JPH07146313A - Capacitor voltage divider - Google Patents
Capacitor voltage dividerInfo
- Publication number
- JPH07146313A JPH07146313A JP5293460A JP29346093A JPH07146313A JP H07146313 A JPH07146313 A JP H07146313A JP 5293460 A JP5293460 A JP 5293460A JP 29346093 A JP29346093 A JP 29346093A JP H07146313 A JPH07146313 A JP H07146313A
- Authority
- JP
- Japan
- Prior art keywords
- main electrode
- electrode
- metal container
- main
- voltage divider
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/04—Voltage dividers
- G01R15/06—Voltage dividers having reactive components, e.g. capacitive transformer
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Installation Of Bus-Bars (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は変電所等に設置される
ガス絶縁電気機器に装着されて、機器に課電されている
電圧を検出する電圧検出装置のコンデンサ分圧器に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a capacitor voltage divider of a voltage detecting device which is installed in a gas insulated electric device installed in a substation or the like and detects a voltage applied to the device.
【0002】[0002]
【従来の技術】ガス絶縁電気機器の電圧検出手段とし
て、内部導体が中心部に収納された金属容器の内周面近
くに、金属容器とは電気的に絶縁して装着された電極に
誘起される電圧を外部に導出し、誘起電圧に比例した二
次電圧を出力するいわゆるコンデンサ分圧器による方法
がよく知られている。図9はガス絶縁電気機器に装着さ
れた従来のコンデンサ分圧器の一例を示す断面図であ
る。図において1は内部に絶縁ガスが充填されている金
属容器、2は金属容器の中心部に収納されている内部導
体、3は金属容器1の内周面に近接して装着された主電
極である。金属容器1の内周面には主電極3を装着する
取付座1aが所定の位置に固着されており、主電極3の
外周には金属容器1に装着する取付金3aが設けられて
いる。4は主電極3を金属容器1と電気的に絶縁して装
着するための絶縁環である。6は主電極3に誘起する電
圧を外部に導出する絶縁端子、7は主電極3と絶縁端子
6との間を電気的に接続する接続リードである。主電極
3は取付金具3aと金属容器1に固着された取付座1a
との間に絶縁環4を間挿して取付ボルト8にて金属容器
1に装着され、主電極3と絶縁端子6とは接続リード7
で電気的に接続されており誘起電圧が外部に導出される
ようになっている。2. Description of the Related Art As a voltage detecting means for a gas-insulated electric device, an inner conductor is induced near an inner peripheral surface of a metal container housed in the center thereof by an electrode mounted electrically insulated from the metal container. A method using a so-called capacitor voltage divider that outputs a secondary voltage proportional to the induced voltage is well known. FIG. 9 is a sectional view showing an example of a conventional capacitor voltage divider mounted on a gas-insulated electric device. In the figure, 1 is a metal container whose inside is filled with an insulating gas, 2 is an internal conductor housed in the center of the metal container, and 3 is a main electrode mounted in the vicinity of the inner peripheral surface of the metal container 1. is there. A mounting seat 1a for mounting the main electrode 3 is fixed to a predetermined position on the inner peripheral surface of the metal container 1, and a mounting metal 3a for mounting on the metal container 1 is provided on the outer periphery of the main electrode 3. Reference numeral 4 is an insulating ring for mounting the main electrode 3 while electrically insulating it from the metal container 1. Reference numeral 6 is an insulating terminal for leading the voltage induced in the main electrode 3 to the outside, and 7 is a connecting lead for electrically connecting the main electrode 3 and the insulating terminal 6. The main electrode 3 has a mounting bracket 3a and a mounting seat 1a fixed to the metal container 1.
The insulating ring 4 is inserted between the main electrode 3 and the insulating terminal 6, and the main electrode 3 and the insulating terminal 6 are connected to each other by a connecting lead 7
Are electrically connected to each other, and the induced voltage is led to the outside.
【0003】このように構成されるコンデンサ分圧器で
は内部導体2と主電極3との間の主静電容量C1 と主電
極3と金属容器1との間の主電極対地静電容量C21とが
直列となった状態であり、内部導体2と金属容器1との
間に加わっている電圧V0 は主静電容量C1 と主電極対
地静電容量C21とによって分圧されて主電極3に式1に
示す分圧電圧Vt が誘起される。In the capacitor voltage divider thus constructed, the main capacitance C 1 between the inner conductor 2 and the main electrode 3 and the main electrode ground capacitance C 21 between the main electrode 3 and the metal container 1 are set. Is in a serial state, and the voltage V 0 applied between the inner conductor 2 and the metal container 1 is divided by the main electrostatic capacitance C 1 and the main electrode ground electrostatic capacitance C 21 to be the main voltage. The divided voltage V t shown in Expression 1 is induced in the electrode 3.
【数1】 通常は式1による分圧電圧は、計測または制御用として
は高すぎるので主電極3に誘起する電圧を適正な電圧値
とするために外部に調整コンデンサ10と、主電極対地静
電容量C21と並列に接続して適正な電圧値に調整して使
用される。調整コンデンサ10の静電容量をC22とすると
分圧タップの静電容量C2 はC21+C22となり分圧タッ
プの分圧電圧Vt は式2のとおりとなる。[Equation 1] Normally, the divided voltage according to the formula 1 is too high for measurement or control, so that the voltage induced in the main electrode 3 is adjusted to an appropriate voltage value by an external adjusting capacitor 10 and the main electrode ground capacitance C 21. It is connected in parallel with and adjusted to an appropriate voltage value for use. When the electrostatic capacitance of the adjusting capacitor 10 is C 22 , the electrostatic capacitance C 2 of the voltage dividing tap becomes C 21 + C 22 and the divided voltage V t of the voltage dividing tap is given by the formula 2.
【数2】 このように構成されるコンデンサ分圧器の等価回路は図
10のとおりとなる。[Equation 2] The equivalent circuit of the capacitor voltage divider configured in this way is
As shown in 10.
【0004】このように構成されるコンデンサ分圧器は
静電容量としては小さく、出力側の二次負担がとれない
ので検出電圧をデジタル信号、あるいは光信号に変換し
て伝送し、制御盤等で電圧値に変換する方式が採用され
る。変電所等において計測あるいは制御に用いられる検
出電圧に要求される精度は通常は1.0 級が要求され、時
には0.5 級が要求されることがある。このような場合、
コンデンサ分圧器に対する要求精度は、信号変換手段の
精度を考慮して0.2%以下の精度が要求される。The capacitor voltage divider constructed as described above has a small electrostatic capacity and does not take a secondary load on the output side. Therefore, the detected voltage is converted into a digital signal or an optical signal and transmitted, and then the control panel or the like is used. A method of converting to a voltage value is adopted. The accuracy required for the detection voltage used for measurement or control in substations is usually required to be 1.0 class, and sometimes 0.5 class. In such cases,
The required accuracy of the capacitor voltage divider is 0.2% or less in consideration of the accuracy of the signal conversion means.
【0005】コンデンサ分圧器は上記したとおり内部導
体2と主電極3との間の主静電容量C1 と主電極3と
金属容器1との間の主電極対地静電容量C21と主電極3
の分圧電圧を適正値に調整する調整コンデンサ10の静電
容量C22とで分圧タップ静電容量C2 が構成され、分圧
電圧Vt は主静電容量C1 を正確に把握し、調整コンデ
ンサ10の静電容量C22の適正な値を選択して分圧タップ
静電容量C2 を設定することによってきまる。調整コン
デンサ10を並列に接続した分圧タップ静電容量C2 は大
きく、その値も精度よく把握できるのでコンデンサ分圧
器の電圧検出精度は主静電容量の精度に左右される。機
器が運転されている状態で内部導体2,主電極3に温度
上昇があるとそれぞれが熱膨張して寸法が変り主静電容
量C1 ,分圧タップ静電容量C2 が変化して検出電圧が
変化することも考慮する必要がある。As described above, the capacitor voltage divider has a main capacitance C 1 between the inner conductor 2 and the main electrode 3, a main electrode ground capacitance C 21 between the main electrode 3 and the metal container 1, and a main electrode. Three
The voltage dividing tap capacitance C 2 is configured by the electrostatic capacitance C 22 of the adjusting capacitor 10 that adjusts the divided voltage of V to an appropriate value, and the divided voltage V t accurately grasps the main electrostatic capacitance C 1. , The capacitance C 22 of the adjusting capacitor 10 is selected to set the voltage dividing tap capacitance C 2 . Since the voltage dividing tap capacitance C 2 in which the adjusting capacitor 10 is connected in parallel is large and its value can be grasped with high precision, the voltage detection precision of the capacitor voltage divider depends on the precision of the main capacitance. When there is a temperature rise in the inner conductor 2 and the main electrode 3 while the equipment is operating, the dimensions of the inner conductor 2 and the main electrode 3 change due to thermal expansion, and the main capacitance C 1 and the voltage dividing tap capacitance C 2 change and detected. It is also necessary to consider that the voltage changes.
【0006】図9に示すコンデンサ分圧器の主静電容量
C1 は円心円筒コンデンサの静電容量の計算式の式3で
求めることができる。The main capacitance C 1 of the capacitor voltage divider shown in FIG. 9 can be obtained by the formula 3 of the calculation formula of the capacitance of the concentric cylindrical capacitor.
【数3】 ε0 :介在絶縁物の誘電率 L :主電極の長さ D1 :内部導体の直径 D2 :主電極の内径 式3は無限長円筒コンデンサの静電容量を求める式であ
り、有限長の場合は主電極3の端部に電界の広がりがあ
るため実際の静電容量は計算された主静電容量よりも小
さい値となる。主電極3の端部の電界の広がりは内部導
体2の直径D1と主電極3の直径D2 との関係あるいは
周囲の金属容器1の形状、例えば屈曲部が近い場合等に
よって変るため、正確な静電容量を把握することは困難
であり、設計時点では静電容量は目安をつける程度であ
り、製作時点で実際に電圧を印加して検出電圧を測定し
て調整コンデンサ10を適正値とする方法で検出電圧が調
整される。[Equation 3] ε 0 : Dielectric constant of intervening insulator L: Length of main electrode D 1 : Diameter of inner conductor D 2 : Inner diameter of main electrode Equation 3 is an equation for obtaining the capacitance of an infinite cylindrical capacitor, and it has a finite length. In this case, since the electric field spreads at the end of the main electrode 3, the actual electrostatic capacitance becomes a value smaller than the calculated main electrostatic capacitance. End of the electric field of the spread relationship or around the metallic container 1 in the shape of the diameter D 2 of diameter D 1 and the main electrode 3 of the inner conductor 2 of the main electrode 3, for example, because the changes by such flexion portion is short, accurate It is difficult to grasp the electrostatic capacity, and the electrostatic capacity is only a guide at the time of design.At the time of manufacturing, the voltage is actually applied and the detection voltage is measured to set the adjustment capacitor 10 to an appropriate value. The detection voltage is adjusted by the method described above.
