emitting layer surface of the laser with an angle, the distribution of the beam cross section depending on the light emitting layer has an angle, and each beam cross section is substantially Since the elliptical shape is almost 2-fold symmetrical, the cross-sectional shape of the combined beam is approximately 4-fold symmetrical in the case of 90 ° element arrangement and approximately 6-fold symmetrical in the case of 60 ° element arrangement. With this laser element, the cross-sectional shape of the composite beam can be made multi-rotationally symmetrical. Further, by using the required number of laser elements by slightly shifting the angle, a more rotationally symmetric composite beam can be obtained. Therefore, the beam cross-sectional shape can be approximated to a circular shape that is easy to handle, rather than stacking the beams or simply arranging them side by side. Also, by making the number of laser elements the same for each angle, the distribution of the beam intensity becomes more uniform, and a laser beam that is easy to control can be obtained. Further, it is possible to give a characteristic that the beam intensity has a distribution by making each laser element emit light separately.

【0008】[0008]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は半導体レーザ素子2個11、12を、発
光層面法線(図1のv、通常は半導体基板面に垂直な方
向)に90°の角度を持たせた直交ビームレーザの光射出
方向に垂直な面をみた断面図で、素子11、12は、金
メッキを表面に施した90°の角度をなすチップ台を有す
る銅製のヒートシンク2上に、図示しないロウ材を用い
て接着されている。各素子には外部からの電力を供給す
る金ワイヤ3が電極リード線として各素子の上面に接続
され、銅製ヒートシンク2が他の電極の一部を構成して
いる。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 shows two semiconductor laser elements 11 and 12 in the light emission direction of an orthogonal beam laser in which an angle of 90 ° is made to a normal to a light emitting layer surface (v in FIG. 1, usually a direction perpendicular to a semiconductor substrate surface). In a cross-sectional view of a vertical plane, the elements 11 and 12 are bonded by using a brazing material (not shown) on a copper heat sink 2 having a chip base having a 90 ° angle with gold plating on the surface. A gold wire 3 for supplying electric power from the outside to each element is connected to the upper surface of each element as an electrode lead wire, and a copper heat sink 2 constitutes a part of another electrode.

【0009】各半導体レーザ素子は周知の構造で、例え
ばn型電極を裏面に構成したn−GaAs基板の上にス
トライプ状の多量子井戸層とp型電極を積層した、断面
が図1に示すレーザ素子11、12のような構造で、p
型電極の上に金ワイヤで導通がとられるのが普通であ
る。用いた半導体レーザ素子の大きさは、およそ 500μ
m程度の大きさであり、従って銅製ヒートシンクの大き
さも、1〜2mm程度の大きさである。チップが大きいも
のであれば、チップ台を構成する銅製ヒートシンクも大
きいもので構成されることになる。
Each semiconductor laser device has a well-known structure, for example, a striped multi-quantum well layer and a p-type electrode are laminated on an n-GaAs substrate having an n-type electrode on the back surface, and its cross section is shown in FIG. With a structure like the laser elements 11 and 12, p
It is common to have a gold wire over the mold electrode. The size of the semiconductor laser device used is approximately 500μ.
Therefore, the size of the copper heat sink is also about 1 to 2 mm. If the chip is large, the copper heat sink that constitutes the chip base will also be large.