【0007】実際のコンデンサ分圧器は、装着されてい
る部分の温度変化によって内部導体2および主電極3の
寸法変化が生じて主静電容量C1 が変化し、検出電圧の
誤差が生じる。ガス絶縁電気機器において、内部導体2
に生じた発熱は、周囲に充填されている絶縁ガスの対流
によって金属容器1の部分に伝達され、金属容器2の表
面より外気に放熱される。したがってガス絶縁電気機器
の温度分布は内部導体2の部分が最も高く、充填絶縁ガ
スの温度勾配、金属容器2の部分の温度勾配、外表面か
ら外気に伝達される境界の温度勾配等の温度分布とな
る。コンデンサ分圧器の主電極3は金属容器2の内面に
近接して装着されており、この主電極3の温度は、充填
されている絶縁ガス中となり、この絶縁ガスは対流して
いるので中心部と外壁部との温度差は少なく、内部導体
2と金属容器1の内壁の温度との中間にあり、主電極3
の温度は絶縁ガスの温度近くになると推定され、実際の
ガス絶縁電気機器では定格電圧,定格電流によって差異
はあるが、内部導体2の温度上昇値のほぼ70〜80%と推
定される。In an actual capacitor voltage divider, a change in temperature of a mounted portion causes a change in dimensions of the internal conductor 2 and the main electrode 3 to change a main capacitance C 1 and an error in a detection voltage. In gas-insulated electrical equipment, the inner conductor 2
The generated heat is transmitted to the portion of the metal container 1 by the convection of the insulating gas filled in the surroundings, and is radiated from the surface of the metal container 2 to the outside air. Therefore, the temperature distribution of the gas-insulated electric equipment is highest in the portion of the inner conductor 2, the temperature gradient of the filling insulating gas, the temperature gradient of the portion of the metal container 2, the temperature gradient of the boundary transmitted from the outer surface to the outside air, etc. Becomes The main electrode 3 of the capacitor voltage divider is mounted close to the inner surface of the metal container 2, and the temperature of the main electrode 3 is in the filled insulating gas. The temperature difference between the outer wall and the outer wall is small, and it is in the middle of the temperature of the inner conductor 2 and the inner wall of the metal container 1.
Is estimated to be close to the temperature of the insulating gas, and in actual gas-insulated electrical equipment there is a difference depending on the rated voltage and rated current, but it is estimated to be approximately 70 to 80% of the temperature rise value of the inner conductor 2.
【0008】コンデンサ分圧器の運転中の温度分布は上
記のとおりであり、運転中の静電容量C1■は式4によ
って変化する。The temperature distribution during operation of the capacitor voltage divider is as described above, and the electrostatic capacitance C 1 (2) during operation changes according to the equation (4).
【数4】 α :内部導体材料の線膨張率 β :主電極材料の線膨張率 t1 :内部導体の温度上昇値 t2 :主電極の温度上昇値 D1 ,D2 ,ε0 ,Lは式3のときと同一部分を表わ
す。[Equation 4] α: linear expansion coefficient of inner conductor material β: linear expansion coefficient of main electrode material t 1 : temperature rise value of inner conductor t 2 : temperature rise value of main electrode D 1 , D 2 , ε 0 , L Represents the same part as time.
【0009】今、内部導体2と、主電極3の材質を同一
としてα=βとすると式4は式5のようになる。Now, assuming that the materials of the inner conductor 2 and the main electrode 3 are the same, and α = β, equation 4 becomes equation 5.
【数5】 式5の内ln(1+αt2 )及びln(1+αt1 )は
αt2 ,αt1 が1に対して十分小さいので式6,式7
を用いて近似値が算出できる。 ln(1+αt2 )≒αt2 …………………………………………… 式6 ln(1+αt1 )≒αt1 …………………………………………… 式7 式6,式7を式5に代入して式8が得られる。[Equation 5] Since ln (1 + αt 2 ) and ln (1 + αt 1 ) in formula 5 are sufficiently smaller than 1 in αt 2 and αt 1 , formula 6 and formula 7
An approximate value can be calculated by using. ln (1 + αt 2) ≒ αt 2 ................................................... formula 6 ln (1 + αt 1) ≒ αt 1 ............................................. Equation 7 Equation 6 is substituted into Equation 5 to obtain Equation 8.
【数6】 さらに、式8のα(t2 −t1 )はln(D2 /D1 )
に対して十分小さいので近似式を用いて式9のようにな
る。[Equation 6] Furthermore, α (t 2 −t 1 ) of Equation 8 is ln (D 2 / D 1 ).
Since it is sufficiently small with respect to
【数7】 式9を展開してαの2乗の項は他の項に対して十分小さ
いので0とすると式10のようになる。[Equation 7] Expanding Equation 9, the term of α squared is sufficiently smaller than the other terms, so if you set it to 0, Equation 10 is obtained.
【数8】 式9の第1項は前記式3と同じであり、第2項が主静電
容量の増加分となりこれが検出電圧の精度に関係する。[Equation 8] The first term of the equation 9 is the same as that of the equation 3, and the second term becomes an increase of the main capacitance, which is related to the accuracy of the detection voltage.
【0010】[0010]
【発明が解決しようとする課題】従来のコンデンサ分圧
器は以上のように構成されており、内部導体と主電極と
の間の主電極端部において電界の広がりがあり、実際の
主静電容量は式3で求めた値よりも小さな値となり、ま
た内部導体と主電極との間の距離によってもその程度が
変るので設計時点から正確な主静電容量の値を把握する
ことが困難であり、製品組立後に電圧を印加して検出電
圧を調整するという煩雑な調整作業が必要であった。ま
た、コンデンサ分圧器が装着されている本体機器の温度
上昇によって主静電容量が変化して検出電圧の精度が悪
くなる問題点もあった。The conventional capacitor voltage divider is constructed as described above, and the electric field spreads at the end of the main electrode between the inner conductor and the main electrode, and the actual main capacitance is increased. Is smaller than the value calculated by Equation 3, and the degree changes depending on the distance between the inner conductor and the main electrode, so it is difficult to grasp the accurate value of the main capacitance from the time of design. However, a complicated adjustment work of applying a voltage to adjust the detection voltage after assembling the product is required. Further, there is a problem that the main capacitance changes due to the temperature rise of the main body device in which the capacitor voltage divider is mounted, and the accuracy of the detection voltage deteriorates.
【0011】この発明は、上記問題点を解決するために
なされたものであり、設計時点から正確な主静電容量が
把握できるコンデンサ分圧器を提供するものであり、さ
らに本体機器の運転中の温度上昇があっても主静電容量
の変化が少く、使用温度範囲について所望の電圧検出精
度が得られるコンデンサ分圧器を提供することも目的と
するものである。The present invention has been made in order to solve the above problems, and provides a capacitor voltage divider capable of accurately ascertaining a main electrostatic capacity from the time of designing, and further, during operation of the main equipment. It is also an object of the present invention to provide a capacitor voltage divider in which the change in the main capacitance is small even if the temperature rises and a desired voltage detection accuracy is obtained in the operating temperature range.
【0012】[0012]
【課題を解決するための手段】この発明の請求項1に係
るコンデンサ分圧器は、金属容器の内壁に近接して装着
された主電極の両端部に主電極と同一内径であり、一端
が主電極と連結するフランジがあり他端は電界集中を緩
和するために所定の曲率半径で外周に向けて広がる形状
に形成された一対の補助電極を主電極に絶縁して連結し
た構成とし、補助電極は金属容器と電気的に接続したも
のである。The capacitor voltage divider according to claim 1 of the present invention has the same inner diameter as the main electrode at both ends of the main electrode mounted near the inner wall of the metal container, and one end of the main There is a flange that connects with the electrodes, and the other end has a structure in which a pair of auxiliary electrodes formed in a shape that expands toward the outer periphery with a predetermined radius of curvature in order to mitigate the electric field concentration is insulated and connected to the main electrode. Is electrically connected to the metal container.
【0013】この発明の請求項2に係るコンデンサ分圧
器は、主電極の両端部に連結する一対の補助電極の内の
1個を金属容器の内壁に直接固着して主電極を装着する
金具として兼用し、主電極を装着するための金具を省略
したものである。The capacitor voltage divider according to claim 2 of the present invention is a metal fitting for mounting the main electrode by directly fixing one of a pair of auxiliary electrodes connected to both ends of the main electrode to the inner wall of the metal container. It also serves as a dual purpose and omits a metal fitting for mounting the main electrode.
【0014】この発明の請求項3に係るコンデンサ分圧
器は、主電極は円筒形として円周の1箇所の軸方向にス
リットを入れた形状とし、内径が主電極の内径と同一内
径であり、その一端は主電極がはめこまれる段付形状と
し、他端は金属容器壁に向けて広がる形状の一対の補助
電極が対向して所定の間隔を保って金属容器の内周面に
固着され、この補助電極の内周に円筒形の主電極を電気
的に絶縁して装着したものである。In the capacitor voltage divider according to claim 3 of the present invention, the main electrode has a cylindrical shape with a slit formed in one axial direction in the circumference, and the inner diameter is the same as the inner diameter of the main electrode. The one end has a stepped shape in which the main electrode is fitted, and the other end is fixed to the inner peripheral surface of the metal container with a predetermined interval facing each other with a pair of auxiliary electrodes that spread toward the wall of the metal container. A cylindrical main electrode is electrically insulated and attached to the inner circumference of the auxiliary electrode.
【0015】この発明の請求項4に係るコンデンサ分圧
器は、内部導体の線膨張率は主静電容量の許容変化率を
内部導体の最高温度上昇値で除した値より小さな線膨張
率の材料とし、主電極の材料は内部導体の線膨張率と最
高温度上昇値との積を主電極に想定される最高温度上昇
値で除した値に近い線膨張率を有する材料としたもので
ある。In the capacitor voltage divider according to claim 4 of the present invention, the linear expansion coefficient of the inner conductor is smaller than the value obtained by dividing the allowable rate of change of the main capacitance by the maximum temperature rise value of the inner conductor. The material of the main electrode is a material having a linear expansion coefficient close to a value obtained by dividing the product of the linear expansion coefficient of the inner conductor and the maximum temperature increase value by the maximum temperature increase value assumed for the main electrode.
【0016】この発明の請求項5に係るコンデンサ分圧
器は、内部導体材料を銅とし、主電極の材料をアルミニ
ウムまたはアルミニウムを主成分とするアルミ合金を用
いて形成したものである。According to a fifth aspect of the present invention, in the capacitor voltage divider, the inner conductor material is copper and the main electrode material is aluminum or an aluminum alloy containing aluminum as a main component.
【0017】この発明の請求項6に係るコンデンサ分圧
器は電極部を樹脂材料で形成された電極ボデーの内周面
の所定の位置に主電極、この主電極の端部とは所定の間
隔を置いた位置から端部を経て外周面に補助電極となる
導電膜を付着させて形成したものである。In the capacitor voltage divider according to the sixth aspect of the present invention, the electrode portion is formed with a main electrode at a predetermined position on the inner peripheral surface of the electrode body made of a resin material, and a predetermined space is provided between the main electrode and an end portion of the main electrode. It is formed by adhering a conductive film to be an auxiliary electrode to the outer peripheral surface from the position where it is placed to the end.
【0018】[0018]
【作用】この発明の請求項1に係るコンデンサ分圧器に
おいては、金属容器の内壁に近接して装着された主電極
の両端部に主電極の内径と同一内径の補助電極を絶縁し
て連結したことにより、主電極端部の電界の広がりがな
くなり、主電極と内部導体との間の主静電容量が設計時
点において正確に把握することができる。In the capacitor voltage divider according to the first aspect of the present invention, the auxiliary electrode having the same inner diameter as the inner diameter of the main electrode is insulated and connected to both ends of the main electrode mounted near the inner wall of the metal container. As a result, the spread of the electric field at the end of the main electrode is eliminated, and the main capacitance between the main electrode and the internal conductor can be accurately grasped at the time of design.
【0019】この発明の請求項2に係るコンデンサ分圧
器においては、主電極の両端に連結する一対の補助電極
の一個を金属容器の内壁に直接固着して主電極を装着す
る構造としたので装着するための部品点数が少なく製作
コストを低くすることができる。In the capacitor voltage divider according to claim 2 of the present invention, one of the pair of auxiliary electrodes connected to both ends of the main electrode is directly fixed to the inner wall of the metal container so that the main electrode is mounted. The number of parts required for manufacturing is small, and the manufacturing cost can be reduced.
【0020】この発明の請求項3に係るコンデンサ分圧
器においては、主電極を円筒形状とし、円周の一箇所、
軸方向にスリットを設けたものとし、一対の補助電極は
金属容器に直接固着し、主電極を一対の補助電極の間に
絶縁して装着したので、主電極を装着するための部品点
数が少なく、簡単に装着できることに加えて、主電極を
装着するスペースを小さくすることができる。In the capacitor voltage divider according to claim 3 of the present invention, the main electrode has a cylindrical shape, and one portion of the circumference is
Since the slits are provided in the axial direction, the pair of auxiliary electrodes are directly fixed to the metal container, and the main electrode is insulated and mounted between the pair of auxiliary electrodes, so the number of parts for mounting the main electrode is small. In addition to easy mounting, the space for mounting the main electrode can be reduced.
【0021】この発明の請求項4に係るコンデンサ分圧
器においては、内部導体は内部導体と主電極との間の主
静電容量の許容変化率を内部導体の線膨張率と最高温度
上昇値との積で除した値よりも小さな線膨張率を有する
材料とし、主電極の材料は内部導体材料の線膨張率と内
部導体の最高温度上昇値との積を主電極に想定される最
高温度上昇値で除した値に近い線膨張率としたものとし
たので温度上昇があっても主静電容量が許容変化率の範
囲とすることができる。In the capacitor voltage divider according to a fourth aspect of the present invention, the inner conductor has a permissible rate of change of the main capacitance between the inner conductor and the main electrode as a linear expansion coefficient of the inner conductor and a maximum temperature rise value. The material of the main electrode has a coefficient of linear expansion smaller than the value obtained by dividing the product by the product of the coefficient of linear expansion of the internal conductor and the maximum temperature rise of the internal conductor. Since the coefficient of linear expansion is close to the value divided by the value, the main capacitance can be within the range of the allowable rate of change even if the temperature rises.
【0022】この発明の請求項5に係るコンデンサ分圧
器においては、内部導体材料を銅とし主電極の材料をア
ルミニウムまたはアルミニウムを主成分とするアルミ合
金で形成したので内部導体及び主電極に温度上昇があっ
ても主静電容量は許容範囲内であるコンデンサ分圧器と
することができる。In the capacitor voltage divider according to the fifth aspect of the present invention, since the internal conductor material is copper and the material of the main electrode is aluminum or an aluminum alloy containing aluminum as a main component, the temperature rise in the internal conductor and the main electrode. However, the main capacitance can still be a capacitor voltage divider that is within the acceptable range.
【0023】この発明の請求項6に係るコンデンサ分圧
器においては、主電極及び補助電極の電極部を樹脂材料
で所定の形状に形成した電極ボデーの内周の所定の位置
に主電極、主電極端と間隔を置いた位置から内周面端部
に補助電極となる導電膜を付着させて形成したので、主
静電容量を設計当初から正確に把握することができ、さ
らに電極部を装着するための部品点数の少ないコンデン
サ分圧器とすることができる。In the capacitor voltage divider according to claim 6 of the present invention, the main electrode and the main electrode are formed at predetermined positions on the inner circumference of the electrode body in which the electrode portions of the main electrode and the auxiliary electrode are formed of a resin material in a predetermined shape. Since the conductive film to be the auxiliary electrode is attached to the end of the inner peripheral surface from a position spaced apart from the extreme, the main capacitance can be accurately grasped from the beginning of designing, and the electrode part is mounted. Therefore, a capacitor voltage divider having a small number of parts can be obtained.
【0024】[0024]
実施例1.以下この発明の第1の実施例について図1に
よって説明する。図1において1,2,4,6,7は図
9に示す従来例と同一または同一機能を有するものであ
るので説明は省略する。13は主電極であり、外周部に金
属容器1に装着するための取付金13a、両端部には下記
の補助電極が連結されるフランジ13bがそれぞれ設けら
れている。15は、主電極13の両端に連結される一対の補
助電極であり、内径は主電極13の内径と同一であり、一
端は主電極13と連結するためのフランジ15aが設けられ
ており、他端は所定の曲率半径で外周に向けて広がる形
状に形成されている。14は主電極13と補助電極15との間
を絶縁するための絶縁環である。17は補助電極15を金属
容器1と同電位にするための接続リードである。コンデ
ンサ分圧器は、主電極13の両端に一対の補助電極15を絶
縁環14を間挿して電気的に絶縁し、ボルト18で連結して
電極部を形成し、主電極13の外周部に設けられた取付金
13aと金属容器1の内周面に固着された取付座1aとの
間に絶縁環4を間挿して電気的に絶縁して装着し、主電
極13と絶縁端子6とを接続リード7で接続し、一対の補
助電極15は金属容器1と接続リード17でそれぞれ接続
し、絶縁端子6と金属容器1との間に検出電圧値を調整
する調整コンデンサ(図示していない)が接続されて構
成される。Example 1. A first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, reference numerals 1, 2, 4, 6, and 7 have the same or the same functions as those of the conventional example shown in FIG. Reference numeral 13 denotes a main electrode, which is provided with a mounting metal 13a for mounting the metal container 1 on the outer peripheral portion, and flanges 13b to which the following auxiliary electrodes are connected at both ends. Reference numeral 15 is a pair of auxiliary electrodes connected to both ends of the main electrode 13, the inner diameter is the same as the inner diameter of the main electrode 13, and one end is provided with a flange 15a for connecting with the main electrode 13, The end is formed in a shape that spreads toward the outer periphery with a predetermined radius of curvature. Reference numeral 14 is an insulating ring for insulating between the main electrode 13 and the auxiliary electrode 15. Reference numeral 17 is a connecting lead for keeping the auxiliary electrode 15 at the same potential as the metal container 1. The capacitor voltage divider is provided with a pair of auxiliary electrodes 15 at both ends of the main electrode 13 to electrically insulate them by interposing insulating rings 14, and connected with bolts 18 to form an electrode portion, which is provided on the outer peripheral portion of the main electrode 13. Mounting money
An insulating ring 4 is inserted between 13a and a mounting seat 1a fixed to the inner peripheral surface of the metal container 1 so as to be electrically insulated and mounted, and a main electrode 13 and an insulating terminal 6 are connected by a connecting lead 7. The pair of auxiliary electrodes 15 are connected to the metal container 1 by the connection leads 17, and an adjusting capacitor (not shown) for adjusting the detection voltage value is connected between the insulating terminal 6 and the metal container 1. To be done.
【0025】このように構成されるコンデンサ分圧器に
おいては、主電極13と内部導体2との間の主静電容量C
1 と、主電極13と金属容器1との間の静電容量C21に調
整コンデンサの静電容量C22との和の分圧タップ静電容
量C2 が直列となった、従来例と同じ図10に示す等価回
路となり、分圧電圧Vt は式2に示す値となる。この分
圧電圧Vt は通常は信号変換または計測に適するように
100 Vまたは100 /√3Vに調整されており、補助電極
15は金属容器1に接続され、主電極13とは分圧電圧Vt
(100 Vまたは100 /√3V)の電位差があるが内部導
体2の電圧が数十〜数百KVであり、これに対して十分
小さく、主電極13と補助電極15の連結部の電界分布は、
分圧電圧Vt に影響されることはなく、主電極15の端部
の電界の広がりがなくなり、内部導体2と主電極13との
間主静電容量C1 は前記式3によって設計当初から正確
に把握することができる。In the capacitor voltage divider thus constructed, the main capacitance C between the main electrode 13 and the inner conductor 2 is
1, the main electrode 13 and the partial pressure tap capacitance C 2 of the sum of the capacitance C 22 of the adjusting capacitor capacitance C 21 between the metallic container 1 becomes series, same as the conventional example The equivalent circuit shown in FIG. 10 is obtained, and the divided voltage V t has the value shown in Expression 2. This divided voltage V t is usually suitable for signal conversion or measurement.
Adjusted to 100 V or 100 / √3 V, auxiliary electrode
Reference numeral 15 is connected to the metal container 1 and is divided from the main electrode 13 by a divided voltage V t.
Although there is a potential difference of (100 V or 100 / √3 V), the voltage of the inner conductor 2 is several tens to several hundreds KV, which is sufficiently small, and the electric field distribution in the connecting portion between the main electrode 13 and the auxiliary electrode 15 is ,
It is not affected by the divided voltage V t , the spread of the electric field at the end of the main electrode 15 is eliminated, and the main capacitance C 1 between the inner conductor 2 and the main electrode 13 is calculated from the initial designing according to the formula 3 above. It can be grasped accurately.