【0010】図1の構成を形成するには、通常良く知ら
れた半導体レーザチップの製造方法によりレーザ素子1
1、12を形成したのち、素子の上下に電極を形成し、
図1に示すような銅製のヒートシンク2のチップ台に金
メッキを施した上に、図示しないロウ材で真空蒸着法に
より接着する。なお、発明者らはロウ材としてSn/Auの
膜を用いた。半導体レーザチップ11、12は斜めに配
置されるので、ダイボンダ装置で該素子11、12に荷
重を加えながら、約 400℃の温度でロウ材を溶融せしめ
て、ヒートシンク2に固着する。そしてレーザチップ上
部に金(Au)製のワイヤ3をワイヤボンディング装置で接
合し、パッケージに入れてこの直交ビームレーザを完成
する。
In order to form the structure of FIG. 1, the laser device 1 is manufactured by a well-known method for manufacturing a semiconductor laser chip.
After forming 1 and 12, electrodes are formed above and below the element,
A chip base of a copper heat sink 2 as shown in FIG. 1 is plated with gold and then bonded by a vacuum evaporation method with a brazing material (not shown). The inventors used a Sn / Au film as the brazing material. Since the semiconductor laser chips 11 and 12 are arranged obliquely, the brazing material is melted at a temperature of about 400 ° C. and fixed to the heat sink 2 while applying a load to the elements 11 and 12 by the die bonder device. Then, a wire 3 made of gold (Au) is bonded to the upper part of the laser chip by a wire bonding device and put in a package to complete this orthogonal beam laser.

【0011】この直交ビームレーザから放射されるレー
ザビームは、名称の通りお互いに90°異なったビーム分
布を持つ個々のレーザ素子からのビームが重なり合っ
て、図2に示すような4回対称の断面を有するビームと
なる。特に重なり合った中央部分では、より円形に近い
形状で強度が倍になった状態となる。厳密には、レーザ
チップ近傍では光軸が異なるので重なりがずれた状態で
あるが、この光軸の差は大きくて数ミリ程度のオーダー
であり、数cm以上離れたビーム実用領域では、この光軸
差は無視できる。
The laser beam emitted from this orthogonal beam laser is a cross section of four-fold symmetry as shown in FIG. 2, in which beams from individual laser elements having beam distributions different from each other by 90 ° overlap each other as the name implies. Beam. In particular, in the overlapping central portions, the strength is doubled with a more circular shape. Strictly speaking, since the optical axes are different near the laser chip, the overlap is deviated, but the difference in the optical axes is on the order of several millimeters at the most, and in the practical beam area several cm or more, The axis difference can be ignored.

【0012】(第二実施例)さらに、図3に示したよう
に、レーザチップの発光層面法線の成す角度が60°で、
3個のチップを用いてビームを形成すると、図7のよう
な6回対称の断面のビームが得られ、個々のビームの重
なり部分は3倍の強度で、直交レーザビームよりもより
円形に近いビーム断面となる。従ってさらに多回転対称
に構成されると、ビームの重なり部分は、より強い光度
で円形に近づく。
(Second Embodiment) Further, as shown in FIG. 3, the angle formed by the normal to the light emitting layer surface of the laser chip is 60 °,
When a beam is formed using three chips, a beam having a six-fold symmetric cross section as shown in FIG. 7 is obtained, and the overlapping portion of the individual beams has a triple intensity, and is closer to a circular shape than the orthogonal laser beams. Beam cross section. Therefore, when it is configured to be more rotationally symmetric, the overlapping portion of the beams approaches a circular shape with higher luminous intensity.

【0013】(第三実施例)また図5(a) に示すよう
に、直方体の各側面に半導体レーザ素子を配置する場
合、各面に一つずつであると、図5(a) で左右の素子か
らのビームは同一分布のビーム断面であるので、重なり
合った際に倍の強度になるが、上部の素子のビームは素
子一つ分の強度しか得られないためビームの強度分布が
アンバランスになる。そこで上部の素子をスタック型
(積層型)のように2段にして、各方向の素子の個数を
同一にすることで均質な強力なビームを得ることができ
る。図5(b)の場合はヒートシンクが正方角孔の場合で
ある。この構成では、そのままでは半導体レーザ素子を
直接接合できないので、ヒートシンクを組み合わせて構
成する。この場合は半導体レーザ素子がより近接する配
置となるので光軸の平行度が高いという利点がある。
(Third Embodiment) Further, as shown in FIG. 5 (a), when the semiconductor laser elements are arranged on each side surface of the rectangular parallelepiped, if one semiconductor laser element is provided on each side, it is left and right in FIG. 5 (a). Since the beam from the element has the same cross section of the beam, the intensity of the beam is doubled when they are overlapped, but the beam of the upper element can only obtain the intensity of one element, so the beam intensity distribution is unbalanced. become. Therefore, a uniform strong beam can be obtained by forming the upper element in two stages such as a stack type (stacking type) and making the number of elements in each direction the same. In the case of FIG. 5B, the heat sink is a square hole. In this configuration, the semiconductor laser element cannot be directly bonded as it is, and therefore the heat sink is combined. In this case, since the semiconductor laser elements are arranged closer to each other, there is an advantage that the parallelism of the optical axes is high.