【0026】コンデンサ分圧器に要求される検出電圧の
精度(誤差階級)は、その用途にもよるが、通常使用さ
れている電圧計測または送電系統の制御用としては1.0
級が要求される。電圧検出装置として誤差階級を1.0 級
と要求された場合、本発明に係るコンデンサ分圧器では
静電容量が小さくて、二次負担をとることはできないの
で、コンデンサ分圧器からは電圧値のみを検出して、そ
の検出値をデジタル光信号等に変換して伝送し、制御盤
等の受信側で逆変換して計測、制御に供されるものであ
る。このような方式において出力端の誤差階級を1.0 級
と要求された場合は信号変換器,逆変換器等の誤差が集
積されるのでコンデンサ分圧器に対しては0.1 〜0.2 %
程度が要求される。The accuracy (error class) of the detection voltage required for the capacitor voltage divider depends on its application, but is 1.0 for voltage measurement or control of a power transmission system which is usually used.
Class is required. When the error class is required to be 1.0 class as a voltage detection device, the capacitor voltage divider according to the present invention has a small electrostatic capacity and cannot take a secondary load, so only the voltage value is detected from the capacitor voltage divider. Then, the detected value is converted into a digital optical signal or the like and transmitted, and is inversely converted at the receiving side such as a control panel and used for measurement and control. When the error class at the output end is required to be class 1.0 in such a system, the errors of the signal converter and the inverse converter are integrated, so 0.1% to 0.2% is applied to the capacitor voltage divider.
Degree is required.
【0027】このように検出電圧に対してきびしい精度
を要求された場合、従来例のように補助電極を用いない
でコンデンサ分圧器を構成すると、主静電容量は設計段
階においては目安程度にしか把握できないので調整コン
デンサの種類を多く準備し、製品の組立後に実際に電圧
を印加して静電容量を実測し、種々の値の調整コンデン
サを入替えて行わねばならず、煩雑で長時間の調整とな
るがこの第1の実施例では、電極部に補助電極15を付属
したので、静電容量C1 の算出精度を阻害している電界
の広がり部分が主静電容量C1 に関係しない補助電極15
の端部に移動して、主電極13の部分の電界はほぼ平等と
なり主静電容量C1 を設計当初から正確に把握できるの
で準備する調整コンデンサの種類は少なく、組立後の検
出電圧の調整作業が簡単になる効果が得られる。さらに
補助電極15を用いたことにより、コンデンサ分圧器を金
属容器の屈曲部近くに装着する場合においても、屈曲し
たことによる電界が乱れが主電極13の部分まで影響する
こともなくなるので金属容器1の屈曲部への取付る場合
でも主静電容量C1 の精度は確保できる。When a strict accuracy is required for the detection voltage as described above, when the capacitor voltage divider is constructed without using the auxiliary electrode as in the conventional example, the main capacitance is only a standard at the design stage. Since it is not possible to grasp, it is necessary to prepare many types of adjustment capacitors, actually apply voltage after assembly of the product, measure the capacitance, and replace the adjustment capacitors of various values to perform adjustment, which is complicated and requires a long time adjustment. become Although this first embodiment, since the accessory auxiliary electrode 15 to the electrode portion, diverging portion of the electric field that inhibits the calculation accuracy of the capacitance C 1 is not related to the main capacitance C 1 auxiliary Electrode 15
, The electric field at the main electrode 13 becomes almost equal, and the main capacitance C 1 can be grasped accurately from the beginning of design, so there are few types of adjustment capacitors to prepare and adjustment of the detection voltage after assembly. The effect of simplifying the work is obtained. Further, by using the auxiliary electrode 15, even when the capacitor voltage divider is mounted near the bent portion of the metal container, the disturbance of the electric field due to the bending does not affect the portion of the main electrode 13, so that the metal container 1 The accuracy of the main capacitance C 1 can be ensured even when it is attached to the bent portion.
【0028】実施例2.つぎに第2の実施例について図
2によって説明する。この実施例は上記の実施例1と基
本的な部分は同一であるが、一対の補助電極の一方を、
主電極13の金属容器1への装着用金具を兼用したもので
ある。図2、1,2,6,7,13,14,15,17は従来例
を示す図9及び第1の実施例を示す図1と同一または同
一機能を備えるものであり説明は省略する。5は内径を
主電極13と同一内径として、一端の開放端が外周に向け
て所定の曲率半径で広がるように形成した補助電極と該
補助電極の開放端の反対側に主電極13を連結するフラン
ジ5aが外周に向けて設けられ、フランジ5aの外周が
金属容器1に固着された固定補助電極である。電極部分
は固定補助電極5に主電極13の一端を絶縁環14を間挿し
てボルト18にて電気的に絶縁して連結し、主電極13の他
端に絶縁環14を間挿して電気的に絶縁して補助電極15を
ボルト18にて連結して構成され、主電極13は接続リード
7によって絶縁端子6に電気的に接続され、補助電極15
は接続リード17によって金属容器1に接続されている。
絶縁端子6には図示していない調整コンデンサを接続し
て分圧電圧が調整される。Example 2. Next, a second embodiment will be described with reference to FIG. This example is basically the same as Example 1 described above except that one of the pair of auxiliary electrodes is
This is also used as a fitting for mounting the main electrode 13 on the metal container 1. 2, 1, 2, 6, 7, 13, 13, 14, 15 and 17 have the same or the same functions as those of FIG. 9 showing the conventional example and FIG. 1 showing the first embodiment, and the description thereof will be omitted. Reference numeral 5 has an inner diameter that is the same as that of the main electrode 13, and connects the main electrode 13 to the auxiliary electrode formed so that the open end at one end expands toward the outer periphery with a predetermined radius of curvature and the opposite side of the open end of the auxiliary electrode. The flange 5a is provided toward the outer circumference, and the outer circumference of the flange 5a is a fixed auxiliary electrode fixed to the metal container 1. The electrode part is connected to the fixed auxiliary electrode 5 by connecting one end of the main electrode 13 with an insulating ring 14 and electrically insulating with a bolt 18 and inserting the insulating ring 14 at the other end of the main electrode 13 to electrically connect. The auxiliary electrode 15 is connected to the insulating terminal 6 by the connecting lead 7 and is electrically insulated from the auxiliary electrode 15 by the bolt 18.
Are connected to the metal container 1 by connection leads 17.
An adjustment capacitor (not shown) is connected to the insulating terminal 6 to adjust the divided voltage.
【0029】このように構成されたコンデンサ分圧器で
は、一対の補助電極の一方が主電極13を装着する金具を
兼用するので、装着する部品点数が少なくなり、実施例
1と同様の効果に加えて、電極部分の組立作業が容易と
なる効果も得られる。In the capacitor voltage divider thus constructed, one of the pair of auxiliary electrodes also serves as the metal fitting for mounting the main electrode 13, so that the number of parts to be mounted is reduced, and in addition to the same effect as the first embodiment. As a result, the effect of facilitating the assembly work of the electrode portion can be obtained.
【0030】実施例3.さらに第3の実施例について図
3によって説明する。図3の23は所定の長さで円筒形に
形成され円周の1箇所に軸方向に切込みを入れた主電
極、25は一対の補助電極であり、内径は主電極23と同一
内径であり、それぞれの一端の開放端は所定の曲率半径
で金属容器1の内周面に向けて広がるように形成し、反
対側の一端は主電極23が装着可能な段付形状に形成し、
開放端が外側になるように所定の間隔を保って金属容器
1に固着されている。24は補助電極25と主電極23とを電
気的に絶縁するための絶縁環である。主電極23は図3中
に1点鎖線で示すように切込み部を重ね合せるようにし
て外形を小さくし、端部に絶縁環24を補助電極25との間
に間挿して一対の補助電極25の間に挿入し、切込み部の
重ね合せを広げて所定の直径にして装着することにより
電極部が形成される。主電極23と絶縁端子6とは接続リ
ード7によって電気的に接続される。Example 3. Further, a third embodiment will be described with reference to FIG. Reference numeral 23 in FIG. 3 is a main electrode which is formed into a cylindrical shape with a predetermined length and has an axial notch at one position on the circumference, 25 is a pair of auxiliary electrodes, and the inner diameter is the same as the inner diameter of the main electrode 23. , The open end of each end is formed to spread toward the inner peripheral surface of the metal container 1 with a predetermined radius of curvature, and the opposite end is formed in a stepped shape to which the main electrode 23 can be attached,
The metal container 1 is fixed to the metal container 1 with a predetermined gap so that the open end is on the outside. Reference numeral 24 is an insulating ring for electrically insulating the auxiliary electrode 25 and the main electrode 23. The outer shape of the main electrode 23 is made small by overlapping the notches as shown by the one-dot chain line in FIG. 3, and an insulating ring 24 is inserted at the end between the auxiliary electrode 25 and a pair of auxiliary electrodes 25. Then, the electrode portion is formed by inserting it between the two and expanding the superposition of the notches to make it have a predetermined diameter. The main electrode 23 and the insulating terminal 6 are electrically connected by the connection lead 7.
【0031】このようにコンデンサ分圧器を構成する
と、電極部の部品点数が少なくなり、実施例1及び実施
例2と同様に設計段階から主静電容量を正確に把握でき
る効果に加えて、主電極23の装着スペースが小さくなり
金属容器1の直径を小さくすることができるとともに組
立作業も簡単になる。When the capacitor voltage divider is configured as described above, the number of parts of the electrode portion is reduced, and in addition to the effect that the main capacitance can be accurately grasped from the design stage as in the first and second embodiments, The mounting space for the electrode 23 is reduced, the diameter of the metal container 1 can be reduced, and the assembling work is simplified.
【0032】実施例4.つぎに第4の実施例について説
明する。第4の実施例はコンデンサ分圧器が運転時の温
度上昇によって主静電容量が変化して検出電圧の誤差が
大きくなることに対応するものであり、図1,図2,図
3を参照して説明する。図1,図2,図3に示す主電極
13または23の材質を内部導体2の材料と同じ材質を選定
した場合、運転時に温度上昇があると前記の式10に示す
ように主静電容量C1 が増加する、この主静電容量C1
が増加すると検出電圧の誤差が大きくなる。Example 4. Next, a fourth embodiment will be described. The fourth embodiment corresponds to the fact that the main capacitance changes due to the temperature rise during the operation of the capacitor voltage divider, and the error in the detected voltage increases, and refer to FIGS. 1, 2 and 3. Explain. Main electrode shown in FIGS. 1, 2 and 3
When the material of 13 or 23 is the same as the material of the inner conductor 2, if the temperature rises during operation, the main capacitance C 1 increases as shown in the above formula 10. 1
The error of the detection voltage becomes larger as is increased.
【0033】内部導体2と主電極13または23が同一材質
のときは温度上昇によって主静電容量C1 が前記した式
5によって変化する。内部導体2と主電極13または23の
材質を異る材質とした場合の温度変化による主静電容量
C1■の変化は前記した式4によって変化する。式4を
式9,式10に整理した場合と同様にして近似式を導くと
式11のようになる。When the inner conductor 2 and the main electrode 13 or 23 are made of the same material, the main capacitance C 1 changes according to the above equation 5 due to temperature rise. The change of the main electrostatic capacitance C 1 (2) due to the temperature change when the materials of the inner conductor 2 and the main electrode 13 or 23 are different from each other is changed by the above-mentioned formula 4. Similar to the case where Expression 4 is rearranged into Expression 9 and Expression 10, an approximate expression is derived as Expression 11.
【数9】 式11の第1項は温度上昇がないときの主静電容量C1 を
求める式3と同一であり、第2項が温度上昇による主静
電容量の増加分となる。[Equation 9] The first term of the equation 11 is the same as the equation 3 for obtaining the main capacitance C 1 when there is no temperature rise, and the second term is the increase of the main capacitance due to the temperature rise.
【0034】温度上昇したときの主静電容量の増加量を
なくすることができれば、電圧検出精度を良くすること
ができる。その条件としては式11の第2項を零とするこ
とで可能である。その条件を求めると、式12,13のとお
りとなる。If the amount of increase in the main capacitance when the temperature rises can be eliminated, the voltage detection accuracy can be improved. The condition can be set by setting the second term of Expression 11 to zero. When the condition is obtained, it is as shown in Expressions 12 and 13.
【数10】 [Equation 10]
【数11】 式13においてt2 /t1 は内部導体2の温度上昇値に対
する主電極13または23の温度上昇値の比であり通常のコ
ンデンサ分圧器においては0.7 〜0.8 程度の値である。
t2 /t1 =0.7 として、温度変化があっても主静電容
量C1 が変化しない内部導体2と主電極13または23の直
径比D2 /D1 と、それぞれの線膨張率の比β/αとの
関係は図4に示す点線で示したS=0の曲線である。こ
の曲線より内部導体2と主電極13または23との直径比D
2 /D1 に対応してそれぞれの線膨張率の比β/αが満
足するようにそれぞれの材質を選択することにより負荷
電流による温度変化があっても主静電容量C1 が変化し
ないコンデンサ分圧器を得ることはできる。[Equation 11] T 2 / t 1 is the value of about 0.7 to 0.8 in ordinary capacitor divider is the ratio of the temperature rise value of the main electrode 13 or 23 with respect to the temperature rise value of the internal conductor 2 in Formula 13.
When t 2 / t 1 = 0.7, the main capacitance C 1 does not change even if the temperature changes, and the diameter ratio D 2 / D 1 of the inner conductor 2 and the main electrode 13 or 23 and the ratio of the respective linear expansion coefficients. The relationship with β / α is the curve of S = 0 shown by the dotted line in FIG. From this curve, the diameter ratio D of the inner conductor 2 and the main electrode 13 or 23
A capacitor whose main capacitance C 1 does not change even if the temperature changes due to a load current by selecting each material so that the ratio β / α of each linear expansion coefficient is satisfied corresponding to 2 / D 1. You can get a voltage divider.
【0035】しかしながら、実際のコンデンサ分圧器の
温度は運転条件,周囲温度の変化によって変化するので
たとえ式15の条件を満足する内部導体2及び主電極13ま
たは23の材料の線膨張率を満足するものを選定しても、
主静電容量C1 の変化量を零にすることは不可能であ
る。そこで、コンデンサ分圧器に許容される主静電容量
C1 の変化量を運転される温度範囲において満足する条
件を求める。この種のコンデンサ分圧器を用いて構成す
る電圧検出手段は、分圧電圧の信号変換手段の誤差を考
慮すると、主静電容量の許容変化量は前記したとおり0.
1 〜0.2 %程度が要求される。コンデンサ分圧器の主静
電容量C1 の変化量は式11の第2項であり、許容変化率
をSとすると許容変化率Sは式14のとおりとなる。However, since the actual temperature of the capacitor voltage divider changes depending on the operating conditions and changes in the ambient temperature, the linear expansion coefficient of the material of the inner conductor 2 and the main electrode 13 or 23 that satisfies the condition of Equation 15 is satisfied. Even if you choose one,
It is impossible to make the amount of change in the main capacitance C 1 zero. Therefore, a condition for satisfying the change amount of the main capacitance C 1 allowed for the capacitor voltage divider in the operating temperature range is obtained. In the voltage detecting means configured by using this kind of capacitor voltage divider, the allowable change amount of the main capacitance is 0.
About 1 to 0.2% is required. The amount of change in the main electrostatic capacitance C 1 of the capacitor voltage divider is the second term of the equation 11, and the allowable change rate S is given by the equation 14 when the allowable change rate is S.
【数12】 式14より内部導体2と主電極13または23の材質の線膨張
率α,βの比を求めると式15となる。[Equation 12] If the ratio of the linear expansion coefficients α and β of the materials of the inner conductor 2 and the main electrode 13 or 23 is obtained from the equation 14, the equation 15 is obtained.
【数13】 式15はS/αt1 =1の条件を満すαを選択することに
より内部導体2と主電極13または23の直径比D2 /D1
に係りなく、主電極13または23の材料が選択できるもの
であり、この値によって、式15により主電極13または23
の材料の必要な線膨張率βを求めることができる。[Equation 13] In formula 15, the diameter ratio D 2 / D 1 between the inner conductor 2 and the main electrode 13 or 23 is selected by selecting α that satisfies the condition of S / αt 1 = 1.
The material of the main electrode 13 or 23 can be selected regardless of
The required linear expansion coefficient β of the material can be obtained.
【0036】また、式11の第2項の主静電容量C1 の温
度上昇による変化量を許容変化率Sよりも小さくするつ
ぎの式16の条件を満足させることにより許容値以下にす
ることができる。Further, by making the amount of change of the main capacitance C 1 of the second term of the formula 11 due to temperature rise smaller than the allowable change rate S, the condition of the following formula 16 is satisfied so that the value is not more than the allowable value. You can
【数14】 式16より主電極13または23の材料の必要となる線膨張率
βの条件を導くと式17のようになる。[Equation 14] The condition of the linear expansion coefficient β required for the material of the main electrode 13 or 23 is derived from the formula 16 to obtain the formula 17.
【数15】 よって、主静電容量C1 の許容変化量Sと内部導体2の
線膨張率αと最高温度上昇値t1 との積αt1 との関係
をS/αt1 >1の条件を満足する内部導体2の材質を
選択することにより内部導体2と主電極13または23の直
径比D2 /D1が大きくなっても主電極13または23の線
膨張率βを大きくする必要がなくなる。S/αt1 >1
の条件を満足させる内部導体2の材質を選択して主電極
13または23の材質を式17の条件を満すように主電極13ま
たは23の材質を選択することにより、内部導体2と主電
極13または23の直径比D2 /D1 の値に係わらず主静電
容量C1 の温度上昇による主静電容量C1 の許容変化量
S以下となるコンデンサ分圧器が得られる。[Equation 15] Therefore, the relation between the allowable variation S of the main capacitance C 1 and the product αt 1 of the linear expansion coefficient α of the internal conductor 2 and the maximum temperature rise value t 1 satisfies the condition of S / αt 1 > 1. By selecting the material of the conductor 2, it is not necessary to increase the linear expansion coefficient β of the main electrode 13 or 23 even if the diameter ratio D 2 / D 1 between the inner conductor 2 and the main electrode 13 or 23 increases. S / αt 1 > 1
Select the material of the inner conductor 2 that satisfies the conditions
By selecting the material of the main electrode 13 or 23 so that the material of 13 or 23 satisfies the condition of Expression 17, regardless of the value of the diameter ratio D 2 / D 1 of the inner conductor 2 and the main electrode 13 or 23. It is possible to obtain the capacitor voltage divider in which the allowable change amount S of the main capacitance C 1 due to the temperature rise of the main capacitance C 1 is equal to or less than the allowable change amount S.
【0037】式14のt2 /t1 は内部導体2の温度上昇
値に対する主電極13または23の温度上昇値の比である。
ガス絶縁電気機器のコンデンサ分圧器が装着される部分
の温度分布は、内部導体2において負荷電流によって発
生した熱が、金属容器1内に充填されている絶縁ガスの
対流によって金属容器1の内面に移動し、金属容器1の
壁を伝達して金属容器1の表面より、外気に放熱される
ものであり、熱伝達系路の各部の温度は、内部導体2の
部分が最高点であり、各部の熱抵抗に比例して分割され
た温度勾配となり、内部導体2の温度が変化しても、各
部の熱抵抗は変化しないので各部の温度上昇値は内部導
体2の温度上昇値に熱抵抗によって分割された分割比を
乗じた値となるものである。In equation 14, t 2 / t 1 is the ratio of the temperature rise value of the main electrode 13 or 23 to the temperature rise value of the inner conductor 2.
The temperature distribution of the portion of the gas-insulated electrical equipment where the capacitor voltage divider is mounted is such that the heat generated by the load current in the inner conductor 2 is applied to the inner surface of the metal container 1 by convection of the insulating gas filled in the metal container 1. It moves, is transmitted through the wall of the metal container 1, and is radiated to the outside air from the surface of the metal container 1. The temperature of each part of the heat transfer path is the highest point of the inner conductor 2 and Since the temperature gradient is divided in proportion to the thermal resistance of the internal conductor 2 and the thermal resistance of each part does not change even if the temperature of the inner conductor 2 changes, the temperature rise value of each part is It is a value obtained by multiplying the divided division ratio.
【0038】コンデンサ分圧器の主電極13または23は充
填された絶縁ガス中に装着されており、その温度は充填
された絶縁ガス温度の金属容器1の内面近くの温度に等
しくなっている。この種のコンデンサ分圧器の内部導体
2の直径D1 は、定格電流より必要となる直径は小さく
ても、内部の電界を平均化するために、電圧階級に応じ
て直径を大きくするものであり、主電極13または23との
直径比D2 /D1 は電圧階級によって大きく変るもので
はなく、狭い範囲に設定され、そのD2 /D1の範囲は
大略1.4 〜2.0 程度の範囲である。したがって熱分布的
にほぼ相似形と考えてよく、t2 /t1 は電圧階級に関
係なくほぼ一定となると考えてよい。実際のガス絶縁電
気機器の温度試験では、構成の差異により若干の差はあ
るが内部導体2の温度上昇値と、金属容器1の表面温度
上昇値との比は、0.6 〜0.7の範囲にあり、主電極13ま
たは23の温度を熱抵抗比から推定するとt2 /t1 =0.