【0014】(第四実施例)正六角柱のヒートシンクの
側面に半導体レーザ素子を配置する場合は、略6回対称
のビームが得られる(図6(a))。この場合は第二実施例
のヒートシンクを合成した形となる。素子の個数が多く
なるので発熱処理の問題が発生するが、レーザ素子の発
熱性や使用環境等で発熱の問題をクリアできれば、正多
角形配置はビームの分布のバランスがよい。また、正六
角孔のヒートシンクの内壁に半導体レーザ素子を配置す
る場合も同様で(図6(b))、この場合も角柱のヒートシ
ンクよりもレーザ素子が近接する配置となり、光軸の平
行度が高くとれてより望ましい。このいずれの場合も、
それぞれの面の素子をスタックさせてビームの強度を高
めたり、いずれかのレーザ素子を選択して発光させるな
どビーム分布を変更することをしても構わない。
(Fourth Embodiment) When a semiconductor laser device is arranged on the side surface of a regular hexagonal prism heat sink, a beam of approximately six-fold symmetry is obtained (FIG. 6 (a)). In this case, the heat sink of the second embodiment is combined. Since the number of elements increases, the problem of heat treatment occurs. However, if the problem of heat generation can be cleared by the heat generation property of the laser element and the usage environment, the regular polygonal arrangement has a good beam distribution balance. The same applies to the case where the semiconductor laser element is arranged on the inner wall of the regular hexagonal heat sink (FIG. 6 (b)). In this case as well, the laser element is arranged closer to the prismatic heat sink, and the parallelism of the optical axes is reduced. The higher the cost, the more desirable. In either case,
The beam distribution may be changed by stacking the elements on each surface to increase the intensity of the beam or by selecting one of the laser elements to emit light.

【0015】同様に、より多角形の柱形状、多角形の孔
を形成するヒートシンクに半導体レーザ素子を配置させ
て、より円形に近い多回転対称のレーザビームが得られ
る。さらにその場合にレーザ素子をスタックさせてより
強いビーム強度を得ることもできる。あるいは素子を横
に並べる構成でも構わない。
Similarly, a semiconductor laser device is arranged on a heat sink having a more polygonal columnar shape and polygonal holes, and a multi-rotationally symmetric laser beam having a more circular shape can be obtained. Further, in that case, the laser elements can be stacked to obtain a stronger beam intensity. Alternatively, the elements may be arranged side by side.

【0016】以上のように、半導体レーザ素子の発光層
面法線が角度をもって配置され、各素子からのビームが
合成されると、回転対称の断面をもつレーザビームが得
られて、取扱やすい半導体レーザを得ることができる。
As described above, when the light emitting layer surface normals of the semiconductor laser device are arranged at an angle and the beams from the respective devices are combined, a laser beam having a rotationally symmetrical cross section is obtained, and the semiconductor laser is easy to handle. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一実施例の直交ビームレーザのビーム放射方
向に垂直な面を示す構成図。
FIG. 1 is a configuration diagram showing a plane perpendicular to a beam emission direction of a rectangular beam laser according to a first embodiment.

【図2】図1の直交ビームレーザのビーム断面図。2 is a beam cross-sectional view of the orthogonal beam laser of FIG.

【図3】第二実施例のビームレーザの断面を示す構成
図。
FIG. 3 is a configuration diagram showing a cross section of a beam laser according to a second embodiment.