7 〜0.8 の範囲にある。The main electrode 13 or 23 of the capacitor voltage divider is mounted in a filled insulating gas, the temperature of which is equal to the temperature of the filled insulating gas temperature near the inner surface of the metal container 1. The diameter D 1 of the inner conductor 2 of this type of capacitor voltage divider is to be increased according to the voltage class in order to average the internal electric field even if the diameter required is smaller than the rated current. The diameter ratio D 2 / D 1 to the main electrode 13 or 23 does not change greatly depending on the voltage class and is set in a narrow range, and the range of D 2 / D 1 is approximately 1.4 to 2.0. Therefore, it may be considered that they are substantially similar in heat distribution, and that t 2 / t 1 is almost constant regardless of the voltage class. In the actual temperature test of the gas-insulated electric equipment, the ratio between the temperature rise value of the inner conductor 2 and the surface temperature rise value of the metal container 1 is in the range of 0.6 to 0.7, although there is a slight difference due to the difference in configuration. Estimating the temperature of the main electrode 13 or 23 from the thermal resistance ratio, t 2 / t 1 = 0.
It is in the range of 7 to 0.8.
【0039】コンデンサ分圧器の製作時の温度は、季節
によって差異はあるがほとんど15〜30℃の範囲にあると
考えてよく、この範囲の温度で製作されたコンデンサ分
圧器は規格(JEC−181 )に規定された最高周囲温度
40℃で使用され、そのときの内部導体の最高温度は105
℃と規定されており、温度上昇値t1 は65℃となる。コ
ンデンサ分圧器を製作したときの温度を15℃とし最高気
温40℃で使用されるときを最悪条件とすると製作時の温
度に対する最高気温40℃の時の内部導体2の温度105 ℃
との差90℃を内部導体2の最高温度上昇値と設定し、主
電極13または23の温度上昇値と内部導体2の温度上昇値
との比t2 /t1 を0.7 〜0.8 の条件が悪くなる0.7 と
して内部導体2及び主電極13または23に必要となる線膨
張率を有する材料を選択することにより、使用中の温度
変化に対して、主静電容量C1 の許容範囲以内に収める
ことができる。The temperature at the time of manufacturing the capacitor voltage divider can be considered to be almost in the range of 15 to 30 ° C. although it varies depending on the season, and the capacitor voltage divider manufactured at the temperature in this range is a standard (JEC-181). ) Maximum ambient temperature
Used at 40 ℃, the maximum temperature of the inner conductor at that time is 105
The temperature rise value t 1 is 65 ° C. Assuming that the temperature when the capacitor voltage divider is manufactured is 15 ℃ and the maximum temperature is 40 ℃, the worst condition is that the temperature of the inner conductor 2 is 105 ℃ when the maximum temperature is 40 ℃.
90 ° C is set as the maximum temperature rise value of the inner conductor 2, and the ratio t 2 / t 1 between the temperature rise value of the main electrode 13 or 23 and the temperature rise value of the inner conductor 2 is 0.7 to 0.8. By selecting a material having a linear expansion coefficient required for the inner conductor 2 and the main electrode 13 or 23 as 0.7, which falls within the allowable range of the main capacitance C 1 with respect to the temperature change during use. be able to.
【0040】コンデンサ分圧器に対して要求される主静
電容量C1 の許容変化率Sは前記のとおり0.1 〜0.2 %
程度であり、設計目標値をS=0.0015(0.15%)として
検討する。上記で検討した設定条件を再記述するとつぎ
のとおりである。 S=0.0015,t1 =90℃,t2 /t1 =0.7 この条件において式15が内部導体2および主電極13また
は23の直径比D2 /D1 に関係しなくなる条件、S=α
t1 を満足するαの値はつぎのようになる。 α=S/t1 =0.0015/90=16.7×10-6 αを式15に代入して内部導体2及び主電極13または23の
それぞれの線膨張率の比β/αを求めると、1.429 とな
りこれよりβを求めると、23.8×10-6となり、内部導体
2及び主電極13または23のそれぞれの線膨張率をα=1
6.7×10-6,β=23.8×10-6とすることにより上記温度
条件t1 =90℃,t2 /t1 =0.7 の条件において直径
に関係なく主静電容量C1 の許容変化率S=0.0015(0.
15%)にすることができる。The allowable change rate S of the main capacitance C 1 required for the capacitor voltage divider is 0.1 to 0.2% as described above.
This is a degree, and the design target value is S = 0.0015 (0.15%) and is considered. The setting conditions examined above are re-described as follows. S = 0.0015, t 1 = 90 ° C., t 2 / t 1 = 0.7 The condition under which Eq. 15 is no longer related to the diameter ratio D 2 / D 1 of the inner conductor 2 and the main electrode 13 or 23, S = α
The value of α that satisfies t 1 is as follows. α = S / t 1 = 0.0015 / 90 = 16.7 × 10 -6 Substituting α into Equation 15 and calculating the ratio β / α of the linear expansion coefficients of the internal conductor 2 and the main electrode 13 or 23 gives 1.429. When β is calculated from this, it becomes 23.8 × 10 −6 , and the linear expansion coefficient of each of the inner conductor 2 and the main electrode 13 or 23 is α = 1.
By setting 6.7 × 10 −6 and β = 23.8 × 10 −6 , the permissible rate of change of the main capacitance C 1 regardless of the diameter under the above temperature conditions t 1 = 90 ° C. and t 2 / t 1 = 0.7. S = 0.0015 (0.
15%).
【0041】しかしながら、このようにして求められた
内部導体2と主電極13または23の線膨張率α,βにすば
り適合する材料は少なく、実際にはこれに近い線膨張率
を有する材料を選定し、選定した材料の線膨張率によっ
て実製品の主静電容量C1 の変化量を求め、求めた変化
量が許容変化率Sの範囲内にある条件において適用がで
きる。上記で求めたα=16.7×10-6,β=23.8×10-6に
最も近い材料としては、銅{線膨張率16.5×10-6(at20
℃)},アルミニウム{線膨張率23.8×10-6(at20
℃)}がある。内部導体2の材料に銅、主電極13または
23の材料にアルミニウムまたはアルミニウムを主成分と
するアルミ合金を選定することができる。この場合の内
部導体2の直径と主電極13または23の直径比D2 /D1
に対応する主静電容量C1 の変化率を、中心導体2の温
度が90℃,80℃,70℃のときについて図5に示す。図5
に示すとおり最高温度90℃において許容変化率Sは0.00
15(0.15%)以下であり、温度が低くなるにつれて変化
率は小さくなっており運転中の温度範囲において主静電
容量C1 が許容変化率Sの範囲内とすることができる。However, few materials are suitable for the linear expansion coefficients α and β of the internal conductor 2 and the main electrode 13 or 23 thus determined, and in reality, materials having linear expansion coefficients close to these are used. The amount of change in the main capacitance C 1 of the actual product is determined by the linear expansion coefficient of the selected material, and the applied amount can be applied under the condition that the obtained amount of change is within the allowable change rate S. The material closest to α = 16.7 × 10 -6 and β = 23.8 × 10 -6 obtained above is copper {linear expansion coefficient 16.5 × 10 -6 (at20
℃)}, aluminum {coefficient of linear expansion 23.8 × 10 -6 (at20
℃)}. The material of the inner conductor 2 is copper, the main electrode 13 or
As the material of 23, aluminum or an aluminum alloy containing aluminum as a main component can be selected. In this case, the diameter ratio of the inner conductor 2 to the diameter of the main electrode 13 or 23 D 2 / D 1
FIG. 5 shows the rate of change of the main capacitance C 1 corresponding to the above when the temperature of the central conductor 2 is 90 ° C., 80 ° C. and 70 ° C. Figure 5
As shown in, the allowable change rate S is 0.00 at the maximum temperature of 90 ℃.
It is 15 (0.15%) or less, and the rate of change decreases as the temperature decreases, and the main capacitance C 1 can be kept within the allowable rate of change S in the temperature range during operation.
【0042】実施例5.つぎに第5の実施例について説
明する。実施例1〜4では主電極及び補助電極を金属材
料で構成する場合を示したが、実施例5は主電極及び補
助電極を一体として樹脂材料を成型して電極部を形成す
るものである。図7,図8にその実施例を示す。図にお
いて30は電極部であり、エポキシ注型樹脂等の樹脂材料
を所定の形状に成型した電極ボデー31の内周面の所定の
位置に主電極膜32を、この主電極膜32の端部とは所定の
絶縁間隔31aを隔だてた位置から電極ボデー31の端部を
経て外周面に補助電極膜33を形成するように導電膜が付
着されている。主電極膜32及び補助電極膜33は導電性塗
料の塗布または金属の溶射、あるいは蒸着により容易に
形成できる。主電極膜32は絶縁端子6と接続リード7に
より接続されて分圧電圧が外部に導出される。補助電極
33は接続リード17により金属容量1と直接接続されてい
る。Example 5. Next, a fifth embodiment will be described. In the first to fourth embodiments, the case where the main electrode and the auxiliary electrode are made of a metal material is shown, but in the fifth embodiment, the main electrode and the auxiliary electrode are integrally formed with a resin material to form the electrode portion. The embodiment is shown in FIGS. In the figure, reference numeral 30 denotes an electrode portion, and a main electrode film 32 is formed at a predetermined position on an inner peripheral surface of an electrode body 31 formed by molding a resin material such as an epoxy casting resin into a predetermined shape, and an end portion of the main electrode film 32 is formed. A conductive film is attached so as to form an auxiliary electrode film 33 on the outer peripheral surface from a position separated by a predetermined insulation distance 31a through the end of the electrode body 31. The main electrode film 32 and the auxiliary electrode film 33 can be easily formed by applying a conductive paint, spraying a metal, or vapor deposition. The main electrode film 32 is connected to the insulating terminal 6 by the connection lead 7, and the divided voltage is led to the outside. Auxiliary electrode
33 is directly connected to the metal capacitor 1 by the connection lead 17.
【0043】電極部をこのように構成すると、主電極膜
32の端部の電界分布はほぼ均一な電界となり設計時点か
ら実施例1,2と同様に主静電容量が把握することがで
き、さらに電極部を装着するための部品点数が少なくな
り、装着作業が容易となる。When the electrode portion is constructed in this way, the main electrode film
The electric field distribution at the end of 32 becomes an almost uniform electric field, and the main capacitance can be grasped from the time of design as in Examples 1 and 2, and the number of parts for mounting the electrode part is reduced, Work becomes easy.
【0044】この実施例において、電極ボデー31の線膨
張率を内部導体2と主電極膜32との直径比D2 /D1 及
び最高温度上昇比t2 /t1 、及び主静電容量C1 の許
容変化率Sとの関係から、前記式17を用いて主電極ボデ
ー32の樹脂材料に必要となる線膨張率βに調整した材料
を用いると主静電容量C1 を許容変化率S以内とするこ
とができる。In this embodiment, the linear expansion coefficient of the electrode body 31 is set to the diameter ratio D 2 / D 1 between the inner conductor 2 and the main electrode film 32, the maximum temperature rise ratio t 2 / t 1 , and the main capacitance C. From the relationship with the allowable change rate S of 1 , the main capacitance C 1 can be changed to the allowable change rate S by using the material adjusted to the linear expansion coefficient β required for the resin material of the main electrode body 32 by using the above formula 17. It can be within.
【0045】このように線膨張率βが大きなものが得ら
れる樹脂材料を用いると、主静電容量C1 の許容変化率
Sが小さい値を必要とする場合においても温度上昇があ
っても主静電容量C1 の精度が確保されたコンデンサ分
圧器を得ることができる。内部導体2の材質を銅として
許容変化率S=0,S=0.001 及びS=0.0015の場合の
主電極13または23に必要となる線膨張率βの関係を図6
に示す。When a resin material having a large linear expansion coefficient β is used as described above, even if the allowable change rate S of the main capacitance C 1 requires a small value, even if the temperature rises, It is possible to obtain the capacitor voltage divider in which the accuracy of the electrostatic capacitance C 1 is ensured. FIG. 6 shows the relationship between the linear expansion coefficient β required for the main electrode 13 or 23 when the material of the inner conductor 2 is copper and the allowable change rates S = 0, S = 0.001 and S = 0.015.
Shown in.
【0046】[0046]
【発明の効果】この発明の請求項1に係るコンデンサ分
圧器は、内部導体が金属容器の中心部に収容され、絶縁
ガスが充填されたガス絶縁電気機器の金属容器の内周近
くに、両端部に絶縁支持された補助電極を設けた主電極
を装着したものであって、主電極の両端に絶縁支持され
た補助電極を設けたことにより、主電極端部の電界の広
がりがなくなり、主電極と内部導体との間の主静電容量
が設計時点から正確な値が把握できるので組立後に行な
う分圧電圧の調整に必要な調整コンデンサの準備する種
類が少なくなり、調整作業が簡単になり、また主電極部
に対する周囲電極の影響を受けにくくなったのでガス絶
縁電気機器へのコンデンサ分圧器の装着位置の自由度が
大きくなる効果を奏するものである。In the capacitor voltage divider according to the first aspect of the present invention, the inner conductor is housed in the center of the metal container, and both ends are near the inner circumference of the metal container of the gas-insulated electric equipment filled with the insulating gas. The main electrode is provided with an auxiliary electrode that is insulated and supported at the end of the main electrode.By providing the auxiliary electrodes that are insulated and supported at both ends of the main electrode, the spread of the electric field at the end of the main electrode is eliminated, Since the accurate value of the main capacitance between the electrode and the internal conductor can be grasped from the time of design, the number of types of adjustment capacitors required to adjust the divided voltage after assembly is reduced, which simplifies the adjustment work. Moreover, since the influence of the surrounding electrodes on the main electrode portion is less likely to occur, the degree of freedom of the mounting position of the capacitor voltage divider on the gas-insulated electric device is increased.
【0047】この発明の請求項2に係るコンデンサ分圧
器は、電極部を金属容器の内周に装着するための取付座
として補助電極一対のうちの一方を金属容器に固着する
構成としたので、コンデンサ分圧器をガス絶縁電気機器
へ装着するための部品点数が少なくなり、装着する作業
も簡単に行える効果を有するとともに請求項1と同様に
設計時点から主静電容量が正確に把握でき、分圧電圧を
調整する調整コンデンサの種類が少なくなり、調整作業
に要する作業時間も短かくなる効果を奏する。In the capacitor voltage divider according to claim 2 of the present invention, one of the pair of auxiliary electrodes is fixed to the metal container as a mounting seat for mounting the electrode portion on the inner circumference of the metal container. The number of parts for mounting the capacitor voltage divider on the gas-insulated electrical equipment is reduced, and the mounting work can be easily performed, and the main capacitance can be accurately grasped from the time of design as in the case of claim 1, and the The number of adjusting capacitors for adjusting the piezoelectric voltage is reduced, and the working time required for the adjusting work is shortened.
【0048】この発明の請求項3に係るコンデンサ分圧
器は、主電極を円筒形とし、円周の一箇所に軸方向にス
リットを設け、一対の補助電極は金属容器に所定の間隔
を保って固着され、補助電極の間に絶縁環を間挿して装
着した構成としたので、請求項1,2と同様に設計時点
から主静電容量が正確に把握できるとともに、電極部を
装着するためのスペースが小さくなったので金属容器の
直径も小さくでき、装着作業も簡単になる効果を奏す
る。In the capacitor voltage divider according to claim 3 of the present invention, the main electrode has a cylindrical shape, a slit is provided at one position on the circumference in the axial direction, and the pair of auxiliary electrodes are provided in the metal container at a predetermined interval. Since it is fixed and the insulating ring is inserted and mounted between the auxiliary electrodes, the main capacitance can be accurately grasped from the time of design as in the case of claims 1 and 2, and the electrode part can be mounted. Since the space is small, the diameter of the metal container can be made small, and the installation work is easy.
【0049】この発明の請求項4に係るコンデンサ分圧
器は、内部導体は主静電容量の許容変化率を内部導体の
最高温度上昇値で除した値より小さな線膨張率を有する
材料とし、主電極は内部導体材料の線膨張率と内部導体
の最高温度上昇値との積を主電極の最高温度上昇値で除
した値よりも大きな線膨張率を有する材料としたので、
内部導体及び主電極の直径に関係なく使用温度範囲にお
いて主静電容量の変化率が許容範囲を越えることがない
コンデンサ分圧器となる。In the capacitor voltage divider according to claim 4 of the present invention, the inner conductor is made of a material having a linear expansion coefficient smaller than a value obtained by dividing the allowable rate of change of the main capacitance by the maximum temperature rise value of the inner conductor. Since the electrode is a material having a larger linear expansion coefficient than the value obtained by dividing the product of the linear expansion coefficient of the internal conductor material and the maximum temperature increase value of the internal conductor by the maximum temperature increase value of the main electrode,
A capacitor voltage divider in which the rate of change of the main capacitance does not exceed the allowable range in the operating temperature range regardless of the diameters of the inner conductor and the main electrode.
【0050】この発明の請求項5に係るコンデンサ分圧
器は内部導体の材料を銅とし、主電極の材料をアルミニ
ウムまたはアルミニウムを主成分とするアルミ合金で構
成したものである。このように構成したことにより、製
作時の温度から最高温度上昇した状態までの温度範囲で
主静電容量の変化率が0.15%以内のコンデンサ分圧器が
得られる。In the capacitor voltage divider according to the fifth aspect of the present invention, the material of the inner conductor is copper, and the material of the main electrode is aluminum or an aluminum alloy containing aluminum as a main component. With this configuration, a capacitor voltage divider having a main capacitance change rate of 0.15% or less can be obtained in the temperature range from the temperature at the time of manufacture to the state where the maximum temperature rises.
【0051】この発明の請求項6に係るコンデンサ分圧
器は、電極部を樹脂材料で形成された電極ボデーの内周
面の所定の位置に主電極、この主電極の端部とは所定の
間隔を置いた位置から、端部をこえて外周面に補助電極
となる導電膜を付着させて形成したので、主電極端部の
電界の広がりがなくなり、設計時点から正確な主静電容
量が把握できるので分圧を調整する調整コンデンサの準
備する種類が少なくてよくなり、簡単に調整することが
できるとともに電極部の装着する部品点数が少く、組立
作業も簡単になる効果がある。According to a sixth aspect of the capacitor voltage divider of the present invention, the electrode portion is a main electrode at a predetermined position on the inner peripheral surface of the electrode body made of a resin material, and the main electrode has a predetermined distance from the end portion. Since the conductive film to be the auxiliary electrode is attached to the outer peripheral surface beyond the end from the position where the is placed, the electric field at the end of the main electrode does not spread, and the accurate main capacitance can be grasped from the time of design. Therefore, the number of types of adjustment capacitors for adjusting the partial pressure need not be large, and the adjustment can be easily performed, and the number of parts to be mounted on the electrode portion is small, and the assembling work can be facilitated.
【図1】図1はこの発明によるコンデンサ分圧器の第1
の実施例を示す断面図である。FIG. 1 shows a first capacitor voltage divider according to the present invention.
It is sectional drawing which shows the Example of.
【図2】図2はこの発明によるコンデンサ分圧器の第2
の実施例を示す断面図である。FIG. 2 shows a second capacitor voltage divider according to the present invention.
It is sectional drawing which shows the Example of.
【図3】図3はこの発明によるコンデンサ分圧器の第3
の実施例を示す断面図である。FIG. 3 is a third diagram of a capacitor voltage divider according to the present invention.
It is sectional drawing which shows the Example of.
【図4】図4はこの発明によるコンデンサ分圧器の使用
中の温度変化範囲において主静電容量の許容変化率とす
るための内部導体と主電極の直径比に対応する主電極材
料の必要な線膨張率を求める曲線を示す図である。FIG. 4 is a diagram showing a necessary main electrode material corresponding to a diameter ratio between an inner conductor and a main electrode for obtaining a permissible rate of change of a main capacitance in a temperature change range during use of a capacitor voltage divider according to the present invention. It is a figure which shows the curve which calculates | requires a linear expansion coefficient.
【図5】図5はこの発明によるコンデンサ分圧器の内部
導体材料を銅、主電極材料をアルミニウムまたはアルミ
ニウムを主成分とするアルミ合金とした場合の内部導体
と主電極の直径比に対応した主静電容量の変化率を運転
温度毎に示す図である。FIG. 5 is a diagram showing a main electrode corresponding to a diameter ratio between the inner conductor and the main electrode when the inner conductor material of the capacitor voltage divider according to the present invention is copper and the main electrode material is aluminum or an aluminum alloy containing aluminum as a main component. It is a figure which shows the change rate of electrostatic capacitance for every operating temperature.