【図4】図3のビームレーザのビーム断面図。4 is a beam cross-sectional view of the beam laser of FIG.

【図5】第三実施例のビームレーザの断面を示す構成
図。
FIG. 5 is a configuration diagram showing a cross section of a beam laser according to a third embodiment.

【図6】第四実施例のビームレーザの断面を示す構成
図。
FIG. 6 is a configuration diagram showing a cross section of a beam laser according to a fourth embodiment.

【図7】従来の単一のレーザの断面を示す構成図。FIG. 7 is a configuration diagram showing a cross section of a conventional single laser.

【図8】図7のレーザのビーム断面図。8 is a beam cross-sectional view of the laser shown in FIG.

【図9】従来のスタック型レーザビームの断面を示す構
成図。
FIG. 9 is a configuration diagram showing a cross section of a conventional stack type laser beam.

【図10】従来のアレイ型レーザビームの断面を示す構
成図。
FIG. 10 is a configuration diagram showing a cross section of a conventional array type laser beam.

【符号の説明】 11、12 半導体レーザ素子 2 銅製ヒートシンク 3 金(Au)製ワイヤ 111、121 半導体レーザの発光部(発光層) 112、122 半導体レーザの上部電極層 113、123 半導体レーザの下部電極層[Description of Reference Signs] 11, 12 Semiconductor Laser Element 2 Copper Heat Sink 3 Gold (Au) Wire 111, 121 Semiconductor Laser Light Emitting Section (Light Emitting Layer) 112, 122 Semiconductor Laser Upper Electrode Layer 113, 123 Semiconductor Laser Lower Electrode layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 祥樹 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshiki Ueno 1-1, Showa-cho, Kariya city, Aichi Prefecture Nihondenso Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ビーム断面が略楕円形状であって、該略
楕円形状の長軸がレーザ発光層面の法線方向となる発光
層を持つ半導体レーザ素子を複数用いた半導体レーザに
おいて、 前記各半導体レーザ素子のビーム放射方向を同一方向か
つ平行にし、 前記各半導体レーザ素子の前記法線方向のなす角度を18
0/n(deg)とした素子配置であり、 全ビームを合成した合成ビーム断面形状が略2n回転対称
(n=2,3,…) であることを特徴とする半導体レーザ。
1. A semiconductor laser using a plurality of semiconductor laser devices each having a light-emitting layer having a substantially elliptical beam cross section and a major axis of the substantially elliptical shape being in a direction normal to a laser light-emitting layer surface. The beam emission directions of the laser elements are made the same and parallel, and the angle formed by the normal direction of each of the semiconductor laser elements is set to 18
A semiconductor laser having an element arrangement of 0 / n (deg) and a sectional shape of a synthetic beam obtained by synthesizing all beams is approximately 2n rotational symmetry (n = 2, 3, ...).
【請求項2】 複数の半導体レーザ素子で同一長軸方向
のビームを構成し、 前記各角度のビームごとに対する素子数を同一個数とし
たことを特徴とする請求項1に記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein a plurality of semiconductor laser elements form a beam in the same major axis direction, and the number of elements for each beam at each angle is the same.
【請求項3】 正m角柱(m=3,4,…) の各側面、もしく
は正m角孔の各内側面に前記半導体レーザ素子が配置さ
れ、 前記合成ビーム断面形状が略2m回対称であることを特徴
とする請求項1に記載の半導体レーザ。
3. The semiconductor laser device is arranged on each side surface of a regular m prism (m = 3, 4, ...) Or on each inner surface of a regular m square hole, and the sectional shape of the combined beam is symmetrical about 2m times. The semiconductor laser according to claim 1, wherein the semiconductor laser is present.
JP32106493A 1993-11-25 1993-11-25 Semiconductor laser Expired - Fee Related JP3240794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32106493A JP3240794B2 (en) 1993-11-25 1993-11-25 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32106493A JP3240794B2 (en) 1993-11-25 1993-11-25 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH07147463A true JPH07147463A (en) 1995-06-06
JP3240794B2 JP3240794B2 (en) 2001-12-25