【図6】図6はこの発明によるコンデンサ分圧器の内部
導体材料を銅とした場合の内部導体と主電極の直径比に
対応して主静電容量の許容変化率が0,0.001 及び0.00
15にするための主電極材料の線膨張率を求める曲線を示
す図である。FIG. 6 shows that the permissible rate of change of the main capacitance is 0, 0.001 and 0.00 corresponding to the diameter ratio between the inner conductor and the main electrode when the inner conductor material of the capacitor voltage divider according to the present invention is copper.
FIG. 8 is a diagram showing a curve for obtaining the linear expansion coefficient of the main electrode material for setting the value to 15.
【図7】図7はこの発明によるコンデンサ分圧器の第5
の実施例を示す断面図である。FIG. 7 is a fifth diagram of a capacitor voltage divider according to the present invention.
It is sectional drawing which shows the Example of.
【図8】図8は図7の電極端部の拡大断面図である。8 is an enlarged cross-sectional view of the electrode end portion of FIG. 7.
【図9】図9はガス絶縁電気機器に使用されている従来
のコンデンサ分圧器を示す断面図である。FIG. 9 is a cross-sectional view showing a conventional capacitor voltage divider used in gas-insulated electrical equipment.
【図10】図10はコンデンサ分圧器の等価回路である。FIG. 10 is an equivalent circuit of a capacitor voltage divider.
【符号の説明】 1 金属容器 2 内部導体 6 絶縁端子 13 主電極 14 絶縁環 15 補助電極 23 主電極 24 絶縁環 25 補助電極 30 電極部 31 電極ボデー 32 主電極膜 33 補助電極膜[Explanation of reference symbols] 1 metal container 2 inner conductor 6 insulating terminal 13 main electrode 14 insulating ring 15 auxiliary electrode 23 main electrode 24 insulating ring 25 auxiliary electrode 30 electrode part 31 electrode body 32 main electrode film 33 auxiliary electrode film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 山本 直人 尼崎市塚口本町8丁目1番1号 三菱電機 株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Naoto Yamamoto 8-1-1 Tsukaguchihonmachi, Amagasaki City Mitsubishi Electric Corporation Itami Works
Claims (6)
が充填された金属容器の内部に設けられ上記金属容器に
絶縁支持された所定長さを有する上記内部導体と同心状
に配設された主電極と、該主電極の両端部に絶縁部材を
介して上記主電極の延長上に連結された補助電極と、上
記主電極に接続され、上記金属容器の外部に導出された
端子を備え、上記主電極の両端部に連結された補助電極
は上記金属容器と電気的に接続されたことを特徴とする
コンデンサ分圧器。1. An internal conductor is housed in the center, is provided inside a metal container filled with an insulating gas, and is arranged concentrically with the internal conductor having a predetermined length and insulated and supported by the metal container. A main electrode, an auxiliary electrode connected to both ends of the main electrode through an insulating member on an extension of the main electrode, and a terminal connected to the main electrode and led to the outside of the metal container. A capacitor voltage divider, wherein auxiliary electrodes connected to both ends of the main electrode are electrically connected to the metal container.
され、主電極はこの補助電極に絶縁部材を介して固着さ
れていることを特徴とする請求項1に記載のコンデンサ
分圧器。2. The capacitor voltage divider according to claim 1, wherein one auxiliary electrode is fixed to the inner wall of the metal container, and the main electrode is fixed to the auxiliary electrode via an insulating member.
が充填された金属容器の内壁に所定の間隔を保って固着
された一対の補助電極と、円筒状に形成され、円周の一
箇所に軸方向のスリットが設けられ、上記一対の補助電
極の間に絶縁支持された主電極と、上記主電極に接続さ
れ、上記金属容器の外部に導出された端子とを備えたこ
とを特徴とするコンデンサ分圧器。3. A pair of auxiliary electrodes having an inner conductor housed in the center thereof and fixed to the inner wall of a metal container filled with an insulating gas at a predetermined interval, and having a cylindrical shape, A slit in the axial direction is provided at a location, and a main electrode insulated and supported between the pair of auxiliary electrodes, and a terminal connected to the main electrode and led to the outside of the metal container are provided. Capacitor voltage divider.
が充填された金属容器の内部に設けられ、上記金属容器
に絶縁支持され、上記内部導体と同心状に配置された所
定の長さの主電極と該主電極に接続され、外部に導出さ
れた端子を備え、内部導体は内部導体と主電極との間の
主静電容量の許容変化率を内部導体の最高温度上昇値で
除した値より小さな線膨張率を有する材料とし、主電極
は内部導体材料の線膨張率と内部導体の最高温度上昇値
との積を主電極の最高温度上昇値で除した値より大きな
線膨張率を有する材料としたことを特徴とするコンデン
サ分圧器。4. An inner conductor is housed in the center, is provided inside a metal container filled with an insulating gas, is insulated and supported by the metal container, and has a predetermined length arranged concentrically with the inner conductor. Of the main conductor and a terminal connected to the main electrode and led to the outside, and the inner conductor has an allowable change rate of the main capacitance between the inner conductor and the main electrode divided by the maximum temperature rise value of the inner conductor. The linear expansion coefficient is larger than the value obtained by dividing the product of the linear expansion coefficient of the inner conductor material and the maximum temperature rise value of the internal conductor by the maximum temperature rise value of the main electrode. A capacitor voltage divider characterized by using a material having.
が充填された金属容器の内部に設けられ、金属容器に絶
縁支持され、上記内部導体と同心状に配置された主電極
と、該主電極に接続され、上記金属容器の外部に導出さ
れた端子を備え、上記内部導体の材質を銅、上記主電極
の材質をアルミニウムまたはアルミニウムを主成分とす
るアルミニウム合金としたことを特徴とするコンデンサ
分圧器。5. A main electrode having an inner conductor housed in the center thereof, provided inside a metal container filled with an insulating gas, insulated and supported by the metal container, and arranged concentrically with the inner conductor, A terminal connected to a main electrode and led out of the metal container, wherein the material of the inner conductor is copper and the material of the main electrode is aluminum or an aluminum alloy containing aluminum as a main component. Capacitor voltage divider.
が充填された金属容器の内部に設けられ、金属容器に上
記内部導体と同心状に支持され、主要部が樹脂材料で円
筒状に成型され、内周面の中央部に主電極、内周面端部
に補助電極となる導電膜が形成された電極部と、上記主
電極に接続され上記金属容器の外部に導出された絶縁端
子とを備え、上記補助電極は金属容器に電気的に接続さ
れていることを特徴とするコンデンサ分圧器。6. An inner conductor is housed in the center, is provided inside a metal container filled with an insulating gas, is supported concentrically with the inner conductor in the metal container, and a main part is made of a resin material in a cylindrical shape. An electrode part that is molded and has a main electrode at the center of the inner peripheral surface and a conductive film that serves as an auxiliary electrode at the end of the inner peripheral surface, and an insulating terminal connected to the main electrode and led out of the metal container. And the auxiliary electrode is electrically connected to a metal container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293460A JP2973804B2 (en) | 1993-11-24 | 1993-11-24 | Condenser voltage divider |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5293460A JP2973804B2 (en) | 1993-11-24 | 1993-11-24 | Condenser voltage divider |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07146313A true JPH07146313A (en) | 1995-06-06 |
JP2973804B2 JP2973804B2 (en) | 1999-11-08 |
Family
ID=17795038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5293460A Expired - Fee Related JP2973804B2 (en) | 1993-11-24 | 1993-11-24 | Condenser voltage divider |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2973804B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0869369A2 (en) * | 1997-04-04 | 1998-10-07 | Asea Brown Boveri AG | Capacitive voltage transducer for a metal-encapsulated gas-insulated high voltage installation |
CN104502662A (en) * | 2014-12-11 | 2015-04-08 | 无锡市锡容电力电器有限公司 | Method for generating design scheme of voltage divider for mutual inductor |
-
1993
- 1993-11-24 JP JP5293460A patent/JP2973804B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0869369A2 (en) * | 1997-04-04 | 1998-10-07 | Asea Brown Boveri AG | Capacitive voltage transducer for a metal-encapsulated gas-insulated high voltage installation |
EP0869369A3 (en) * | 1997-04-04 | 1999-06-02 | Asea Brown Boveri AG | Capacitive voltage transducer for a metal-encapsulated gas-insulated high voltage installation |
CN104502662A (en) * | 2014-12-11 | 2015-04-08 | 无锡市锡容电力电器有限公司 | Method for generating design scheme of voltage divider for mutual inductor |
Also Published As
Publication number | Publication date |
---|---|
JP2973804B2 (en) | 1999-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106716148B (en) | Voltage sensing device | |
US7129693B2 (en) | Modular voltage sensor | |
US6963195B1 (en) | Apparatus for sensing current | |
JP6050309B2 (en) | High voltage measurement system | |
US6184672B1 (en) | Current sensor assembly with electrostatic shield | |
US4320337A (en) | Combined current and voltage converter for a compressed-gas insulated metal-enclosed high voltage installation | |
US11287456B2 (en) | Capacitive compensated voltage sensor | |
US20100013460A1 (en) | Rogowski Sensor and Method for Measuring a Current | |
US5991177A (en) | Capacitive voltage transformer for a metal-enclosed, gas-filled high-voltage system | |
EP2508898A1 (en) | Guarding methods for high voltage measurements | |
US20050122122A1 (en) | Voltage sensor and dielectric material | |
US6529013B2 (en) | Three-phase voltage sensor with active crosstalk cancellation | |
US7489122B2 (en) | Method and device for measuring voltage | |
US20020190705A1 (en) | Current transformer based high voltage measurement method | |
US20180374644A1 (en) | Capacitor, capacitive voltage sensor and method for manufacturing a capacitor | |
EP4256353A1 (en) | Voltage sensor | |
US3943433A (en) | Measuring transformer arrangement for a high-voltage installation carrying several conductors | |
JP2973804B2 (en) | Condenser voltage divider | |
EP1326080B1 (en) | Voltage sensor for gas insulated electric apparatus | |
JP2004117310A (en) | Compound transformer and electric measuring system comprising the same | |
AU2019302720A1 (en) | Voltage division device having a rod-like structure | |
EP3575804A1 (en) | Voltage sensor | |
JPH05508021A (en) | High potential current transformer | |
JP2002157671A (en) | Sensing system | |
EP3415929A1 (en) | Electrical accessory comprising a sensing element of voltage on a cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080903 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090903 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100903 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110903 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120903 Year of fee payment: 13 |
|
LAPS | Cancellation because of no payment of annual fees |