Family

ID=18128405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32106493A Expired - Fee Related JP3240794B2 (en) 1993-11-25 1993-11-25 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3240794B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654399B1 (en) 1999-02-24 2003-11-25 Denso Corporation Semiconductor light projection apparatus and distance measurement apparatus
JP2010287613A (en) * 2009-06-09 2010-12-24 Mitsubishi Electric Corp Multi-wavelength semiconductor laser device
US8322879B2 (en) 2009-04-15 2012-12-04 Mitsubishi Electric Corporation Multi-wavelength semiconductor laser device
JP2013016585A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Multi-wavelength semiconductor laser device
CN103107246A (en) * 2011-11-10 2013-05-15 展晶科技(深圳)有限公司 Light emitting diode and manufacturing method thereof
CN104852274A (en) * 2014-02-13 2015-08-19 三菱电机株式会社 Semiconductor laser light source

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6654399B1 (en) 1999-02-24 2003-11-25 Denso Corporation Semiconductor light projection apparatus and distance measurement apparatus
US8322879B2 (en) 2009-04-15 2012-12-04 Mitsubishi Electric Corporation Multi-wavelength semiconductor laser device
JP2010287613A (en) * 2009-06-09 2010-12-24 Mitsubishi Electric Corp Multi-wavelength semiconductor laser device
US8687668B2 (en) 2009-06-09 2014-04-01 Mitsubishi Electric Corporation Multi-wavelength semiconductor laser device
US8891581B2 (en) 2009-06-09 2014-11-18 Mitsubishi Electric Corporation Multi-wavelength semiconductor laser device
JP2013016585A (en) * 2011-07-01 2013-01-24 Mitsubishi Electric Corp Multi-wavelength semiconductor laser device
CN103107246A (en) * 2011-11-10 2013-05-15 展晶科技(深圳)有限公司 Light emitting diode and manufacturing method thereof
CN104852274A (en) * 2014-02-13 2015-08-19 三菱电机株式会社 Semiconductor laser light source
JP2015153842A (en) * 2014-02-13 2015-08-24 三菱電機株式会社 Semiconductor laser source
EP2908390A3 (en) * 2014-02-13 2015-09-23 Mitsubishi Electric Corporation Semiconductor laser light source

Also Published As

Publication number Publication date
JP3240794B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP5698496B2 (en) Light emitting chip, LED package, backlight for liquid crystal display, liquid crystal display and illumination
US12294037B2 (en) Light-emitting diode chip and method for manufacturing the same
TWI389340B (en) Semiconductor light emitting device
US20120037939A1 (en) Light emitting diode
US9859681B2 (en) Optical device and light irradiation apparatus
TWI459602B (en) Light emitting diode package structure
US20110068354A1 (en) High power LED lighting device using high extraction efficiency photon guiding structure
WO2019128232A1 (en) Spatial coupling structure for multiple to packaged semiconductor lasers
JP7332860B2 (en) light emitting device
JPH0851247A (en) Manufacture of integrated semiconductor laser and integrated semiconductor laser device
US6642545B2 (en) Semiconductor light emitting device
US20160308085A1 (en) Stacked optocoupler component
JPH07147463A (en) Semiconductor laser
TW201704684A (en) Illuminating device
WO2022209376A1 (en) Illumination device and ranging device
JP2003209293A (en) Light emitting diode
US20220238775A1 (en) Light-emitting device and method for manufacturing light-emitting device
CN204760416U (en) LED encapsulation module and LED lamp with the LED encapsulation module
JP6805750B2 (en) Optical module
JP2015002232A (en) Light emitting device
CN222839229U (en) Laser packaging structure
US20060086940A1 (en) Package structure of multi-chips light-emitting module
JP2021504951A (en) Luminescent semiconductor device
US20190259928A1 (en) Leadframe, Optoelectronic Component having a Leadframe, and Method for Producing an Optoelectronic Component
CN222422745U (en) Laser pump source

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees